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Abstract

If one has attributed certain initial beliefs to an agent, it is sometimes possible to
reason about further beliefs the agent must hold by observing what conclusions one’s
own reasoning mechanism draws when given the initial beliefs as premises. This tech-
nique is called simulative inference. In an earlier paper, we described a logic of belief
in which the reasoning that generates beliefs is modeled explicitly as a computational
process. We used this logic to characterize a class of computational inference mecha-
nisms for which simulative inference is sound, under the assumption that the observer
and the observed have similar mechanisms. In this paper, we present a different form
of simulative inference, and show that unlike the earlier form, it is sound even for some
mechanisms that perform defeasible inference.

1 Introduction

In [4], we introduced a semantics of belief that avoids the logical omniscience problem
by describing the generation of a belief set from initial premises as a finite computational
process. In the model, each agent has abelief machine, an abstraction of a computational
inference mechanism, which is described by the two recursive functionsASK andTELL.
Each is a function of two arguments, the first being a state of the machine, and the second
a sentence of a logic. The value ofASK(S, ϕ) is eitheryes or no, indicating whether
an agent whose belief machine is in stateS believes the sentenceϕ or not. TELL is the
machine’s state transition function: the value ofTELL(S, ϕ) is another state, the one to
which a machine starting in stateS will go whenϕ is asserted.

We take “α believesϕ” to mean that agentα can decide with little effort that sentence
ϕ follows from what he has learned. If a sentence follows from whatα has learned, but it
would take a significant amount of reflection to discover this connection, then we do not
say thatα believes that sentence, only that with sufficient time he could come to believe
it. Therefore, the functionsASK andTELL needn’t describe an agent’s entire reasoning
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capability; they are merely intended to describe the inferences the agent makes easily and
automatically.

Our motivation for introducing this computational model of belief was to explore the
technique ofsimulative inference, which is reasoning about another agent’s beliefs by sim-
ulating its inference processes with one’s own. The idea is that if an agent is known to
believeϕ, and by introspective observation we see that believingϕ would cause us to be-
lieveψ as well, then we can attribute belief inψ to the other agent. Using the vocabulary
of our model of belief, this type of reasoning can be formalized by the assumption that all
agents’ belief machines are characterized by the sameASK andTELL functions, and the
following inference rule (whereS0 is the initial state of the belief machine): ifα believes
ϕ1, . . . , ϕn, andASK(TELL(S0, ϕ1, . . . , ϕn), ψ) = yes, thenα believesψ.

Even under the assumption that our inference mechanism is identical to that of the agent
we are simulating, this style of reasoning may or may not yield correct results, depending
on the type of inference the mechanism performs. For example, here is a natural example
of a way one might characterize the conclusions an agent makes easily and automatically:
if a sentence can be proved in fewer than five steps (in a given proof system) from what
the agent has learned, then that is an “easy” inference, so the agent believes the sentence;
otherwise, the agent doesn’t currently believe it. This characterization is simple to encode
as a belief machine, by making the machine a theorem prover that prunes its search at
five steps. For this characterization of easy inference, simulative inference isnot a valid
reasoning technique. If an agent has learned onlyϕ, andψ can be proved in fewer than
five steps fromϕ, then the agent also believesψ, and this fact can (correctly) be discovered
by simulative inference. Once we know that the agent believesϕ andψ, we might apply
simulative inference again, discover thatχ can be proved in fewer than five steps fromϕ
andψ, and conclude that the agent also believesχ. But if χ takes more than five steps to
prove fromϕ alone, then the agent does not in fact believeχ, so our conclusion would be
wrong.

While the idea of simulative inference has long been present in the literature (e.g. Moore
[7]), no previous semantics of belief could be used satisfactorily to characterize inference
mechanisms for which the technique is appropriate. In [5] we gave a set of constraints
relating the functionsASKandTELL, and showed that simulative inference is sound given
any belief machine that satisfies these constraints. We also showed that a certain set of
inference rules, which includes the rule of simulative inference, is refutation complete for
a certain kind of sentence (sentences that don’t use universal quantification into positively
embedded belief contexts). The details of the model are reviewed briefly in Section 2.

1.1 Simulative Inference and Nonmonotonic Belief Machines

If an agent’s set of beliefs can only be augmented when the belief machine isTELLed a
new sentence, then the belief machine reasons monotonically. If, on the other hand, some
previously held beliefs might be discarded in the light of new information, then the machine
reasons nonmonotonically. There are two distinct types of nonmonotonic reasoning that a
belief machine might perform. First, if the belief machine discovers that the premises it has



beenTELLed are not consistent, it might revise its beliefs in a way that involves choosing
one or more of the input sentences to discard in order to avoid the inconsistency. Belief
machines that can revise their beliefs in this way are permitted under the constraints given
in [5], and therefore the rule of simulative inference given there can be sound for such
machines.

The other way a belief machine might reason nonmonotonically is by tentatively draw-
ing conclusions that are not strictly entailed by theTELLed sentences, and then withdrawing
those conclusions if necessary in light of informationTELLed at a later time. In this case it
is not previouslyTELLed input sentences that are being discarded, only sentences that were
inferred (defeasibly) from the inputs. Using a machine that reasons in this way, the type of
simulative inference described in [5] isnotsound. Suppose an agent believes that Tweety is
a bird, and has no further information about Tweety. The agent might believe that Tweety
can fly. Then suppose the agent learns that in fact Tweety is a penguin. This new informa-
tion does not contradict anything the agent had learned explicitly, but it may well cause it
to cease believing the inferred proposition that Tweety can fly. Given a belief machine that
reasons in this way, the rule of simulative inference as we have stated it is nonmonotonic:
when applied to the singleton premise set{B(a, bird(tweety))} (meaning “a believes that
Tweety is a bird”), the rule licenses the conclusionB(a, flies(tweety)), but when applied
to

{B(a, bird(tweety)), B(a, penguin(tweety))},

which contains the former premise set, it does not license that same conclusion. The
premises to which simulative inference is applied are the inputs to the belief machine, so if
the belief machine reasons nonmonotonically from those premises, then the inference rule
is nonmonotonic as well (and therefore is not sound). In this paper, we present a different
form of simulative inference that is sound for a class of belief machines that includes some
that perform defeasible inference.

Consider an agent who believes that all birds except penguins fly, and assumes that a
given bird is not a penguin unless it has reason to believe otherwise. The fact that this agent
believes Tweety is a bird is not sufficient evidence to conclude that he believes Tweety
flies. However, if we also know explicitly that he doesn’t believe Tweety is a penguin, then
we would be justified in concluding that he believes Tweety flies. This demonstrates that
simulative inference using a belief machine that reasons defeasibly may require information
about the absence of certain beliefs, as well as information about the presence of beliefs.

If a belief machine is able to performnegative introspection, then there is a way to
enter information about the absence of a belief into a simulation. Letme be a special
indexical constant that each agent uses to refer to itself. A belief machine has negative
introspection if whenever it answersno to a sentenceϕ, it answersyes to¬B(me,ϕ). For
a machine with negative introspection, if¬B(α, ϕ) is true, then so isB(α,¬B(me,ϕ)).
This yields a sentence¬B(me,ϕ) that can beTELLed to a simulation ofα’s reasoning.
We will show that for belief machines with negative introspection, the rule presented in this
paper is complete.



2 The Computational Model

For the details of the computational model of belief, see [5]. We summarize here.
Models assign truth values to formulas of a languageL, which is ordinary first-order

logic plus a belief operatorB. Whereα is a term andϕ is a sentence (a formula with no free
variables),B(α, ϕ) is a formula whose intended meaning is thatα believesϕ. In [5], the
formulaϕ was allowed to have open variables, so that quantifying-in (e.g.∃xB(a, P (x)))
was possible, but in this paper we only consider a simpler language that doesn’t permit
quantifying-in. Note that the beliefϕ is a sentence ofL itself—the language used by the
belief machine’sASK/TELLinterface is the same as the language of the observer. Belief
contexts can be nested to arbitrary depth, e.g.B(a,B(b, B(c, P (d)))).

A belief machine is a structure〈Γ, S0,TELL,ASK, 〉, whereΓ is a set of states,S0 ∈ Γ
is the initial state (the state the machine is in before having beenTELLed anything), and
TELL andASKare the state transition function and the query function, as described above.
ASK andTELL are defined only for sentences. Note thatASK andTELL are part of the
semantics, not symbols of the languageL.

A model is a structure like a model for ordinary FOL, but augmented with a function that
maps each individual in the domain to a belief state. We will be interested in the truth values
of formulas given a particular belief machine, so the machine is a parameter of the model
structure rather than a constituent thereof. In other words, when we ask ifB(a, ϕ) logically
entailsB(a, ψ), we are not asking if there isanybelief machine that would concludeψ from
ϕ. Rather, we are asking about the belief machine we have already chosen. Wherem is a
belief machine, anm-model is a structure〈D, I, γ〉, whereD is the domain of individuals,
I is an interpretation function, andγ is a function mapping each individual inD to a belief
state inΓ. The notation|τ |M means the denotation of termτ under modelM .

Let m = 〈Γ, S0,TELL,ASK〉 be a belief machine, andM =< D, I, γ > an m-
model. For any termα and sentenceϕ, the belief atomB(α, ϕ) is true underM if
ASK(γ(|α|M ), ϕ) = yes, i.e. if the belief machine of the agent denoted byα answers
yes to the queryϕ.

The notationB · S means the belief set of belief stateS, i.e.

B · S = {ϕ|ASK(S, ϕ) = yes}.

We write the rule of simulative inference as follows, where the formulas above the line
are the premises, the formula below the line is the conclusion, and the rule applies only
when the condition written below it holds:

B(α, ϕ1), . . . , B(α, ϕn)
B(α, ψ)

if ASK(TELL(S0, ϕ1, . . . , ϕn), ψ) = yes.

To the semantics introduced in [4], we now add an indexical constantme, which will
be necessary for constructing an introspective belief machine. Expressions will now be
evaluated with respect to a modelM = 〈D, I, γ〉 and a reasonerr ∈ D. Denotations of
terms are as before, except that|me|M,r = r.



3 Simulative Consistency Checking

In what follows, we will say that a sequence of sentencesϕ1, . . . , ϕn is acceptableif

ASK(TELL(S0, ϕ1, . . . , ϕn), ϕi) = yes

for all 1 ≤ i ≤ n, and if all initial subsequences ofϕ1, . . . , ϕn are also acceptable (defined
recursively). That is, a sequence is acceptable if, as each of its elements isTELLed to
a belief machine starting in the initial state, the machine continues to believe all of the
elements that have been entered so far. For example, it may be the case for a particular
machine that the sequenceP (c), Q(d) is acceptable, but the sequenceP (c),¬P (c) is not.
If one were toTELL such a machineP (c) followed by¬P (c), it would detect that the two
input sentences contradict each other, and therefore choose one of them not to believe.

In order to obtain the completeness result in [5], we found it necessary to introduce
another inference rule that involves a different form of simulation. The rule says that if a
sequence of sentences is not acceptable (a condition that can be detected by simulation),
then its elements cannot be believed simultaneously. It can be expressed as follows, where
⊥ stands for an arbitrary contradiction:

B(α, ϕ1), . . . , B(α, ϕn)
⊥

if ASK(TELL(S0, ϕ1, . . . , ϕn), ϕi) = no for some1 ≤ i ≤ n.

We will call this rulesimulative consistency checking. Theorem 1 states that it is sound
for any belief machine that satisfies the following three constraints. These constraints are
identical to ones used in [5] except that the condition of monotonic acceptability used in
[5] has been replaced by the weaker condition of acceptability. These weakened constraints
permit machines that perform defeasible inference.

C1 (closure) For any belief stateS and sentenceϕ, if

ASK(S, ϕ) = yes

then

B · TELL(S, ϕ) = B · S.

C1 says thatTELLing the machine something it already believed does not change its belief
set. This does not mean that the beliefstatemay not change—for example,ϕ might be
tentatively assumed as a defeasible inference in stateS, but believed with full confidence in
stateTELL(S, ϕ).

C2 (finite basis) For any belief stateS, there exists an acceptable sequence of sentences
ϕ1, . . . , ϕn such that

B · TELL(S0, ϕ1, . . . , ϕn) = B · S



Constraint C2 says that for each belief state, a state with the same belief set can be reached
from the initial state byTELLing the machine a finite, acceptable sequence of sentences. It
requires that even if a particular state can be reached only via a non-acceptable sequence,
there is another state with the same belief set that can be reached via an acceptable sequence.

C3 (commutativity) For any belief stateS and acceptable sequence of sentencesϕ1, . . . , ϕn,
and for any permutationρ of the integers1 . . . n, the sequenceϕρ(1), . . . , ϕρ(n) is also ac-
ceptable, and

B · TELL(S, ϕ1, . . . , ϕn) = B · TELL(S, ϕρ(1), . . . , ϕρ(n)).

C3 says that if a sequence of sentences is acceptable, then it is acceptable in any order, and
the belief set of the resulting state does not depend on the order. Note that this constraint
does permit the belief machine to take order into account when deciding how to handle
contradictory (i.e. non-acceptable) inputs.

Theorem 1 (Soundness of Simulative Consistency Checking)Given a belief machine sat-
isfying constraints C1–C3, if

ASK(TELL(S0, ϕ1, . . . , ϕn), ϕi) = no

for some1 ≤ i ≤ n, then{B(α, ϕ1), . . . , B(α, ϕn)} is unsatisfiable.

Proof: We will prove the contrapositive of the above statement. Assume that

{B(α, ϕ1), . . . , B(α, ϕn)}

is satisfiable, i.e. that there exists some stateS such thatASK(S, ϕi) = yes for all 1 ≤ i ≤
n. By the finite basis constraint, there is some acceptable sequence of sentencesψ1, . . . , ψm

such that

B · TELL(S0, ψ1, . . . , ψm) = B · S,

which means that

ASK(TELL(S0, ψ1, . . . , ψm), ϕi) = yes, 1 ≤ i ≤ n.

By the closure constraint, if we take a machine in stateTELL(S0, ψ1, . . . , ψm) andTELL
it each of theϕi in turn, the resulting states will all have the same belief set as the original
state, which means that the entire sequence

ψ1, . . . , ψm, ϕ1, . . . , ϕn

is acceptable. Therefore, the commutativity constraint applies; it says that the sequence

ϕ1, . . . , ϕn, ψ1, . . . , ψm

is acceptable, which by the definition of acceptability means that the initial subsequence
ϕ1, . . . , ϕn is acceptable.2



4 Negative Introspection

A belief machine has negative introspection if it satisfies the following constraint:

C4 (negative introspection) For every stateS and sentenceϕ, if

ASK(S, ϕ) = no

then

ASK(S,¬B(me,ϕ)) = yes.

Note that negative introspection is a form of defeasible inference: ifϕ 6∈ B · S0 and
ϕ ∈ B ·TELL(S0, ϕ), and the machine is introspective, then¬B(me,ϕ) is believed in state
S0 but is retracted in stateTELL(S0, ϕ).

For any belief machine satisfying the negative introspection constraint, the following
inference rule is clearly sound:

¬B(α, ϕ)
B(α,¬B(me,ϕ))

.

5 Completeness

The combination of the rules of simulative consistency checking and negative introspection
is complete in the following sense: for any finite setΦ of belief literals (formulas of the
form B(α, ϕ) or ¬B(α, ϕ)), if Φ is unsatisfiable, then there is a refutation proofΦ ` ⊥.
The completeness holds for any belief machine that satisfies the four constraints already
presented (closure, finite basis, commutativity, and negative introspection) as well as the
following, which is the converse of negative introspection:

C5 (negative faithfulness) if

ASK(S,¬B(me,ϕ)) = yes

then

ASK(S, ϕ) = no.

Theorem 2 (Completeness for Belief Literals)For any belief machine satisfying constraints
C1–C5, and for any finite set of belief literals

Φ = {B(α, ϕ1), . . . , B(α, ϕn),¬B(α, ψ1, ), . . . ,¬B(α, ψm)},

if Φ is unsatisfiable thenΦ ` ⊥.



Proof: Assume thatΦ is unsatisfiable. That means there is no belief stateS such that
ASK(S, ϕi) = yes for all 1 ≤ i ≤ n and such thatASK(S, ψi) = no for all 1 ≤ i ≤
m. Since the negative faithfulness constraint holds, there must be no stateS such that
ASK(S, ϕi) = yes for all 1 ≤ i ≤ n andASK(S,¬B(me,ψi)) = yes for all 1 ≤ i ≤ m.
Therefore, the sequenceϕ1, . . . , ϕn,¬B(me,ψ1), . . . ,¬B(me,ψm) must not be accept-
able.

A proof Φ ` ⊥ can be constructed as follows: from each literal¬B(α, ψi), the rule of
negative introspection licenses the conclusionB(α,¬B(me,ψi)). Then, from

B(α, ϕ1), . . . , B(α, ϕn), B(α,¬B(me,ψ1)), . . . , B(α,¬B(me,ψm)),

the rule of simulative consistency checking licenses the conclusion⊥, since the sequence
ϕ1, . . . , ϕn, ¬B(me,ψ1), . . . ,¬B(me,ψm) is not acceptable.2

This completeness for sets of belief literals has the following corollary: for any belief
machine satisfying constraints C1–C5, if the rules of simulative consistency checking and
negative introspection are added to a set of inference rules that is complete for ordinary first
order logic, then the resulting set of rules is complete for the entire logic (in the same sense
of completeness used in Theorem 2: if a finite theory is unsatisfiable, then it has a refutation
proof).

The completeness result shown in [5] for the original simulative inference rule was more
general: the logic used in that paper permitted quantifying-in, and the completeness result
applied to theories containing not only unquantified belief formulas such asB(a, P (c)), but
also to theories containing existentially quantified-in belief formulas such as∃xB(a, P (x)),
though not universally quantified-in formulas such as∀xB(a, P (x)). It remains an open
question whether the same completeness condition obtains for the inference rules presented
here.

6 Simulative Inference for Machines With Negative
Introspection

From the rules of simulative consistency checking, negative introspection, andreductio ad
absurdum, a new simulative inference rule can be derived:

B(α, ϕ1), . . . , B(α, ϕn)
B(α, ψ)

if ASK(TELL(S0, ϕ1, . . . , ϕn,¬B(me,ψ)), χ) = no for some
χ ∈ {ϕ1, . . . , ϕn,¬B(me,ψ)}

The premises and conclusion of this rule are the same as those of the original simulative
inference rule. Only theASK/TELLcondition under which it applies is different. Theorem 3
shows the derivation of the new inference rule.



Theorem 3 For any termα and sentencesϕ1, . . . , ϕn andψ, if

ASK(TELL(S0, ϕ1, . . . , ϕn,¬B(me,ψ)), χ) = no

for someχ ∈ {ϕ1, . . . , ϕn,¬B(me,ψ)}, then there is a proof

B(α, ϕ1), . . . , B(α, ϕn) ` B(α, ψ)

using the rules of simulative consistency checking, negative introspection, and reductio ad
absurdum.

Proof: The proof can be constructed as follows: begin with the premises

B(α, ϕ1), . . . , B(αϕn),

and make the assumption¬B(α, ψ) for the purposes of deriving a contradiction. From
the assumption, the negative introspection rule licenses the conclusionB(α,¬B(me,ψ)).
From this conclusion and the original premises, the rule of simulative consistency checking
licenses the conclusion⊥, since the sequenceϕ1, . . . ,¬B(me,ψ) is not acceptable. Dis-
charging the assumption, we can concludeB(α, ψ) by reductio ad absurdum. Here is the
proof in tabular form:

1. B(α, ϕ1), . . . , B(α, ϕn) premises
2. Assume¬B(α, ψ)
3. B(α,¬B(me,ψ)) 2, negative introspection
4. ⊥ 1,3, simulative consistency checking
5. B(α, ψ) reductio ad absurdum

2

7 Related Work

The classical possible worlds model of Hintikka [3] suffers from the “logical omniscience”
problem, meaning that agents in that model must believe all of the logical consequences of
their beliefs. Our computational model of belief is one of many later alternatives that model
believers in a more realistic (i.e. computationally feasible) way.

The model of algorithmic knowledge of Halpern, Moses, and Vardi [2] is similar to ours
in that it models an agent’s belief state as the state of a computational mechanism, and its
belief set as the set of sentences accepted by that mechanism in its current state. Halpern et
al. do not treat the subject of simulative reasoning.

Konolige’s deduction model [6] is also similar, and does include a mode of inference
similar to our simulative inference. Konolige uses a very specialized model of belief com-
putation, namely the exhaustive application of deductive inference rules. OurASK/TELL
model is fundamentally much more general, but our soundness and completeness results



are obtained only under certain constraints onASK andTELL that reduce this generality.
The relative expressiveness of the two models is an interesting topic, which we have dis-
cussed at length in [5]. Reasoning in the deduction model is limited to deductive inference;
Konolige suggests that one might extend the model to allow nonmonotonic reasoning, but
to our knowledge this possibility has not been explored.

Chalupsky and Shapiro [1] describe a proof system in which simulative inference is
a defeasible rule. This is a useful idea, because the assumption that the observer and the
observed have identical reasoning mechanisms is likely to be wrong at times. However,
as we have shown, even in cases where the approximation is correct, simulative inference
may give incorrect results, depending on the kind of reasoning performed in the simulation.
Our contribution has been to demonstrate conditions under which simulative inference is
guaranteed to be sound.

In the work of van Arragon [8], the observer uses a default reasoning tool, and the ob-
served is a user who reasons in the same way as the tool. Rather than using a simulative
technique, the observer uses an axiomatic description of the conditions under which the
user is able to make an inference. Given that the user and the observer use identical rea-
soning methods, it seems unlikely that reasoning with a declarative description of the user’s
behavior could be as efficient as simulating his behavior using the observer’s own mech-
anism. Van Arragon’s metalanguage differentiates between sentences the user believes as
default assumptions and those he believes as incontrovertible facts. This contrasts with our
language, which has only a single belief operator, leaving the distinction between defaults
and facts to be made by the operation of the belief machine.

8 Conclusions

In an earlier paper, we introduced a model of belief in which reasoning is modeled as
computation performed by a belief machine. We presented a rule of simulative inference,
which allows an observer to draw conclusions about what an agent must believe by running
a simulation of the agent’s belief machine.

In this paper, we have presented another form of simulative inference under the same
model of belief. We have shown that the new rule is sound for a broader class of belief
machines, a class that includes machines that reason nonmonotonically from consistent
inputs. Furthermore, we have shown that when the belief machine exhibits the properties
of negative introspection and negative faithfulness, the rule is complete for the subset of the
logic in which quantifying-in is disallowed.
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