
Knowledge Representation in the TRAINS System

M. Poesio
�
, G. Ferguson

�

, P. Heeman
�

, C. H. Hwang
�

, D. R. Traum
�

,
J. F. Allen

�

, N. Martin
�

, L. K. Schubert
�

Abstract

The long term goal of the TRAINS project is to deve-
lop an intelligentplanning assistant that is conversa-
tionally proficient in natural language. The TRAINS
system helps a user construct and monitor plans
about a railroad freight system; their interaction ta-
kes place in natural language. The representational
needs of a system like TRAINS include represen-
ting lexical meaning, dealing with the problem of
ambiguity, make use of information about context,
and finding a connection between the content of the
current utterance and the plan being jointly develo-
ped by system and user. The goal of the paper is
to describe how TRAINS-93, the latest prototype of
TRAINS, deals with these issues.

1 The TRAINS System

The long term goal of the TRAINS project is to deve-
lop an intelligent planning assistant that is conversatio-
nally proficient in natural language [Traum et al., 1994;
Allen et al., 1994]. The TRAINS system helps a user con-
struct and monitor plans about a railroad freight system; their
interaction takes place in natural language.

The user is responsible for assigning cargo to trains and
scheduling shipments, scheduling various simple manufactu-
ring tasks, and for revising the originalplans when unexpected
situations arise during plan execution. The system aids the
user in all aspects of task. In particular, the system typically
will perform the following tasks:

� Evaluating courses of action, calculating expected com-
pletion times, detecting conflicts, and so on;

� Filling in details of the proposed plan that do not require
the user’s attention;

� Suggesting ways to solve particular subproblems as they
arise;

� Presenting and describing the current state of the world
and how the proposed plan may affect it;
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UU# Speaker: Utterance
0 S: Hello, this is the TRAINS system. I can help you plan

and execute actions in the TRAINS World.
1.1 U: we better ship a boxcar of orangesto Bath by eight a.m.
2.1 S: okay.
3.1 U: so we need to get a boxcar to Corning, where there are

oranges.
3.2 : there are oranges at Corning.
3.3 : right?
4.1 S: right.
5.1 U: so we need an engine to move the boxcar.
5.2 : right?
6.1 S: right.
7.1 U: so there’s an engine at Avon.
7.2 : right?
8.1 S: right.
9.1 U: so we should move the engine at Avon, engine E1,

: to Dansville to pick up the boxcar there.
10.1 S: okay.
11.1 U: and move it from Dansville to Corning,
11.2 : load up some oranges into the boxcar,
11.3 : and then move it on to Bath.
12.1 S: okay.
13.1 U: how does that sound?
14.1 S: that’s no problem.
15.1 U: good.

Figure 1: An example of TRAINS dialog

� Dispatching the plan to the different agents in the world,
including the train engineers and factory users;

� Interpreting reports back from the engineers and factory
users in order to monitor the progress of the plan and to
anticipate problems before they arise; and

� Coordinating the correction and modification of plans
with the user.

Figure 2 shows a typical initial scenario. One of the conversa-
tions on which the system has been tested is shown in Figure
1; the system replicates the behavior of the participant marked
as ‘S’.

The representational needs of a system like TRAINS include
representing lexical meaning, dealing with the problem of
ambiguity, make use of informationabout context, and finding
a connection between the content of the current utterance and
the plan being jointly developed by system and user. The goal
of the paper is to describe how TRAINS-93, the latest prototype
of TRAINS, deals with these issues.
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2 The Representation Formalisms Used in
TRAINS-93

Roughly put, there are four kinds of ‘knowledge’ that the mo-
dules of TRAINS-93—the 1993 implementation of the TRAINS
system, whose architecture is shown in Figure 3—need to
represent: information about the meaning of an utterance,
information about the current context of interpretation, infor-
mation about the ‘world’, and information about the plan. At
the beginning of the TRAINS project, the decision was made
not to adopt a single representation formalism to be used by
all modules; the developers of each module were left free to
adopt whichever representation was best suited for their task.
As a result, several different representations and their asso-
ciated reasoning methods are currently used in the TRAINS
system. Each of these will be presented briefly, and its use
illustrated by means of an example from the conversation in
Figure 1, sentence 5.1, repeated here for convenience. In
section 3 we return to the issue of having multiple formalisms
in an NLP system.

(1) 5.1 U: So we need an engine to move the boxcar.

2.1 Episodic Logic

The task of the modules concerned with the interpretation of
utterances, including the Parser, the Scope and Deindexing
(SAD) module,

�

the Speech Act Interpreter, and the Dialogue
Manager (see Figure 3) is to arrive at one or more hypotheses
about the intended meaning of an utterance. The language
used to describe the meaning of the utterance must be rich
enough to allow distinctions in meaning to be captured.

For example, it won’t do to represent the meaning of 5.1
in Figure 1 as “There is an engine x and we need x to move
the boxcar,” because it is possible to use that utterance even
in circumstances where there is no engine, but this paraphrase
would be false under these circumstances. Ideally, the lan-
guage used to represent lexical meanings should also make it
simple to combine the meanings of lexical items in a single
meaning.

The representation used by the Parser to represent lexical
semantics is called Episodic Logic (EL). EL is a situatio-
nal logic developed as a knowledge and semantic representa-
tion suitable for general NLU [Hwang and Schubert, 1993a;
Hwang and Schubert, 1993b]. The most distinctive feature
of EL is its natural-language like expressiveness. It allows
for generalized quantifiers, lambda abstraction, sentence and
predicate nominalization, sentence and predicate modifiers,
intensional predicates (corresponding to wanting, needing,
believing, etc.), tense and aspect, surface speech act opera-
tors, and explicit situational variables together with operators
to specify what’s true at a situation. Each of the phrase struc-
ture rules in the TRAINS grammar is paired with a semantic
rule, and the Parser computes the initial, underspecified EL
representation of an utterance as it builds a parse tree for the
utterance.

The modules of TRAINS more directly involved with the
interpretation of utterances also have to worry about ambi-
guity. As the parser does not do reference resolution and
scope disambiguation, the representation it produces must be
underspecified, in the sense that it must indicate which aspects
of the utterance’s meaning have to be resolved in context; as
well, it must not represent a commitment to a specific scope
of operators. In other words, the ability to represent semantic
ambiguity implicitly is required.

�

This module performs scope assignment and reference
resolution.



The initial representation produced by the Parser is under-
specified in that it may contain unscoped operators (quan-
tifiers, in particular), indexical expressions (e.g., tense ope-
rators) and ambiguous predicates. For example, adverbial
infinitives are initially translated using the ambiguous pre-
dicate, IN-DISCOURSE-RELATION, which will be later parti-
cularized into FOR-PURPOSE, WITH-RESULT, etc. Situational
variables are introduced into the representation at a later stage
when tense-aspect operators are processed. Both the Scope
and Deindexing module and the Speech Act Analysis module
operate on the basis of such underspecified representations,
and generate hypotheses about which one among the available
interpretations was intended.

The Parser produces for (1) the underspecified representa-
tion shown in (2). It can be thought of as a parse tree whose
leaves have been replaced by the semantics of lexical items.
The labels S_N2+V2, V2_V+N2, etc. represent the left-hand
side and right-hand side categories occurring in the phrase
structure rule used. The semantic aspect of the rule is for-
mulated as Episodic Logic expressions, represented as Lisp
expressions of the form(<key> <item>+), where <key>
indicates the semantic object represented by the expression.
For example, the key :F indicates a functional application of
the first argument to the rest, the key :L indicates a lambda-
expression, and the key :0 indicates an unscoped operator.

(2) (1 UTT 1
(1 S-TELL (:F :DECL 1)
(1 S_CONJCOORD+S (:I :UTT-IMP 1 2)
(1 SO1 :SO-COORD)
(2 S_N2+V2 (:I 1 2) (1 WE1 :WE)
(2 V2_V2+VINF
(:F (:F :ADV-A

(:F :IN-DISCOURSE-RELATION
(:F :KA 2)))

(:L :X (:I :X 1)))
(1 V2_V+PREDNTYPE (:F 1 2)
(1 NEED3.3 (:O :PRES :NEED-REQUIRE))
(2 PRED_DETAN+N1 2

(1 AN1 :E)
(2 ENGINE1.1 :ENGINE)))

(2 V2_V+V2BASE (:F 1 2) (1 TO1 (:L :X :X))
(2 V2_V+N2 (:P 1 2)
(1 MOVE1.1 :MOVE)
(2 N2_DET+N1SING (:Q 1 2)
(1 THE1 :THE)
(2 BOXCAR1.1 :BOXCAR)))))))

(2 /PERIOD1 NIL)))

2.2 Conversation Representation Theory

Conversation Representation Theory (CRT) [Poesio, 1994] is
an account of contextual interpretation and ambiguity resolu-
tion in conversations. The language of CRT is a superset of the
language of Episodic Logic; the augmentations are designed
to provide better tools to describe the context of interpretation,
especially to indicate which referents are available and under
which conditions, and which aspects of a sentence’s meaning
need to be resolved.

In CRT, what takes place after an utterance is produced is
best seen as a process during which alternative hypotheses
about the change in the discourse situation brought about
by that utterance are obtained. A fundamental aspect of the
theory is that hypothesis generation is a process of context
update; this process is formalized in terms of operations on
structures called DRSs
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that represent the discourse situation.
Semantically, the main characteristic of CRT is that its formulas
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This construct is borrowed from DRT [Kamp and Reyle, 1993].

denote sets of functions from situations to truth values, so
that the language can be used to describe both semantically
‘unambiguous’ expressions (that denote singleton sets of such
values) and ambiguous expressions, such as the underspecified
representations obtained by the Parser (that denote sets of
cardinality greater than one).

The underspecified representation produced by the Parser is
converted into a CRT expression that represents the (surface)
conversational event, or locutionary act, resulting from the
production of that utterance, and this expression is added to the
DRS representing the current discourse situation. The Scope
and Deindexing (SAD) module uses the information contained
in the resulting DRS to do inferences that resolve contextually-
dependent expressions; this results in one or more hypotheses.

The hypothesis obtained by processing (2) is shown in (3).
As the syntax of CRT is a superset of that of Episodic Logic,
this conversion is mostly straightforward; we ignore the diffe-
rences in this paper (but see [Poesio, 1994] for a discussion).

(3) (:SIT-DESCR :COA1
(:DRS (:CE5950 :CE5951)
(:EV-DESCR :CE5950

(:DRS NIL (:I :HUM :SO-INIT)))
(:I :CE5950 :AT-ABOUT :NOW8)
(:I :CE5950 :SUBSIT :COA1)
(:EV-DESCR :CE5951
(:DRS NIL
(:I :HUM :TELL :SYS

(:SIT-DESCR (:PAR :*S5951* :SIT)
(:DRS (:E5946 :E5945 :X5946)
(:EV-DESCR :E5946
(:DRS NIL
(:I (:SET-OF :HUM :SYS)

(:F :NEED-REQUIRE
(:LAMBDA :Y
(:Q
(:OP :A :X5945
(:I (:PAR :*RES-SIT5945* :SIT)

:* (:I :X5945 :ENGINE)))
(:I :Y := :X5945)))))))

(:I :E5946 :AT-ABOUT :CE5951)
(:I :E5946 :SUBSIT :S*)
(:EV-DESCR :E5945
(:DRS NIL
(:I (:SET-OF :HUM :SYS)

:MOVE :X5946)))
(:I :E5946 :FOR-PURPOSE :E5945)
(:I :X5946 := :X2887)
(:SIT-DESCR :PLAN1

(:DRS NIL (:I :X5946 :BOXCAR))))))))
(:I :CE5951 :AT-ABOUT :NOW9)
(:I :CE5951 :SUBSIT :COA1)
(:I :CE5950 :BEFORE :CE5951)))

This expression states, roughly, that the discourse segment
:COA1 (a situation) has been augmented with two conver-
sational events, :CE950 and :CE951. An expression of
the form (:DRS (:A ... :B) F1 ... Fn+) re-
presents a DRS, that in CRT is interpreted as the representation
of a situation type: :A…:B are the constituents of a situation
and each expression Fj represents a fact that has to hold at
that situation.

Of the two conversational events that are part of :COA1,
:CE951 is most relevant; this is an event of the agent :HUM
telling the agent:SYS that a situation to be contextually deter-
mined, (:PAR :*S5951* :SIT) is characterized by two
eventualities: :E5946 and:E5945. The expression(:PAR
:*S5951* :SIT) is a parameter. Parameters stand for
‘holes’ in the meaning of an utterance that need to be filled
by reasoning, and are used to represent pronouns, definite
descriptions, and so forth. The representation includes the



information that the referent :X5946 of the definite descrip-
tion “the boxcar” has been identified as being equal to the DRS
constituent :X2887 introduced in utterance 3.1.

2.3 EBTL

The EBTL language (EBTL stands for Event Based Tempo-
ral Logic) is used as a communication language between the
Speech Act Interpreter, Dialogue Manager and Plan Reaso-
ner. It is also used by the Dialogue Manager to represent
conversation level information. EBTL is a typed logic based
on that presented in [Allen, 1991] and is implemented using
the RHET knowledge representation system [Allen and Miller,
1991]. Rhet includes support for type reasoning, temporal
reasoning, hierarchical belief contexts, equality and inequa-
lity reasoning. EBTL adds a much needed quotation facility (as
some operators need to treat propositions as terms), lambda
abstraction, existential and definite quantifiers, and discourse
markers. The language is more restricted than those of EL or
CRT: only events and some simple states can be represented
directly rather than general episodes.

Both hypotheses such as (3) and the underspecified repre-
sentation in (2) are fed to the Speech Act Interpreter, which
produces a set of core speech act alternatives and a list of
argumentation acts (which will not be discussed). In (4), the
speech act definition, expressed in EBTL, is given for one of the
possible core speech interpretations, [ST-CHECK-0024].

(4) (:AND (:ROLE [ST-CHECK-0024] :R-SPEAKER [HUM])
(:ROLE [ST-CHECK-0024] :R-HEARER [SYS])
(:ROLE [ST-CHECK-0024]

:R-TIME [F-TIME [CE5951]])
(:CONTENT [ST-CHECK-0024]
(:NEED-REQUIRE [SYSHUM]
(:LAMBDA ?O*T-ENGINE
(:DISC-MARKER [X5945] ?O*T-ENGINE ))))

(:FOCUS [ST-CHECK-0024] [X5945]))

In general, there can be many interpretations for an utterance,
and the manner in which they can provide an interpretation for
the utterance is specified in an alternative list. This list relates
the conversational event to its interpretations via the predicate
SURF-INTERP. The manner in which the alternatives can
combine is specified by the operators AND, OR, and EX-OR.

(5) (SEQUENCE
(SURF-INTERP [CE5950] [ST-ACCEPT-0022])
(SURF-INTERP [CE5951]

(AND (OR (EX-OR [ST-INFORM-0023]
[ST-CHECK-0024]
[ST-YNQ-0025])

[ST-SUGGEST-0026])
[ST-SUPP-SUG-0027])))

The Dialogue Manager, reasoning on the basis of the defini-
tion of the speech acts, consults the Plan Reasoner; in this
particular case, the final decision is to incorporate a new com-
ponent in the plan:

(6) #[(INCORPORATE
(:USE-OBJECT
(:LAMBDA ?o*T-ENGINE

(:DISC-MARKER [X5945] ?o*T-ENGINE )))
[PLAN-2383]
:INCORP-TYPE :ROLE-FILLER
:FOCUS

(:LAMBDA ?o*T-ENGINE
(:DISC-MARKER [X5945] ?o*T-ENGINE ))

:PURPOSE
(:LF-EXISTS ?L*T-MOVE [E5945]

(:APPLY
(:LAMBDA ?E*T-MOVE
(:AND (:ROLE ?E*T-MOVE

:R-AGENT [SYSHUM])
(:ROLE ?E*T-MOVE

:R-OBJECT [X5946])))
?L*T-MOVE )

(:OCCURS ?L*T-MOVE ))
:CONTEXT *PLANNER-RETURN3*)#]

2.4 Plans as Arguments

The TRAINS domain plan reasoner represents plans as connec-
ted, directed, acyclic graphs of event and fact nodes labelled
by events and propositions, respectively. These plan graphs
are given a formal semantics in terms of arguments: they
represent an argument that a certain course of action under
certain conditions will achieve certain goals. Since plans are
objects in the ontology, plan description predicates can be de-
fined that impose constraints on the plan-as-argument. There
are structural predicates, such as ActionIn, Enables,
Premise, Goal, etc., that are defined in terms of the struc-
ture of the plan graph. Then there are evaluation predicates.
These include absolute predicates such as Plausible or
Impossible and relative predicates that allow plans to be
compared, for example, according to resource usage or time
constraints. Further details are available in [Ferguson and
Allen, 1994].

As a result of processing utterances 1.1-4.1, the
plan graph corresponding to [PLAN-2545] contains two
Move-Car events: one is moving a car to Corning (where
there are oranges), the other is moving a car from Corning
to Bath (to move the oranges). Although both Move-Car
events in the plan could unify with the purpose formula in
5.1, the first one is preferred as it requires fewer equality
assumptions. In fact though, either choice would be possible
since in either case the Move-Car event has a role which
can unify with the lambda expression describing the engine.
Appropriate assumptions and new parts of the plan graph are
returned to the dialog manager as plan description predicates,
which can then be used to generate helpful suggestions or
request confirmations.

3 Discussion

One of the issues mentioned in the call for papers—the re-
lative advantages and disadvantages of having one or many
formalisms—was repeatedly raised during our work on the
project. Adopting different formalisms made it easier to de-
velop general-purpose components that could also be used in
isolation. In addition, it was not obvious that any existing
formalism would have been appropriate to describe all the
different kinds of information we needed to represent, and we
felt it was best to postpone any unification attempts until we
gained a better understanding of the problems we had to face.

On the other hand, not choosing a single representation
formalism from the very beginning involved a risk, namely,
that we would end up with a number of mutually incompatible
representations. In fact, this did not happen. There are strong
connections between the formalisms we use, and a number of
ontological assumptions are shared, so that most translations
are a straightforward matter.

A number of factors conspired in keeping the formalisms
we use relatively close to each other. First of all, there was an
unspoken agreement by all to adopt logic-based formalisms.
Secondly, as work progressed, it became more and more clear
that a tight interaction between the modules was needed; the



typical module of TRAINS has to interact with at least two
other modules, and, in some crucial cases, this interaction has
to be two-way. A particularly important case is the interaction
between the Dialogue Manager and the Plan Reasoner: the
Dialogue Manager has to be able, on the one hand, to make
decisions on the basis of the current state of the dialog (e.g.,
what speech act is most plausible during a certain phase of the
conversation); on the other hand, it also needs to interact with
the Plan Reasoner, and use the information thus obtained to
make decisions. This effectively forced the Dialogue Manager
and the Plan Reasoner to adopt a unified ontology.

In fact, although at the moment most modules do not access
the information stored by modules ‘further down the pipeline’
(e.g., the Parser need not access informationmaintained by the
Plan Reasoner), it has become fairly clear that eventually this
will have to change: e.g., the SAD module needs to know the
results of Speech Act interpretation, as these affect discourse
segmentation and therefore the availability of anaphoric refe-
rences. It is likely that a tighter integration among formalisms
will be reached in future versions of TRAINS.

This said, it is by no means clear that in the future all mo-
dules of the system will be able to access a unified database
of information. In order for that to happen, it is not enough to
adopt a single representation formalism; it is also necessary
that all modules adopt the same ontological perspective, and
it’s by no means clear that that’s possible, or even desirable.
A case in point is the representation of the plan. From the
perspective of the reference resolution module, the plan is
a situation just like any other—an object that contains con-
stituents that can be referred to. This is not, however, the
most useful way for the Plan Reasoner to look at the plan; the
‘argument’ perspective is more fruitful.
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