A Computational Model of Belief

by

Aaron Nathan Kaplan

Submitted in Partial Fulfillment
of the
Requirements for the Degree

Doctor of Philosophy

Supervised by
Professor Lenhart K. Schubert
Department of Computer Science

The College
Arts and Sciences

University of Rochester
Rochester, New York

2000

Curriculum Vitae

Aaron Kaplan was born in Beckley, West Virginia on September 8, 1970, and grew up
in the Syracuse, New York area. He attended Cornell University from 1988 to 1992, and
received the degree of Bachelor of Arts with distinction. In 1992 he worked at Eloquent
Technology in Ithaca, New York on the development of speech synthesis software, and
in 1993 he worked as a technical writer at ILOG, a software company in Paris, France.
He entered the University of Rochester in 1993, and began working in natural language
processing and knowledge representation under the supervision of Professor Lenhart
Schubert. He received the degree of Master of Science in Computer Science in 1995.

Acknowledgments

The most important thing about my stay in Rochester has been that for several years,
my time was my own, and so | was forced to decide what | actually wanted to do. |
know I'll look back with fondness on the days when | had that freedom, but often it
made me miserable. If | had been working a nine-to-five job, | might have blamed my
unhappiness on external forces, but here | ended by understanding what it takes to feel
fulfilled.

| gather that not everyone’s grad school experience is like this. With a different
advisor, | might have graduated much sooner, but come out the same person who went
in. My greatest regret is that | didn’t take advantage of Len’s insight and excitement
as often as | did his patience. The same goes for my other committee members, James
Allen and David Braun.

The growth | underwent here was by no means purely academic. | learned more
from my friends, most notably Gabriela Galescu and Karen LaMacchia, than from
anyone else.

Finally, there is my family: Mom, Dad, and Becky. Unlike anyone or anything else,
they were never in doubt.

This work was supported by NSF research grants numbers IRI-9623665 and IRI-
9503312, and U.S. Air Force/Rome Labs research grant number F30602-97-1-0348.

Abstract

We propose a logic of belief in which the expansion of beliefs beyond what has been
explicitly learned is modeled as a finite computational process. The logic does not
impose a particular computational mechanism; rather, the mechanism is a parameter
of the logic, and we show that as long as the mechanism meets a particular set of
constraints, the resulting logic has certain desirable properties. Chief among these is
the property that one can reason soundly about another agent’s beliefs by simulating its
computational mechanism with one’s own.

The EPILOG system, a computer program designed for narrative understanding,
serves as a case study for the application of the model and the implementation of sim-
ulative inference about belief.

Table of Contents

(Curriculum Vitae | i
IAcknowledgments ii
Abstract v
[List of Figures| Vil
(1__Introduction| 1
(1.1 Perspective and Motivation 2
L27Bellef o 3
1. Imulative Inference e 6
2__The Model 8
[2.1 Syntax, Semantics, and Some Notgtion 8
2.2 _The Simulative InferenceRule 11
[2.3 Negative Simulative Inference 14
[2.4 Indexicality and Introspectiopn 14
[2.5 Philosophical Considerations 16
[3 Mathematical Properties of the Logi¢ 24
B1 SoundnessProbfs 24
[3.2 Arethe Constraints Necessary? 27
3.3 _OtherInferenceRules 31
[3.4 CompleteneBs 40
B.5 Some CommONAXIOMS« v v v v 47
[3.6 The Simulative Inference Rule for Introspective MacHines 53

[3. 7 Summary of MathematicalResults 55

Vi

4 Implementation| 56
BT BPILOG « o o o v v o e e e e e 56
42 EpPlLoGasaBellefMachine 58
(4.3 Efficient Implementation 62
@4 The Generality of the Efficiency Problem 70
[4.5 Current State of Implementation 71
46 Evaluatioh 75

[Other Work on Reasoning About Belief 85
5.1 Possible Worlds Theories 85
B2 Sentential Theories 87
[>.3 Implementations of Simulative Inferepce 89
5.4 RelatedlIssubs 91
(.5 Konolige’s DeductionMode!l 91

6__Conclusions 102
6.1 FutureWork 104

Vil

List of Figures

4.1 Aunion-finddata structure 64
[4.2 The structure split between two environments 65
[4.3 Duplicating shared knowledge In the private environinent 66
[4.4 Duplicating only modified information 66
45 Atemporalgragh 68
[4.6 A single graph containing both private and shared knowledge 69
[4.7 Time graph constructiontimes 78
[4.8 Timegraphquerytimes 79

1 Introduction

The human mind is a complex system about whose internal workings we understand
very little. Nevertheless, we can predict with a useful degree of accuracy how a normal
person will behave in quite a wide range of circumstances. Without this ability for
prediction, much of our everyday social interaction would be impossible. There are two
ways we might make this type of inference: by analogy to people we have observed in
similar situations before, or by analogy to ourselves, using a kind of introspection: “If

| were in such a situation, | would” This dissertation concerns the latter mode of
inference, which we callimulative inference

In particular, we focus on simulative inference about belief,inference that fol-
lows the following pattern: & believesy, ..., ¢,; if | believed those things, then |
would also believe); therefore o believes).”

Our approach is to define a logic of belief. That is, we propose a system consisting
of the following things:

1. alanguage in which facts about what various agents believe can be expressed,

2. a proof theoryj.e. a set of rules (including a rule of simulative inference) by
which, given a set of premises expressed in the language, we can find conclusions
that follow from them,

3. a model theoryi.e. a systematic definition of the conditions under which any
sentence of the language is true.

Ours is by no means the first formal model of belief to be proposed. There is a
substantial body of work in logic and the philosophy of language that is directly re-
lated, and there have been contributions from our own field of artificial intelligence,
including some concerned with the issue of simulative inference. However, the theory
of belief has not yet fully assimilated the central idea of artificial intelligence, namely
the idea that intelligence, and therefore belief, is a property demonstrated by compu-
tational systems. We aim to demonstrate that by incorporating this point of view, the

formal theory of belief can be brought closer to matching intuitions and empirical ob-
servations. Furthermore, our model provides a framework in which to investigate the
technique of simulative inference. This framework allows us to show that simulative in-
ference can sometimes yield incorrect results, and (more importantly) to give a precise
characterization of circumstances under which it is guaranteed to yield correct results.

1.1 Perspective and Motivation

Our work is in the paradigm of logical artificial intelligence, a tradition that stems from
McCarthy’s 1958 “Advice Taker” paper [19568]. The basic aim of logical Al is to build
systems that store and manipulate expressions of a logic in a way that emulates human
thought. For example, a system might represent the facts that John is at his desk, that
the desk is at his home, and that “at” is a transitive relation, by the following:

at(john, desk)
at(desk, home)
at(z,y) A at(y, z) D at(x, z)

and the system could be equipped with an inference mechanism by which it would
derive the new sentence
at(john, home),

meaning that John is at home, from the previous sentences. The central hypothesis
of logical Al is that if we are eventually able to encode enough of human common
sense knowledge in logical form, and we develop sufficiently sophisticated inference
mechanisms, then this mechanical manipulation of symbols will become functionally
indistinguishable from intelligence (whether it would actuddgintelligence is a con-
troversial question, on which we will not venture an opinion here).

Of course, the idea of describing or implementing reasoning as manipulation of
symbols predates the field of computer science. Symbolic logic was developed for pre-
cisely this purpose—making inference a mechanical operation that proceeds according
to fixed rules. McCarthy’s ideas, sparked by the advent of machines capable of carrying
out logical derivations automatically, were not so much an innovation as a change of
focus. First of all, logical Al uses symbolic logic for everyday, common sense kinds
of reasoning, whereas it had typically been used for analyzing more formal types of
arguments, such as those found in mathematics. And second, being a branch of com-
puter science, Al puts special emphasis on the process of performing infetenos,
effective methods for finding a proof of a given conjecture, or for identifying the most
interesting or useful conclusions that can be drawn from a set of premises, without
being sidetracked by the infinitely many less interesting ones.

The logical approach is not the only approach to Al, and some advocates of other
approaches have been critical of this style of research. In particular, there is a trend

towards attacking the Al problem with a more bottom-up strategy, first understanding
low-level behaviors such as simple perception and motor control, then eventually com-
bining models of those various behaviors to build models of higher-level ones, and so
on in a hierarchical fashion until a model of human-level intelligence is reached. This is

a reasonable methodology; it seems indisputable that for an agent to display intelligent
behavior, it must have facilities for interacting with its world. Furthermore, there has
been encouraging success in implementing some of the lowest-level behaviors. How-
ever, contrary to the claims of some of its practitioners, the bottom-up approach has in
no way supplanted or discredited symbolic Al. The successes that the bottom-up ap-
proach has had so far are at tasks very different from those addressed by the symbolic
approach, and the path from there to a comprehensive model of human intelligence is
far from clear. In one sense, the bottom-up approach could be seen as more general:
given the assumption of materialism that is implicit in all of Al, it must be true that in
theory a comprehensive model of a human mind could be built up of neurologically-
based models of brain functions. But we do not currently have anything near that level
of understanding of the brain, nor is there reason to think that such an understanding
is forthcoming in our lifetime, if ever, so for the time being, curiosity about high-level
behaviors like planning and language use can only be addressed by high-level research
divorced from the reality of neural implementation. Symbolic Al is to the Al of per-
ception and motor control as sociology and economics are to psychology. No truly
complete theory of social behavior can exist without a complete theory of individual
behavior to build on, but in the absence of a complete theory of the individual, sociol-
ogists and economists continue to do what they can, because the social questions are
the ones that they find most compelling. Likewise, theories of language use and other
high-level human behavior might never be truly complete until we understand at a low
level how the brain works, but in the meantime, we do the best we can with the tools
we have. We know that our efforts alone won't lead to a grand unified theory of intel-
ligence, but they further our understanding of intelligence nonetheless, and sometimes
that understanding can even be put to practical use.

1.2 Belief

Logical Al requires the precise codification of concepts usually understood only loosely,
so that they can be used as premises and rules of inference in a symbolic logic. The
concept of belief is one that has been considered at length by philosophers, so there is a
substantial body of existing work to inform our design. Chalpter 2 includes a summary
of that work, with bibliographic references; we describe here only enough to explain
what we consider to be the main shortcomings of existing models, and to sketch our
proposed solution.

In the most straightforward models of belief, belief is simply a relationship that
can hold between a believer and either a sentence or a proposition. The distinction

between sentences and propositions will be explained in Sgctiony 2.5.1, but need not
concern us at the moment. These models, in their simplicity, license very little in the
way of inference about belief. In these models, a person can believe that roses are red
and violets are blue, without believing that roses are red. “Roses are red and violets
are blue” is one sentence (denoting one proposition), and “roses are red” is a different
sentence (denoting a different proposition), and a person can perfectly well stand in the
belief relationship to one of them and not the other. This is not to say that these models
are incompatible with a theory of how belief in one sentence (or proposition) is related
to belief in another, only that they do not themselves include such a theory.

Another model, the “possible worlds” model, has more structure. In this model, the
set of sentences that a person believes can't be any arbitrary set—it must be one that is
closed under logical consequence. That is; i$ a consequence of someone’s beliefs,
theny is itself one of his beliefs. Since “roses are red” follows from “roses are red and
violets are blue,” anyone who believes the latter must also believe the former. This may
seem attractive, particularly as the substrate for a theory of simulative reasoning: if John
believesy, and believingy would cause me to believg as well, then according to the
possible worlds model | am justified in concluding that John believéssuming that
my leap fromyp to ¢ is justified). However, the possible worlds model is unreasonable
from a computational standpoint. It is well known that for any sufficiently expressive
logic, the question of entailment is undecidable. This means that there is no algorithm
which, given an arbitrary set of premises and a conjecture, is guaranteed to tell us after a
finite amount of time whether the conjecture follows from the premises. In other words,
in the possible worlds model people are perfect reasoners, “logically omniscient” in a
way that real people provably can't be (assuming we accept that what goes on in a brain
iS computation).

The right model would seem to be between these two extremes. If a real person be-
lievesyp, then he also believes any easily discovered consequengebuf if there are
some obscure and difficult to discover consequences, he might not believe those. The
guestion is then how to define which consequences are easily discovered and which
are not. There have been a number of proposals along these lines, many of them from
the Al community. The details vary considerably, but many of the proposals eliminate
logical omniscience by somehow eliminating the rulemaddus ponen&om the im-
plicit reasoning capacity of believers. These models achieve the desired result to some
degree. Now anyone who believes that roses are red and violets are blue also believes
that roses are red, but unlike in the possible worlds model, a person caﬁ] Kmow
rules of chess yet not know whether there is a strategy that guarantees white a win. But
something is still wrong. Becauseodus ponens out, a person can believe that Fido

1In this work, we use the words “know” and “believe” interchangeably. The precise definition of
knowledge is somewhat controversial, but itis generally accepted that kngveingils at least believing
. Our work concerns only the more primitive concept of belief, but we occasionally use the word
“know” in contexts where “believe” seems unnatural or might be read as having connotations that are
not intended.

is a doberman, and believe that dobermans are dogs, but not believe that Fido is a dog.
This seems unreasonable.

It is our assertion that these models fail to satisfy intuitions about what it really
means to believe something because they attempt to define “easy” inferences in terms
of properties intrinsic to the inferences themselves. In fact, we argue, an inference is
not inherently easy or difficult. Rather, it is easy or difficidt someongfor a person
who is looking for conclusions to draw. The mind is attuned to make certain kinds
of inferences quickly and automatically, and to ignore other possibilities. Therefore,
an accurate model of belief must include a model of a mind. Partial as we are to the
concepts of Al, we take this to mean a model of a computational mechanism.

In our model of belief, a believer hasleelief maching which is an abstraction
of a computational mechanism for information storage and retrieval. The machine’s
behavior is described by two recursive functioASKandTELL. Each is a function
of two arguments, the first being a state of the machine, and the second a sentence of a
logic. The value ofASK(S, ¢) is eitheryes or no, indicating whether an agent whose
belief machine is in stat& believes the sentengeor not. TELL is the machine’s state
transition function: upon receiving a new fagt a machine in stat& will move to
stateTELL(.S, ¢). It may or may not believe in this new statei.e. it may or may not
accept the proffered fact. Earlier, we characterized simulative inference as following

this pattern: & believespy, ..., p,; if | believed those things, then | would also believe
1; therefore,a believesy.” In the ASK and TELL framework, the condition “if |
believedy;, . .., ¢, then | would also believe” is verified by simulation: welTELL

the belief machine, and thePASKit aboutw, and it answerges.

Obviously, we do not intend to give in this dissertation a thorough functional de-
scription of the mechanisms humans use to maintain their beliefs. Rather, we define a
class of logics such that, given an arbitrary computational mechanism for belief storage
and retrieval, there is a logic for reasoning about the beliefs of agents who use that
mechanism. The human mind implements some complex algorithm for maintaining
beliefs, and science has as yet been unable to identify that algorithm; but whatever it
might be, if it can be described in tAe&SKandTELL framework, then it defines a logic
of belief.

The proposal that a model of belief should include a model of inferential ability is
not completely new. The idea has appeared in the literature in various forms from time
to time. What is novel about this work is the treatment of simulative inference within
our computational model of belief. To our knowledge, there has been only one other
proposal that includes a formalization of simulative inference with a rigorous semantic
justification, namely Konolige’s deduction model of belief. The essential difference
between his theory and ours is the model of inferential computation that is used: we
allow an arbitrary algorithm, while Konolige requires the exhaustive application of a
set of deductive inference rules. In Section 5.5 we make a detailed comparison of our
model with the deduction model.

1.3 Simulative Inference

In order to study simulative inference, we make the assumption that all agents’ belief
machines are functionally identicale. that if two agents have different beliefs, it is

only because they have learned different things, not because they have different inher-
ent abilities. This assumption would be accurate for identically constructed artificial
agents, but also seems to us a reasonable first approximation about human reasoners.
The requirement of functional identity is not as strong as it might first appear—the
fact that two agents have the same belief machine does not necessarily mean that they
use the same inference methods. What goes on in the belief machine in response to
a series of input formulas could be any sort of computation, including the learning of
new inference rules. Functional identity is also a particularly benign requirement when
the beliefs being studied are those that arise in the course of communication via lan-
guage. Often, part of the information that people wish to convey goes unsaid, because
the speaker can rely on the hearer making certain inferences. An assumption of similar
inferential ability is precisely what is required for this type of communication.

Our original interest in simulative inference stemmed from work enLBG, a
computer system for knowledge representation and reasoning in support of language
understanding. We have given the system the ability to reason about the beliefs of the
people in narratives it has been given. One might be particularly concerned about the
assumption of functional identity in this case, because given the limitations of our cur-
rent understanding of human intelligenceIEOG'’s inferential ability is certain to be
quite different from that of a human. However, whatever its failingsLBG, like any
other Al system, is intended to be an approximation of human mental functioning. The
simulative inference it performs about the beliefs of humans will be correct to whatever
extent the approximation is successful; and as science progresses and the approxima-
tion is improved, the accuracy of simulative inference will improve commensurately.

Even given the assumption that one has access to a belief machine functionally
identical to that of the believer about which one is reasoning, simulative inference is
not always guaranteed to give correct results. We will need to introduce the details
of our model before we can make this assertion more concretely, but an example will
illustrate the sort of problem that can arise. A belief machiAS& computation must
be guaranteed to halt eventually on any input. Consider a belief machine that satisfies
this condition by placing a time bound of five secondsA@K computations. If it can
confirm within five seconds that a query sentence follows from what it knows, then
it answersyes, otherwise it answergo. Simulative inference with this machine can
yield conclusions that do not necessarily follow from the premises. For example, say
that bothy and y follow from ¢, and that having beemELLed © alone, the belief
machine can see in less than five seconds«hfatlows, but can’t see in five seconds
that x follows. Assume further that if the machineTi€LLed bothy and, then with
the work of inferringy already done, it can make the remaining leap to less than
five seconds. Let us say that we know at first only that someone believéée can

reason by simulation as follows: “He believgsif | believed ¢, | would also believe

1; therefore, he believas’. Now, given the information that the person believeave

could do another simulative step as follows: “He belieyeand; if | believed ¢ and

1, 1 would also believey; therefore, he believeg.” From the single premise that the
person believes, we have concluded in two steps that he also beligveBut this is

not a valid inference. It is possible, given our original premise, that the person’s belief
machine has beefELLed onlyy, and that therefore he believesand but noty.

In Sectior{ 3.1, we will introduce a set of constraints on the relationship beth8kn
andTELL, and demonstrate that if those constraints are satisfied, then in fact simulative
inference is sound,e. guaranteed to yield only conclusions that do follow from the
premises. We then address the question of whether those constraints are reasonable, in
two respects: whether there are useful inference algorithms that satisfy the constraints,
and whether actual human belief can be said to satisfy them.

Artificial intelligence is part science and part engineering. The development of our
formal models is motivated by the philosophical goal of gaining a fuller understanding
of the world, but also by the practical goal of building working systems. Understanding
the conditions under which simulative inference is sound allows us to use the technique
in a principled way in a reasoning system. In Chapter 4, we analyzerth®E system
in the belief machine framework, and examine the consequences of our formal results
for the practical matter of adding simulative inference to the system. We also discuss a
more pragmatic problem that was an obstacle to making simulative infereneeLio&
efficient, and the solutions we used to overcome it. The problem involves the fact that
EPILOG uses various non-sentential knowledge representations (the system’s input and
output are always in the form of logical sentences, but internally, it uses various non-
sentential representations specifically designed for efficient reasoning about particular
things). While this part of the work is less theoretical than the formal part, it is of
rather general applicability. The problem we identified will affect the implementation
of not only simulative inference, but any inference mechanism that depends on keeping
track of the system’s reasons for believing each stored fact, including truth maintenance
systems and probabilistic reasoning systems.

2 The Model

So far, we have only sketched the concepts of our model in intuitive terms. In order to
be able to discuss the model and the technique of simulative inference more precisely,
in this chapter we give formal definitions of the syntax and semantics of the logic,
and formalize simulative inference as an inference rule in the logic. The rule may or
may not be sound, depending on the choice of belief machine; we list some natural
constraints such that for any belief machine that satisfies them, if belief is defined in
terms of that machine, then the simulative inference rule (also using that machine) is
sound,.e. from true premises it generates only true conclusions.

In Sectior] 2.4 we add to the logic an indexical tefm that can be used to express
facts about an agent’s beliefs about itself. Among other things, the indexical introduces
the possibility of belief machines with introspectiam, of agents that have knowledge
about their own beliefs. We show that given an introspective belief machine, the rule
of negative simulative inference can be used in proving positive as well as negative
statements about belief, and that therefore a restricted form of completeness can be
maintained even without the positive rule. The negative rule, while less natural than the
positive one, is sound for a broader class of machines, a class that includes machines
that perform default reasoning.

This chapter contains technical material, but only to the extent necessary to trans-
form our intuitions into concrete and precise definitions. We postpone lengthy proofs
until the next chapter.

2.1 Syntax, Semantics, and Some Notation

Our model of belief is built around the concept of thelief machine which is an
abstraction of a computational inference mechanism. In the model, each agent has a
belief machine that it uses for storing and retrieving information. The agent enters
facts it has learned into its belief machine, and can then pose queries to it. Input and
gueries are expressed as logical sentences, but the model does not constrain the form
in which the machine stores and manipulates the information internally. For example,

the machine might use diagrammatic or algorithmic encodings of information. The
machine may perform some inference in answering queries, but it must be guaranteed
to give an answer in a finite amount of time. An agent believes a sengeinds belief
machine is in a state such that the querng answered affirmatively.

A belief machine is characterized by two functiomgLLandASK TELL describes
how the state of the machine changes when a new sentence is stdfeslthe current
state of the belief machine, apds a sentence, then the valuel&LL(S, ¢) is the new
state the belief machine will enter afteris asserted to it. The value 8iSK(S, ¢) is
eitheryes or no, indicating the response of a machine in state S to the guery

This model of belief is used to interpret sentences of a logic, which consists of
ordinary first-order logic (FOL) plus a modal belief operater Wherea is a term
andy is a formula,B(«, ¢) is a formula whose intended meaning is thdielievesy.
Let the languagéd. be the set of formulas formed in the usual way from the logical
constants—, =, A, V, D, V, andd, the modal operatoBB, and a set of individual
constants, predicate constants, function constants, and variables (infinitely many of
each). L is notation for an arbitrary contradiction A —¢. L. is the set of sentences
(closed formulas) of..

Formally, a belief machine is a structufe, Sy, TELL, ASK), where

' is a (possibly infinite) set of states,

Sy € I'is the initial state,
e TELL: I x L. — I'is the state transition function,

e ASK: T x L. — {yes,no} is the query function.

A formula of L has a truth value relative to a model, which is composed of a do-
main of individuals and an interpretation function, as in a model for ordinary FOL, and
a functiony that assigns a belief state to each individual (for simplicity, we do not dis-
tinguish between individuals that are believers and ones that aren't). A single belief ma-
chine is chosen ahead of time to describe the reasoning abilities of all agents—the belief
machine does not vary from model to model. Therefore, concepts such as entailment,
soundness, and completeness are only meaningful relative to a particular choice of be-
lief machine. To be explicit about this, we will sometimes refer toiaatiodel,” where
m is a belief machine. Formally, given a belief machine= (I", Sy, TELL, ASK), an
m-model is a structuréD, I, ~), where

e D is the domain of individuals,

e [is an interpretation function that maps variables and individual, predicate, and
function constants to set-theoretic extensions, as in ordinary FOL,

e v : D — I'is afunction that assigns each individual a belief state.

10

We will use the notationir|* to mean the denotation of termunder model\/.
Note that the domain of the interpretation function includes the variables, so that a
model assigns denotations to all terms, even those containing free variables. The deno-
tations of functional terms are determined recursively in the usual way.

The truth values of ordinary (non-belief) atomic formulas, and of complex formulas,
are determined in the usual way. In particular, a universally quantified forvimgtas
true in a modelV/ if the open formulap is true in every moded/’ that differs fromi/
by at most its interpretation of the variableand similarly for existential formulas.

The semantics of “quantifying-inje. of a variable that occurs in a belief context
but whose binding quantifier is outside that belief context, is handled by wagriaile
substitutionswhich are mappings from variables to ground terms (terms containing no
variables). A variable substitutiom is extension-preservingnder model)M if, for
every variable/, the denotation of and the denotation ef(v) are the same in/. We
write ¢ to mean the formula that results from replacing every free variable occurrence
in ¢ with the ground term to which maps that variable.

Wherem = (T", Sy, TELL, ASK) is a belief machine, and/ = (D, I,~) is anm-
model, a belief atonB(«, ¢) is true in M iff there exists some variable substitution
which is extension-preserving undif such thatASK(v(|a|*), ¢?) = yes. This gives
a variable that occurs in a belief context, but is not bound in that context, a reading of
implicit existential quantification over terms with the same denotation as the variable.
For exampleB(a, P(z)) is true in modelM if there is some term, which denotes the
same thing as in M, for which B(a, P(7)) is true. This gives a natural interpretation
to quantifying-in: 3x B(a, P(z)), which intuitively means “There is something which
a believes to beP,” is true if there is some individual, and some terrwvhich denotes
that individual, such that believes the sentende(r).

We will useTELL(S, ¢4, . . ., ¢,) as an abbreviation for
TELL(... TELL(TELL(S, ©1), ©2), - - -, ©n),

i.e. the state that results from successivélgLLing each element of the sequence,
beginning in state.
The notations - S means the belief set of a machine in stéjée.

B -5 = {p|ASK(S,¢) = yes}.

A sentencep is acceptablan stateS if TELLing the machine> while it is in state
S causes it to believe, i.e. if

¢ € B- TELL(S, ¢).

A sentencep is monotonically acceptabia stateS if it is acceptable in5 andTELLing
the machiner while it is in stateS does not cause it to retract any beliefs, if

B-SU{p} C B TELL(S, ¢).

11

A sequence of sentenceg,...,y, IS monotonically acceptable in stat®

if each elementy; of the sequence is monotonically acceptable in the state
TELL(S, ¢1,...,¢;—1). A sequencep,...,p, is acceptable in stat&, (we do not
define acceptability of sequences in other states) if

ASK(TELL(S, @1, - ., ¢n), i) = yes

forall 1 < i < n, and if all initial subsequences af, ..., p, are also acceptable
(defined recursively). That is, a sequence is acceptable if, as each of its elements is
TELLed to a belief machine starting in the initial state, the machine accepts the new
input and continues to believe all of the previous inputs (though it might cease to believe
sentences that were inferred from the previous inputs).

2.2 The Simulative Inference Rule

Simulative reasoning is reasoning of the following forna: Believesy, . .., ¢,; if |
believed those things, then | would also believeherefore o believesy.” This form

of reasoning is expressed by the following inference rule, where the formulas above the
line are the premises, the formula below the line is the conclusion, and the rule applies
only when the condition written below it holds:

B(a, 1), ..., B(a,¢n)
B(a,v)

if ASK(TELL(So, ¢1,...,¢n),?) = yes.

While most of our inference rules will apply to all formulas, this rule applies only
to sentences, because to apply the rule one must use the sentemé&gd iand ASK
computations (recall thatELL andASKare defined only for sentences).

This rule may or may not be sound, depending on the choice of belief machine. We
will show in Chaptef B that iis sound when the belief machine satisfies the constraints
listed below. Though the inference rule explicitly only requires that

ASK(TELL(Sy, 1, ..., ¢n),¥) = yes

for one ordering of the;, the constraints entail that if the can all be believed simul-
taneously, then the order in which they dfeLLed is not significant.

C1 (closure) For any belief state&5 and sentence, if
ASK(S, p) = yes

then
B-TELL(S,¢) =B - S.

12

The closure constraint says tiid@LLing the machine something it already believed
does not increase its belief set (though the baliatemay change).

This rules out machines such as the one in the example on[page 6, the machine
that ensures that th&SK function always halts by imposing a time limit, answering
no when the limit is reached before a definitive answer has been found. Simulative
inference, as we have defined it, is unsound for such machines because in effect they
make a distinction between “base beliefs,” sentences that have been exphdiiled
to the machine, and “derived beliefs,” those to which the machine assents as a result of
the mechanism. Since the logic has only a single belief operator, which describes both
base beliefs and derived beliefs, such machines lead to contradictions. In Chapter 5,
we discuss the work of Haas, who defines a different form of simulative inference in
which the mechanism need not satisfy the closure constraint. This is possible because
in his logic, each belief attribution is indexed with an upper bound on the time at which
the agent came to hold that belief. In one sense, our form of simulative inference is less
general than that of Haas since it is applicable for a smaller class of machines; but in
another sense, itis more general, since to apply it one doesn’t need as much information
about the believer.

C2 (commutativity) For any belief stateS and acceptable sequence of sen-
tencesy, ..., p,, and for any permutation of the integersl...n, the sequence
©p(1); - - - Pp(n) IS @lSO acceptable, and

B-TELL(S, ¢1,...,¢n) = B-TELL(S, o1 - - - s @pn))-

The commutativity constraint says that if a sequence of sentences is acceptable, then
it is acceptable in any order, and the belief set of the resulting state does not depend on
the order.

It is clear that some form of commutativity is necessary for our simulative inference
rule to be sound, since a pair of premide&:,) and B(a, 1) gives no information
about which ofy andvy came to be believed first. However, the constraint we have
stated here stops short of requiring commutativity for all sequenc&g&bis. It per-
mits the belief machine to take order into account when deciding how to handle input
sequences that are not acceptable. Typically these would be sequences in which the
machine detects a contradiction.

C3 (monotonicity) If a sequenceyy, ..., y, IS acceptable, then it is monotonically
acceptable.

This constraint requires that IfEELL causes the retraction of some previously held
beliefs, then some previousRELLed sentence must be among the retracted beliefs.

13

Suppose a machine, having beBBLLed ¢, assents ta) by default unless it can
provey. The rule of simulative inference is not sound for such a machine: it licenses
the conclusionB(a, v») from the premise3(a, ¢), but the conclusion is not entailed by
the premise, since there is a belief state in whicls believed but) is not, namely
TELL(So, ¢, x). The monotonicity constraint rules out such a machine, since the se-
guencep, x is acceptable but not monotonically acceptablés(believed after the first
TELL, and no longer believed after the second).

The monotonicity constraint does not completely eliminate the possibility of retrac-
tion of beliefs. While it rules out defeasible inference, it does permit machines that,
when they discover that their input contains a contradiction, choose some part of the
input to ignore.

C4 (acceptable basis)For any belief states, there exists an acceptable sequence of
sentence®y, .. ., ¢, such that

BTELL(So,gOl,,QOH) =B-S.

The acceptable basis constraint says that for each belief state, a state with the same
belief set can be reached from the initial stateli®t Ling the machine a finite, accept-
able sequence of sentences.

The monotonicity constraint stated that when retraction occurglded sentence
must be among the retracted beliefs; the acceptable basis constraint further requires
that the effect of the retraction must be the same as that of ignoring part of the input.
Note that the effect is not necessarily that of ignoring one of the ispntences-for
example, the sequengeA ¢, =) might induce the belief sdty}.

In the next chapter, we will show that the simulative inference rule is sound given
any belief machine that satisfies the above constraints. The constraints are sufficient,
but not necessary, for the soundness of simulative inference. In particular, there are ma-
chines which violate the acceptable basis constraint, but for which simulative inference
is sound. We use this particular form of the acceptable basis constraint because it is
particularly natural and easily verified.

14

2.3 Negative Simulative Inference

For completeness, we will also need another form of simulative inference, one that
allows us to detect by simulation that a set of sentences is not simultaneously believable.
As in the former rule, they; in this rule must be sentences, not open formulasiay
be any term.
B(a, 1), ..., Bla, pn)
1

if ASK(TELL(Sy, 1, --.,¢n),p;) = noforsomei,1 <i <n.

This rule says that iTELLing a set of sentences to a belief machine in its initial
state doesn’t cause it to believe all of those sentences, then no agent can believe all of
them simultaneously. In the next chapter, we will show that it is sound for any belief
machine that satisfies the closure, commutativity, and acceptable basis constraints.

2.4 Indexicality and Introspection

A believer has the property of positive introspection if, for each sententteat he
believes, he also believes that he belieyesegative introspection means that when
the agent doesn't believg he believes that he doesn't belieye

Our model of belief seems essentially compatible with introspection, since one
could build an introspective belief machine as follows: when queried about the sen-
tenceB(a, p), wherea is a term the agent uses to refer to itself, the machine could
simply query itself about the sentengeand answeges if the answer to the sub-query
is yes (similarly for negative introspection). Unfortunately, this intuition is not easily
realized in the model as we have defined it so far. In order to perform introspection, an
agent’s belief machine must be able to recognize terms that refer to that agent; but in
general, a belief machine can’t be said to know anything about the denotation of terms.
It simply manipulates symbols. (In Section 2]5.3 we look more closely at the question
of what an agent should be considered to know about the meaning of expressions in its
language of thought.) One exception is that if a belief machine has “hard-coded” be-
liefs or inferential tendencies involving a particular symbol, then it can be considered to
incorporate information about the preferred interpretation of that symbol. For example,
one could construct a belief machine for which numerals are special symbols, about
which it has predetermined beliefs, and which it can use in particular kinds of symbol
manipulationsi(e. numerical calculations). Similarly, intuition says that a machine
could have a particular constant, say, which it recognizes as referring to the agent
of which it is a part, and which therefore triggers introspective inference.

For the purpose of simulative inference, we have made the assumption that all
agents have the same belief machine, and therefore if the machine has a special con-
stant it treats as denoting the agent doing the reasoning, then the denotation of that term

15

should not be taken to be fixed by a model alone, but should depend on the context in
which it is used. In other words, it is an indexical constant; and the semantics we have
used so far does not support indexicality.

An alternative, which avoids the complication of indexicality in the semantics,
would be to say that each agent uses a different “ego constant” to refer to itself, and to
make the ego constant a modifiable parameter of the belief machine. Then the standard
denotational semantics would be sufficient, since each ego constant would denote only
one reasoner. However, this scheme arguably makes the syntax more difficult to under-
stand. For instance, the meaning®fa, P(a)) would depend on whetherwere an
ego constant. If so, then the sentence would be a report of a bdleef about himself;
if not, then it would report a belief that has involving the name, but would contain
no information about whether knows that the name refers to him (again, see Sec-
tion[2.5.3 on the matter of what an agent should be said to know about the meaning
of expressions that occur in its beliefs). We find that using the indexical results in a
language whose meaning is more intuitively clear.

For the semantics ohie, we use a standard technique from linguistic semantics: the
denotation of an expression is in general no longer determined by a model alone, but by
a model and an individual from the domain of that model, the latter being the reasoner
from whose point of view the expression is considered. Given a made! (D, I,)
and a reasoner € D, the denotation of ground terms are determined as before, except
that|me|™" = r.

In the semantics of quantifying-in, we want to ensure that
B(a, B(b, P(me)))

entails
dz[z = b A B(a, B(b, P(x)))],

and does not entail
Jdz[z = a A B(a, B(b, P(z)))].

To this end, we extend the concept of a variable substitution that is extension-preserving
relative to a model, to that of a variable substitution that is extension-presenvang
formula relative to a model and a reasoner. A variable substituiios extension-
preserving in formula relative to modelM and reasoner if

1. for each variable that occurs at the top level ¢f, i.e. outside of belief contexts,
it is the case thav|"" = |o(v)|™", and

2. for every belief atomB(«, 1)) at the top level ofp, o is extension-preserving
(defined recursively) inb underM and|a|™ .

The corresponding change in the semanticB should be clear: a belief atomy(«, ¢)
is now true inM relative tor iff there exists some variable substitutienwhich is
extension-preserving ip relative toM andr such thatASK(y(|a|™7), %) = yes.

16

The indexical constant.e allows the construction of introspective belief machines,
as well as an axiomatic description of introspective believers. We will explore these
possibilities in Sectiop 3|5, and in Sectjon|3.6 we will discuss simulative inference us-
ing introspective belief machines. Of particular interest is negative introspection: neg-
ative introspection is a kind of nonmonotonicity, and therefore invalidates the positive
simulative inference rule; but for a belief machine with negative introspection, the neg-
ative simulative inference rule, which does not require monotonicity for its soundness,
becomes more powerful.

Because of the extra complexity the indexical introduces, in the remainder of this
dissertation we will use the language as originally defined, without the indexical, ex-
cept where it is specifically needed. Many of the technical results will still hold if the
indexical is introduced, but we will point out a few places where it is problematic.

2.5 Philosophical Considerations

In the next chapter, we will prove that our logic has certain mathematical properties,
including the property of soundness and a form of completeness for the simulative
inference rules given a belief machine that satisfies the constraints introduced above.
These properties are matters of mathematical truth, and are not subject to debate except
by the discovery of flaws in the proofs. However, there are less precisely answerable
guestions about what these abstract mathematical facts tell us about the world, and
what consequences they have for the implementation of reasoning about belief in an
Al system. We need to ask whether the belief machine abstraction accurately models
some observable or inferable feature of real humans and their beliefs, and whether the
constraints under which we have proved simulative inference sound permit the kinds of
inference that real believers perform.

2.5.1 The Nature of the Objects of Belief, and the Semantics of Be-
lief Reports in Natural Language

Belief can be viewed as a relation which holds between a person and some other kind
of thing. The nature of that other thing has been a matter of much discussion. The
proposals can be divided into two main groups: some hold that it is a sentence,
string of symbols in some language, and others that it is a proposition, the sort of thing
that sentences express.

Among propositional theories of belief, there is a range of theories of the proposi-
tion, which vary in the fineness of the distinctions they make. In traditional Tarskian
semantics, the meaning of a sentence is nothing but its truth value, so there are essen-
tially only two propositions, the true one and the false one. This is clearly insufficient

17

to distinguish the objects of belief, and logicians have proposed a number of more fine-
grained alternatives, using two techniques: intensions and structured propositions.

The idea that an expression has not only a denotation but a “sense” originates with
Frege|[1892]. Montagué [19]73] gave a model-theoretic definition of sense in a possible
worlds framework, defining the sense of a sentence to be the set of worlds in which
it is true. This makes it possible for sentences with the same truth value to express
different propositions, but still has the consequence tleaessarilyequivalent sen-
tences express the same proposition. In situation semantics [Barwise and Perry, 1983;
Hwang and Schubert, 1993], the model is further refined, distinguishing propositions
that are logically equivalent but involve different atomic predications. Even this level
of granularity is arguably not fine enough. For example, Moore and Hendrix[[1982, p.
96 in [Moore, 1995]] suggest that one can believe that door A is locked whenever door
B is not, without believing that door B is locked whenever door A is not, but these two
sentences have the same intension even in the most fine-grained intensional semantics.

In the Russellian view, a proposition is a structured entity. The meaning of a sen-
tence is a structure whose constituents are the meanings of the constituents of the sen-
tence. In other words, some of the syntactic structure of a sentence is visible in the
structure of the proposition that it expresses.

Both the intensional and the structured forms of propositions cause problems with
belief reports involving proper names, such as “Lois Lane does not believe that Clark
Kent can fly.” According to an argument of Kripke|s [1980] which seems to be quite
widely accepted, in a possible worlds model proper names must be “rigid designators,”
i.e. must denote the same thing in every world. If this is so, and “Clark Kent” and
“Superman” refer to the same person in actuality, then they refer to the same person in
all possible worlds, and therefore the proposition that Clark Kent can fly is the same as
the proposition that Superman can fly. Consequently, if “Lois believes that Superman
can fly” is true, then “Lois believes that Clark Kent can fly” must be true as well, even
if Lois believes that the names “Clark Kent” and “Superman” refer to two different
people. Similarly, several authors claim that the contribution of a proper name to a
proposition is nothing but its denotatign [Salmon, 1986; Soames, 1988; Braun, 1998],
with the same unintuitive conclusion. We will later refer to this view as the “direct
reference theory.”

Of those who argue for sentences as the objects of belief, some hold that belief in-
volves a disposition towards a sentence of a natural language [Carnap, 1947], while oth-
ers hold that it involves a sentence of the agent’s “language of thought” (LOT) [Fodor,
1975]f Sentential theories can be more fine-grained than any propositional theory yet
proposed. They do not seem to have any difficulty with proper names: “Clark Kent can
fly and “Superman can fly,” regardless of what propositions they express, are clearly

Lif there is in fact a language of thought, then literally speaking it is at least as “natural” as English;
but for lack of a better term, we will continue to use the phrase “natural language” in the usual way, to
mean a spoken or written language such as English.

18

not the same sentence. LOT theories also have a particular appeal for use in logical Al,
since that entire endeavor is predicated on the idea that reasoning is the manipulation
of symbols in a language of thought.

The simplest formulation of a sentential theory involving natural language would be
that “« believes that” is true iff « is disposed to assent o Complications arise for
so-calledde rebelief reports, in which the speaker does not wish to convey anything
about how the believer refers to some entity, for example, “Lois believes that Clark
wears glasses,” uttered in a context in which Lois is familiar with Clark but doesn’t
know his name; but such cases can be accommodated, probably to the satisfaction
of most, by a sufficiently nuanced theory of quantifying+in [Kaplan, 1969]. A more
difficult problem is that we can, in English, attribute beliefs to someone who does
not understand English, and would therefore not be disposed to assent to any English
sentence (this objection was apparently first voiced by Church [1950]). The intuitively
attractive solution is to modify the semantics of belief as followsbelieves thatp,”
uttered in English, is true iftv is disposed to assent to some sentepcsuch that
¢’ is a translation into a language thatunderstands of the English sentenceBut
this requires that we define what makes a sentence of one language a translation of a
sentence in another language. The most plausible conditiog’ floeing a translation
of v would seem to be that they both express the same proposition, but this simply
reintroduces the problematic question of the nature of propositions, from which we had
hoped sentential theories would rescue us.

The same problem of translation arises for theories that involve sentences of a lan-
guage of thought, rather than a natural language (such as the theory presented in this
dissertation). Such theories say thatBelieves thaty” is true iff there is a sentence
¢’ which is a translation inta’s LOT of the English sentencg, such thaty stands in
a particular relationship tg’. This relationship might be, for example, having a token
of ¢’ stored in an appropriate way iris mind, or, in the case of our theory;s belief
machine being in a state such that it will assenp’to

We will say a little more about the problem of identifying translations shortly, but
we will not claim to have solved it. Let us examine exactly what it is that we have failed
to do, in order to understand what we can still hope for. The question we have failed
to answer is one of linguistic semantics, of the truth conditions of English sentences
of the form “« believes thatp.” This is an important question, both for semantics in
general and for our research program in particular (see Chiapter 4), but it is not the
only interesting question involving belief. Of perhaps even more importance for Al is
the problem of psychological modeling, of understanding and predicting behavior in
terms of mental states. Beliefs are an essential component of naive psychology, and in
this role it is both plausible and useful to consider them to be mental representations,
regardless of one’s convictions about the nature of propositions and objective truth.

In fact, if there is anything in the debate about belief on which a consensus appears
to be emerging, it is the idea that a complete theory of belief must somehow include

19

mental representations. The advocates of this idea range from Rapapbrfl1997]

and Jackendoff [1983], who entirely eliminate denotation and truth from their seman-
tics, maintaining that the meaning of a natural language sentence is nothing but the
mental representation to which it gives rise, to Russellian advocates of the direct ref-
erence theory such as Salmon [1986], Soames [1988], and Braun [1998], as well as
Fregeans such as Cresswell [1985], who hold that belief is a relationship that a believer
has to a proposition, but that the relationship is mediated by a mental representation,
which is a “way of believing” the proposition.

Since we do not hope to resolve the controversy over the semantics of belief reports,
we can remain noncommittal about the relationship between a serfnce) of our
logic and the English sentence believes thatp.” (We may occasionally be caught
paraphrasing the former using the latter; this should be seen as an intuitive aid only,
not a statement of equivalence. The logical sentence does make assertions about the
believer's way of referring to the entities involved in the content of the belief, while it
is a matter of controversy whether the English sentence does that. Even an advocate of
the direct reference theory will agree that to a naive reader, the English sentence gives
rise to intuitions that match the intended meaning of the logical sentence.)

2.5.2 The Assumption of Identical Belief Machines

For the purposes of studying simulative inference, we make the essential assumption
that all believers have functionally identical belief machinesthat if two agents have

had the same experiences, then they will have the same beliefs. This assumption is im-
possible to verify or falsify in practice, since no two people have completely identical
experiences from birth, but the idea does raise some intuitive resistance. That is, it
seems possible that some people are more intelligent than others by virtue of genetic
traits, and that different people have different kinds of insight because of differences in
the structure of their brains. Nevertheless, if humans reason successfully about belief
by simulation, and we believe they do, then there must be some inferential ability that is
common, and known to be common, to all. Of particular interest to us is the reasoning
that people do when understanding language. It is widely accepted that much of the
information conveyed by a linguistic utterance is implicit—speakers rely on their hear-
ers to infer a great deal beyond what is explicitly present in the utterance. This would
seem to require that the speaker have certain assumptions about the hearer’s inferential
ability, and simulative inference seems a reasonable way for these assumptions to be
incorporated into the reasoning process.

Ultimately, there may be no practical difference between allowing believers to have
different inferential ability, and assuming they have identical inferential ability but al-
lowing them to have arbitrarily different experiential histories. In practice we can never
have complete knowledge of another agent’s experience, and the model permits agents

20

to learn new inference methods from experience, so the assumption that all agents have
the same inferential ability can be a rather weak one.

We will prove the soundness and (in a restricted sense) completeness of simulative
inference, under the assumption that the belief machine of the agent being reasoned
about is the same as that used for the simulation. But for the foreseeable future, when a
computer system simulates the beliefs of a human, it will not be using a belief machine
of the same inferential strength. Since the assumption is not valid, the soundness and
completeness results do not strictly hold. However, they can still have some approx-
imate predictive value for the real world, to the extent that the simulation algorithm
approximates human reasoning. The soundness result is likely to fare better than the
completeness result, since an algorithm for simulating human beliefs is likely to be-
lieve less, not more, than an actual human given the same initial information. That
is, the conclusions drawn by simulative inference are likely to be correct, but some
conclusions that could be drawn with a better simulation are likely to be missed.

2.5.3 The Assumption of a Shared Language of Thought

Since we define the belief machine as a computational mechanism that manipulates
sentences of the language of thought, and we assume that all agents share a common
belief machine, we implicitly assume that all agents use the same language of thought
(using ‘language’ in the restricted technical sense, meaning a set of sentences defined
by a set of symbols and syntactic rules for combining them). Furthermore, for belief
attributions to have the intended meaning, we must also assume that all agents use
the symbols of the language in the same way. We have defined the logic such that
the assertiorB(John, T'all(Mary)) necessarily means that the belief machine of the
agent denoted byohn assents to the senteritell(M ary), but that doesn’t mean that

he believes Mary to be tall, unless we also assume that he uses the syaibtd
represent the property of being tall, and the symhlairy to represent Mary.

It seems reasonable enough to assume that the syntax of the language of thought is
hard-wired in the human mind, but perhaps less reasonable that there is a single shared
set of symbols and associated meanings. We can make the assumption slightly more
palatable by using the following essentially equivalent form: that each believer has his
own set of symbols, but for each symbol in one believer’s idiolect, there is a unique
corresponding symbol in each other’s idiolect. This brings us back to the problem of
translation, which we first faced in Section 2]5.1.

Note that shared denotation is not a sufficient criterion for identifying corresponding
symbols in differentidiolects. Two symbols of the same idiolect might happen to denote
the same individual without the believer knowing it; in such a case, the two may not
be equally appropriate candidates for the translation of a coextensive term of another
idiolect. Consider two agents, Lois and Jimmy, and let us represent symbols of Lois’
idiolect with the subscript and those of Jimmy’s idiolect with the subscript If

21

Lois’ language of thought has two symbdsperman; and Kent;, and her belief
machine assents to the senterd&uperman; = Kent;), then flies;(Superman;)
andflies;(Kent;) are not equally appropriate representations in her idiolect of Jimmy’s
sentenceflies;(Superman;).

This indicates two problems for a full theory of translation. The first is that, since
our model theory assigns a symbol no meaning beyond its denotation, we would need
to enrich the model theory in order to define the translation relationship fully. But
second, even given a (perhaps intensional) model theory that provides a fine enough
individuation of symbol meanings, there is a question of what a symbol's meaning, as
given by a model, has to do with how the agent uses the symbol. The intended connec-
tion between the two is clear: a symbol has the meaning it does precisely because of
the way the agent uses the symbol in its beliefs—because of the history of experiences
that led the agent to form the concept of which the symbol is a physical manifestation.
But we have given an agent’s experiential history no place in the model theory. We
have pointed out the desired condition that an agent may act as if two symbols refer
to different things, even if they are in fact coreferential. But by the same token, in an
intensional version of our model theory, an agent could act as if two symbols refer to
different things, even if they had the same intension. Such a possibility violates in-
tuitions about the notion of intension, yet an intensional version of our theory would
permit it.

It is not clear to us how damaging this fact is to the theory. The possibility of
models other than the intended one is certainly not a problem: the same possibility
exists in classical logic, and as in classical logic, we can eliminate unintended models
by adding axioms. For example, we might use an axiom stating that if someone believes
something, then he will act as if it were true. But the undesired models we have been
discussing are objectionable not merely because they support the truth of contingently
false propositions, but because they seem to be inherently self-contradictory, given our
intuitive understanding not only of the symbols of the logic, but of the components of
the model theory itself. Nevertheless, if the undesired models can be eliminated by
adding judiciously chosen axioms, there may be no adverse consequences for the proof
theory.

2.5.4 The Constraints

When evaluating whether constraints C1-C4 are reasonahleyhether the mecha-
nisms by which humans maintain their beliefs can be said to satisfy these constraints,
it is important to note that the belief machine need not be seen as describing an agent’s
entire reasoning capability. In particular, the set of sentences to which the belief ma-
chine answerges need not be the same as the set of sentences to whiageénévould

assent if asked. The belief machine might be a single component of a larger reasoning
system, perhaps best viewed as the information storage and retrieval component. The

22

belief machine describes an agent’s current beliefs at a moment, and how those beliefs
change in response to new information; it does not describe the set of things the agent
could infer given an opportunity for reflection (the latter is closer to the idealized notion
of belief inherent in the classical possible worlds model). In this light, it is clear that
the closure constraint does not preclude an agent whose beliefs expand as a result of his
being asked a question. (fis a sentence that an agent has not previously considered,
and which he can’t immediately and effortlessly see to be either true or false, then at
the time of the asking of the question the agent believes nejtiner —¢, i.e. the ASK
function returnsuo for both queries. When an agent whose belief machine is in such

a state is asked the questignafter finding that it does not currently have any convic-
tions on the subject, it might undertake more intensive and goal-directed reasoning to
try and discover whether its truth or falsity follows from what it knows. This reasoning
involves capabilities of the agent that are not described by the belief machine. If the
agent eventually decides thatis true, then it will come to believe; this is modeled

by theTELLing of ¢ to the belief machine. As a result of tR€LL, the agent’s beliefs

are augmented by and sentences that follow effortlessly frasmcombined with the
existing beliefs), and perhaps with the retraction of some previously-held beliefs.

An Example Belief Machine

Besides the question of whether human belief can be said to satisfy the constraints we
have listed, there is a related question of whether any interesting inference algorithms
of the kind studied in Al satisfy the constraints. We will now describe a simple example
of a non-trivial algorithm which satisfies the constraints. Our example machine does
limited deductive reasoning by checking for clause subsumption, and itis able to revise
its beliefs when given information that contradicts earlier inputs.

The machine’s state consists of a list of believed clauses, maintained in the order
in which they were learned. Th&SK function works as follows. First, if its sentential
argument contains any quantifying-in, it simply answess Otherwise, it converts the
sentence to clause form, both at the top level and in belief contexts, distriligiongr
conjuncts. For example, the sentence

—B(a, P(c) A P(d))

becomes
—[B(a, P(c)) A B(a, P(d))]

which is further converted to
- B(a, P(c)) V =B(a, P(d)).

Note that, since quantifying-in is prohibited, a free variable occurring in a belief context
in a clause can unambiguously be read as being bound by an implicit quantifier lying

23

within the narrowest containing belief context. That is, the claBise, B(b, P(z)))

is equivalent toB(a, B(b,VzP(x))), not B(a,VzB(b, P(x))) or VxB(a, B(b, P(x))).

Once the input sentence has been converted to a set of clauses, each clause is compared
against the list of stored clauses that comprises the machine’s state. If every clause of
the query is subsumed by some stored clause, the function angweisherwise, it
answersio.

TheTELL function, when given a sentence, first checks whether the sentence con-
tains any quantified-in belief atoms or any positively embedded existential quantifiers.
If so, it does nothing—that is, having rejected the input, the machine remains in the
same state. If not, it next runs te&SK function on the sentence. If the answeyis,
then it does nothing—the sentence is already believed, so the machine remains in the
same state. If the answer#®, it then runs theASK function on the negation of the
input sentence, to see if the input contradicts what is currently believed. If the answer
to that query iso, then the machine enters a new state by adding the clause form of
the original sentence to the list of believed clauses. If the answersjsndicating a
contradiction, then the contradiction is resolved by removing some clauses, chosen as
follows, from the list. Each clause in the negation of the input is subsumed by one or
more clauses in the list. The clause from the negated input whose most recently learned
subsuming clause is the earliest is the one chosen to be rejected. All clauses on the list
that subsume that clause are discarded, so that the negation of the input is no longer
believed. Then the input is added as above.

Note first of all that theASKandTELL algorithms halt on all inputs (as long as the
list of believed clauses is finite, and the list must be finite if there have been only finitely
many precedind ELLs), and therefore they do define a belief machine. Furthermore,
the machine satisfies constraints C1-C3, as we will now show, and therefore simulative
inference using this machine is sound. The closure constraint is satisfied because before
changing the belief stat&ELL first calls ASK and it remains in the same state if
the proffered sentence is already believed. The acceptable basis constraint is satisfied
because a belief state is simply a list of clauses, and that list of clauses itself, translated
back into sentential form, is a monotonically acceptable sequence of sentences that
could beTELLed to a machine, starting from the initial state, to induce the same belief
set. The order of ELLed sentences is taken into account when revising beliefs, but this
does not violate the commutativity constraint. This last constraint is satisfied because
if a sequence of sentences is monotonically acceptalflg, itihen in the state resulting
from TELLing that sequence, the list of believed clauses is simply the list of input
sentences converted to clause form; and&8&function pays no attention to the order
of the clause list, so the belief set is the same regardless of the order of the inputs.

24

3 Mathematical Properties of the
Logic

Having defined our model of belief and explained the intuitions behind it, we now
demonstrate some of its interesting mathematical properties. In Sgctjon 3.1, we prove
that the four constraints discussed in Secfion 2.2 are sufficient for the soundness of
the positive and negative simulative inference rules. In Setign 3.2, we address the
guestion of whether the constraints are also necessary for the soundness of the rules
(some of them are, others are not). In Secfioh 3.3, we introduce some general-purpose
inference rules (as opposed to rules for reasoning specifically about belief) and prove
their soundness. Then in Sectipn|3.4, we address the matter of completeness. We
show that no complete set of inference rules can exist for our logic. However, we also
show that the set of inference rules introduced earlier, including the simulative rules,
is complete for a syntactically restricted subset of the logic, given any belief machine
for which the rules are sound. In Sectipn]3.5 we list some axioms that, in various
combinations, have been taken to be characteristic of belief in the classical literature,
and we consider the constraints on the belief machine under which each of them is
valid.

3.1 Soundness Proofs

Theorem 1 (Soundness of Simulative Inferencelor belief machine
m = (I, S, TELL, ASK

satisfying constraints C1-C4;-modelM = (D, I,), and sentenceg, ..., y, and
o, if M = UY{B(a,)}, and ASKTELL(Sy, ¢1,...,¢n),%) = yes, thenM |=
B(a,v).

The proof can be summarized as follows: by the acceptable basis constraint, agent
a’s current belief set can be induced B¥LLing the belief machine some sequence
of sentencegy, .. ., x.» Which is acceptable, and therefore monotonically acceptable

25

thanks to the monotonicity constraint, $ij. Let .S be the statd ELL(.Sy, x1, - - -, Xm)-

By the closure constraint, the sequenge. . ., ¢, is monotonically acceptable if.
This means that the whole sequenge.. ., xm, ¢1, - - -, ¥, IS monotonically accept-
able inS,. By the definition of ‘monotonically acceptable’ and the commutativity
constraint,

B-TELL(Sy, p1,---,¢n) CB-TELL(So, X15- -3 Xms®©1s- -2 Pn)-

From the premises, we know thats in the former belief set, so it must be in the latter
as well. By the closure constraint, the latter is the sam® aS, soa believesy).

Proof: Assume that
M = Bla, ;) (3.1)

forall 1 < ¢ < n, and assume that
ASK(TELL(Sy, 1, - -, ¢n),) = yes. (3.2)

Let S = (|a|™), i.e. the belief state of the agent denoteddayFrom [3.1) and the
semantics of the operatd, it follows that for eachy;, there is an extension-preserving
variable substitutiom; such that

ASK(S, p7) = yes. (3.3)

Furthermore, since the rule only applies when¢héave no free variableg? is the
same as; for anyo. Therefore,[(3.3) is equivalent to

ASK(S, p;) = yes, 1 <i < mn. (3.4)
According to the acceptable basis constraiff (C4), there is some sequence of sentences
X1, - - -, Xm Which is acceptable i, such that

Since the sequence is acceptablein by the monotonicity constraint [C3) it is also
monotonically acceptable ifi,.

From (3.4) and[(3]5), it follows that
ASK(TELL(So, X1, -, Xm), vi) = yes, 1 <1 <mn. (3.6)
From (3.6) and: successive applications of the closure constraipk (C1), it follows that

B - TELL(So, X1, - -+ Xm» @15 - - - »Pn) = B - TELL(S0, X1, - - - s Xm)s (3.7)

26

and that the sequengg, . . ., xm, 1, - - -, @, IS MoONotonically acceptable 5. By the
commutativity constraint, the sequengge.. . ., .., x1, - - -, Xm IS @lS0 acceptable if,
and therefore monotonically acceptable by the monotonicity constraint, and

B - TELL(So, ©1,- - @ns X155 Xm) = B+ TELL(So, X1, -+ -, Xon, P15 - - - » Pn)

= B-TELL(So, X1,-- -, Xm) (see[3]))

=B-S (see[3.h). (3.8)
Since the sequence,, ..., v, x1,-- -, Xm IS Monotonically acceptable i, by the
definition of ‘monotonically acceptable’ it is also true that the sequence. ., x,, IS
monotonically acceptable iRELL(Sy, ¢4, ..., ¥,), and hence

B - TELL(So, ¢1,...,0n) € B-TELL(Sy, 1,3 @ns X15- -+ Xm) (3.9)

Equation|(3.R) says that

Y € B-TELL(Sy, ¢1, . .., ¢n) (3.10)
From [3.8),[(3.P), and (3.10), it follows that
YpeB-S (3.11)
or, equivalently,
ASK(S, 1) = yes (3.12)

Sincey was assumed to have no free variablg3,is the same ag for any variable
substitutions. By the semantics of3 and our choice of5 = ~(|a|™), the desired
conclusion follows:

M = B(a,) (3.13)

Theorem 2 (Soundness of Negative Simulative Inferencepiven a belief machine
that satisfies the closure, commutativity, and acceptable basis constraints, if

ASKTELL(Sy, ¢1, - - -, ¢n), i) = no

for somel < i < n, then{B(«, y1),...,B(a, ¢,)} is unsatisfiable.

Proof: We will prove the contrapositive of the above statement. Assume that

{B(av 901)7 AR B(&»SDn)}

27

is satisfiablej.e. that there exists some statesuch thatASK(S, p;) = yes for all
1 < ¢ < n. By the acceptable basis constraint, there is some sequence of sentences
U1, ..., 0, thatis acceptable if, such that

B - TELL(So, Y1, ...,0n) =B - S.
This means that
ASK(TELL(507 ¢17 s 7wm)7 @z) = yes, 1 < i < n.

By the closure constraint, if we take a machine in stBEL(Sy, ¢4, ...,1,) and
TELL it each of they; in turn, the resulting states will all have the same belief set,
which means that the entire sequence

¢17"'7¢m7¢1a"'7§0n

is acceptable irty. Therefore, the commutativity constraint applies; it says that the
sequence

9017"'a90n7¢17""¢m

is acceptable inS,, which by the definition of acceptability means that the initial
subsequencen, ..., ¢, IS acceptable irb,. Therefore, all of thep; are elements of
B - TELL(S(), P11y -+ -y gOn) O

3.2 Are the Constraints Necessary?

We have shown that constraints C1-C4 are sufficient for the soundness of positive and
negative simulative inference. The question naturally arises whether these constraints
are also necessary for the soundness of the inference rules. In fact, they are not all
necessary. The constraints we have used were chosen because they are particularly
natural to express and easy to verify of a given inference algorithm, but some of them
could be weakened while maintaining the soundness properties.

We begin with the most straightforward result: that the monotonicity constraint is
necessary for the soundness of (positive) simulative inference.

Theorem 3 If the belief machine violates the monotonicity constraint, then the positive
simulative inference rule is not sound.

Proof: If the monotonicity constraint is violated, then there is a sequence of
sentencesy, ..., ¢, Which is acceptable, but not monotonically acceptableSjn
Since the sequence is not monotonically acceptable, there is some< ¢ <
n, and some sentence, such thatASK(TELL(Sy, ¢1,...,9i—1),%) = yes but

28

ASK(TELL(Sy, ¢1,...,9:),¥) = no. 1w is not one ofpy, ..., p;, since that se-
guence is acceptable. Then the simulative inference rule licenses the conclusion
B(a,v) from the premises3(a, ¢1),..., B(a,¢;_1), but there are models in which

the premises are true and the conclusion false, namely models that assign the belief
stateTELL(.Sy, ¢1,- . ., ;) to the agent denoted ky Therefore, the rule is not sound.

O

The commutativity constraint is not necessary for the soundness of either simulative
rule alone, but is necessary for them both to be sound.

Theorem 4 If the belief machine violates the commutativity constraint, then the posi-
tive and negative simulative inference rules are not both sound.

Proof: If the commutativity constraint is violated, then there is some sequence

©v1,-..,9, Which is acceptable inS;, and some permutatiop of the integers
1...n, such that either the sequengg,...,¢,x) IS not acceptable inS, or
B - TELL(So, ©p(1), - - -» @pny) 7# B - TELL(So, @1, . . ., ¢n).

If the sequence,1), . .., v, iS Not acceptable, Igt,), . .., ¢, be the shortest

initial subsequence that is not acceptable. Then there is §ame i < j, such that

ASK(TELL(SW Po(1)s -+ gpp(j))a Sop(z)) = nho,

so the negative simulative inference rule licenses the conclusioom the premises

B(a, o)), - - Bla,),

in that order. But there is a state in which all@f), . .., p,(;) are believed, namely
TELL(S(), @1y - - - ,gOn),

so the rule is unsound.

If the reordered sequence is acceptabl§jut the resulting belief set is different,
let
S = TELL(S(), @1y -y gDn),

and let
S/ = TELL(S{], Qpp(l)) et (,Op(n))

This case can be further divided into two cases: there is some sentesceh
that eitherASK(S,v) = yes but ASK(S’,¢) = no, or vice versa. In the first
case, the positive simulative inference rule licenses the concluBiani) from
the premisesB(a, ¢1),...,B(a,¢,), used in that order; but there is a model in
which B(a, ¢1),...,B(a,p,) are all true andB(a,) is false, namely one which

29

assigns the belief stat¢ to the agent denoted by, so the rule is unsound. Simi-
larly, in the second case the rule licenses the conclusipn) from the premises
B(a, ¢p1)); - - - B(a, ¢pm) in that order, but in a model whetgs belief state isS, the
premises are all true and the conclusion is faise.

The closure constraint as stated in the previous chapter is stronger than is strictly
needed. However, a weakened (but more complicated to state) version of the constraint
can take the place of the original one in the soundness proofs, and is necessary for the
joint soundness of the two simulative inference rules. The original constraint required
that for any belief stat& and sentence, if ASK(S, ¢) = yes thenB - TELL(S, p) =
B - S. We can weaken the constraint by havisigange only over states reachable via
an acceptable sequenée,. statesS for which S = TELL(Sy, ¢1, ..., ¢,) for some
sequence, . . ., ¢, Which is acceptable ify.

Theorem 5 If the belief machine violates the weakened closure constraint, then the
positive and negative simulative inference rules are not both sound.

Proof: If the weakened closure constraint is violated, then there is a sequence
X1, -- -, Xn Which is acceptable iy, a stateS = TELL(Sy, x1,---,x»), @ Sentence
¢ € B- S, and a sentence such that either

e ASK(S,v) = no andASK(TELL(S,), ?) = yes, or
o ASK(S, 1) = yes andASK(TELL(S, ¢), 1) = no.

In the first case, the sentengds an element o8 - S, as areyy, ..., x,, buty is
not. Therefore, there is a model in whiéha, x1), ..., B(a, x»), B(a,) are all true
but B(a,v) is false, namely one that assigns the belief state the agent denoted by
a. But the positive simulative inference rule licenses the conclusion ¢)) from the
premisesB(a, x1), - - -, B(a, x»), B(a, ¢), so itis unsound.

In the second case, eitheéris one ofyy,..., x,, ¢, Or itisn’t. If it is, then the
negative simulative inference rule is unsouAGK(TELL(Sy, X1, - - -, Xn, ©), ¥) = no
for somey € {x1, ..., xa, ¢}, SO the rule licenses the conclusiarfrom the premises
B(a,x1),---,B(a,xn), B(a,), but there is a model in which those premises are all
true, namely one that assigns the belief state the agent denoted by Otherwise,
the monotonicity constraint is violated, because the sequence., x,, ¢ is accept-
able but not monotonically acceptable, and by Thedrém 3 it follows that the rule of
simulative inference is unsound.

The last remaining constraint is the acceptable basis constraint. It is not necessary
for the soundness of the simulative inference rules; it is simply a very natural constraint
which happens to be useful in the soundness proofs.

30

Theorem 6 The acceptable basis constraint is not necessary for the soundness of pos-
itive or negative simulative inference.

Proof: We will construct a belief machine with the following properties. The only
sentences it accepts are atomic formulas with zero or more negations. The only infer-
ence it ever performs is the adding or stripping of even numbers of negations. Initially,

it only answergjes to sentences that can be derived by stripping zero or more pairs of
negations from something it has beBBLLed; but if it detects that it has bedikLLed
sentences that contradict each other, it thenceforth also angwets sentences that

can be obtained by adding one or more pairs of negations to sentences it has been
TELLed.

The machine’s state consists of a list of sentences, initially empty, and a flag, ini-

tially unset, which indicates whether any beliefs have been retracted. WWhiered

a new sentence, it first adds it to the list. Then, if the sentence is of the-ferm it
recursivelyTELLSs itself . If it is of the form - wherey is atomic, it checks the list

for ¢, and if it is present, it sets the flag and removes any sentencesy, etc. that

are present on the list. Similarly, if tHEELLed sentence is an atomic sentegceit
checks the list forp, and if it is found, sets the flag and removes, ———, etc.from

the list.

WhenASKed about a sentence, it answegrs if the sentence is on its list. If the
sentence is not on the list, and the flag is unset, then it answettthe sentence is not
on the list, but the flag is set and the sentence is of the ferm, it recursivelyASKs
itself o, and returns the answer of the recursive query.

Let ="y be an abbreviation fop negated: times. Note that in any state, for any
atomic sentence, if 2"y is believed for some > 0 then—% is believed for every
0 < i < n, and if=>"*'y is believed for some > 0 then—?"*'¢ is believed for every
0 < i < n. Itfollows that in any state and for any sentengeit is impossible that
both with an odd number of negations apdwith an even number of negations are
believed. When either one comes to be believed, if the other was previously believed,
it is retracted.

This machine violates the acceptable basis constraint: the belief set of the state
TELL(Sy, ¢, —¢p,) is the infinite se{p, -, ===y, ...}. There is no acceptable
sequence that will induce this belief set, because the belief set is only infinite in states
in which the flag is set, and the flag is only set in response to a non-acceptable input
sequence.

Positive simulative inference is sound for this machine. For any set of premises
B(a, 1), ..., Bla, p,), if there is any model that satisfies all of the premises, then no
two of ¢4, . . ., ¢, are contradictory, so the simulation’s flag will not get set. Therefore,
the only sentences to which the simulation will answyerare those that can be derived
from one ofpy, ..., , by stripping even numbers of negations. As we have already
observed, in every belief state in which theare believed, these conclusions must also
be believed.

31

Negative simulative inference is sound as well. If
ASK(TELL(Sy, @1, ---,¢n), ;) = no for somel < i < n, theny, must be the
complement of some;, i < j < n; and in that casel3(«, ¢;) and B(«, ¢;) are not
simultaneously satisfiabl€&]

3.3 Other Inference Rules

We now give the remainder of the set of inference rules that will be proved complete in
Sectior] 3.4. The rules are all variations of ones familiar from ordinary first-order logic,

with the primary modification being restrictions on the contexts in which they can be
applied.

These rules apply to all formulas, not just closed ones.

3.3.1 Rules of Propositional Logic

We adopt a complete set of standard inference rules for propositional logic. It will
be convenient later on, in the completeness proof, to consider a formula of the form

© D 1) as an abbreviation fofrp V ¢, so we will not bother with inference rules for the
connectived [T

e Commutativity rules
VY YA

YV YA
e A-introduction, elimination

o Y NP
o N ©
e \/-introduction
2
eV
e DeMorgan’s rules
—(p A1) V) =(p V) = A)
@V (o A1) —p A (o V)

10ther inference rules, such as double negation and disjunction elimination, can be derived from these

rules. The particular set of rules presented here was chosen simply because it facilitates the completeness
proof.

32

e Reductio ad absurdum
Y

L

¥

All but the last rule are trivially sound by the semantics of the connectives. The
reductiorule, which justifies the conclusiognwhen assuming leads to a contradic-
tion, can be proved sound by induction on the length of the assumed proof.

3.3.2 Rules for Handling Equality

In ordinary FOL, substitution of one term for another is permitted if the two terms are
known to denote the same thing. In our logic, such substitutions are only allowable
outside of belief contexts. The restricted rule of substitution is:

a=03 ¢
S0/

wherey' is ¢ with the termg substituted for one or more occurrencesvof
that are not in belief contextsuch that none of the occurrencesdieing
replaced contain variables boundgnand such that the substitution does
not cause any free variable gfto become bound ip’ .

Since it applies only in extensional (non-belief) contexts, this rule is trivially sound
by the semantics of equality.

There is one situation in which substitution of a coextensive term is sound in belief
contexts, which we cover with a separate rule, the rule of substitution in negative belief
contexts:

-Bla,p) v=r

_\B(Oé7 QOT/V>

wherev is a free variable op, and substituting for v in ¢ does not cause
any free variable of to become bound.

Theorem 7 (Soundness of Substitution in Negative Belief Contextdjor model M,
formulaB(a,), variabler, and termr such that the substitution effor v in ¢ would
not cause any free variable ofto become bound, i/ = -B(«,p) andM =v =71
thenM = —B(«o, ¢ /).

Proof: Assume thatM | —B(«,¢), meaning that there is no variable sub-
stitution o which is extension-preserving undé{ such thatM = B(a,¢”). If

33

M (= —B(a, ¢,), then there would have to be an extension-preserving substitution
o’ such thatM = B(a, (¢,,,)7). If that were the case, we could construct another
substitutiono which was identical tar’ except thatr(v) was7°'. With this newo,

M = B(a, ¢?), contrary to our assumptionl

This soundness proof depends on the original definition of the semantics, without
indexicality (see Sectign 2.4). If the indexical constantis allowed, and it occurs in
the termr, then the occurrence afe in the top-level equation = 7 doesn’t represent
the same thing as the occurrence embedded in the belief atom. Fixing the rule to handle
indexicality is quite complicated, because occurrences®fn the belief atom could
be contained within belief environments that are nested to an arbitrary depth.

We also need an identity axiom and a rule of commutativity:

T — T2

T =T
To = T1

3.3.3 Restrictedv-Instantiation

The instantiation of a universally-quantified variable with an arbitrary term is sound
when it takes place in extensional contexts, just as in ordinary FOL, but is not always
sound in belief contexts: it is possible forB(a, P(x)) to be true yetB(a, P(cy))

false, for example if; denotes the same thing asand B(a, P(cs)) is true.

V-instantiation is only unsound when the variable being instantiated occurs in a
positively embedded belief context. To make the definition of a positive embedding
precise, we treaflvy) as an abbreviation forVv—), andy) O y as an abbreviation for
—p V x. With these definitions, an occurrence of a formulavithin a formulayp is
negatively embedded ip if it lies in the scope of an odd number of of negations, and
is positively embedded otherwise.

The rule is as follows, where, /, is the result of substituting term for all free

occurrences of variabkein ¢:
Yvp

QOT/V

if the substitution ofr for v in ¢ does not cause any free variablerofo
become bound, and no occurrencevdhat is free iny is within a belief
context that is positively embeddedin

This rule is only sound in the absence of the indexical. It could be made sound
for the version of the language with an indexiea by prohibitingme from occurring
in 7, but then the rule would no longer perform its role in the completeness proof
(below). A version that is sound and makes the necessary contribution to completeness

34

undoubtedly exists, but it would significantly complicate the proofs, and we have not
attempted to formulate one.

In proving the soundness of this inference rule, we will use the following lemma:

Lemma 8 Let ¢ be any formulay a variable that occurs free ip, 7 a term whose
substitution forr in ¢ doesn't cause any free variable ofto become bound, and
M, = (D, I;,v) a model. Let\; be a model D, I, v), whereD and~ are the same
as inM;, and [, is the same a$, except thatl,(v) is |7|**. Then

(a) if no free occurrence af in ¢ is in a negatively embedded belief context, and
M = ¢, thenM, = ;

(b) if no free occurrence of in ¢ is in a positively embedded belief context, and
M,): ©, thean): Pr /v

Note that the lemma entails that if no free occurrence isfin any belief context at all,
thenl, = ¢ ifand only if M; = ¢, ..

Proof: The proof is by induction on the complexity gf The bases of the induction

are the atomic formulas. The lemma clearly holds for ordinary (non-belief) atoms, and
for belief atoms in which, does not occur free in the second argument, because these
are extensional contexts. For the case of a belief atom containing a free occurrence
of v in the belief context, assume thaf, = B(a,,,v.,). This means that there

is some variable substitutiom, which is extension-preserving undéf;, such that
ASK(Y(levr s [M1), (1,,)7) = yes. Construct a new variable substitutiehidentical

to o except that’'(v) is 77. Theno’ is extension-preserving undéf,: it agrees with

o on every variable other than therefore preserving the extension of those variables
under), (as well as);); and as fow,

lo’(v)|M2 = |r°|M2 Dby the construction of’
= |r7|* becausé/, andM, agree on the interpre-
tation of all ground terms
= |7|* sinceo is extension-preserving undgf,
= I,(v) Dby the construction of,.

Theny? is (¥,,,)? (by the construction o#’), and|a|*2 is the same agv,, | (by

the construction of\,), SOASK(y(|a|*2),¢7") = yes, SOM, = B(a,). This proves
that part (a) of the lemma holds for atomic formulas; part (b) holds trivially, because if
an occurrence af in an atomic formula is not in a positively embedded belief context,
then itis in no belief context at all.

For the induction step, we must show that if the lemma holds for two formulas
andy, then it also holds for any formula that can be constructed ugiagd/ory and
one connective. Since all of the connectives can be defined in terms/gfandv, it

35

will be sufficient to show it for-1), ¥ A x, andVua. Itis clearly true forp A v); we will
prove it for - andV .

For —: if v occurs free in both positively and negatively embedded belief con-
texts in—), then the induction hypothesis is preserved trivially, because neither of the
antecedents of (a) or (b) holds. Otherwise, assume firsttlaies not occur in any
positively embedded belief context), which means that it does not occur in any
negatively embedded belief contextidn If My = —), thenM, [~ . By the induc-
tion hypothesis, it follows thad/, |~ ,,,, and thereforeM, = —).,,, preserving
the hypothesis. A similar argument applies in the opposite directiorodcurs in no
negatively embedded belief context-.

For V). assume for case (a) thaf, = Vi), . That means that for any model
M that differs fromA/; at most in its interpretation qf, M| |= v, ,,. For each such
M! there is anM} identical to M, except thatu|™: = |u|/Mi. 1 does not occur i
(otherwise substituting for » would cause the free occurrencesuoin = to become
bound) and is not the same agotherwiser would not occur free i), so|v|*z
is |7|M1 (becausér|™: is |7|M). The induction hypothesis therefore applies, entailing
that Mf} |= « for all of the M, under consideration, sbl; = Vi by the semantics of
V. Again, a similar argument applies in the other direction.

We can now prove the soundness of the inference rule.

Theorem 9 (Soundness of Restricted-Instantiation) For model M, formula ¢,
variable v, and termr such that the substitution effor v in ¢ would not cause any
free variable ofr to become bound, and such that no occurrencetbht is free inp is
within a belief context that is positively embeddegjrif M/ |= Vvp thenM = ¢, ..

Proof: AssumelM |= Yvp. ThenM’ |= ¢ for every M’ that differs fromM only in its
interpretation ofv. In particular, this holds for thé/’ that is identical ta\/ except that
lv|M"is|7|™. For that choice of\/’, we havelM’ = o, and we have restricted the rule
so that no occurrence ofis in a positively embedded belief context, so by Leniia 8 it
follows thatM |= ¢,/,. O

36

3.3.4 F-Elimination and Skolemization

In the completeness proof, we will find it convenient to treat an existential quantifier as
notation for a negated universal quantifier, so we formulate the rulestimination in
those terms:

AN Te

A Vvp @ZJ
(4

wherep andv are both variables, anddoesn’t occur free i\, ¢, or).

In words, this rule says that if can be proved from the premisesu {—¢, /. },
whereu doesn’t occur in\, ¢, or, then it is also a valid conclusion from the premises
AU {—=Vrp}.

The 3-elimination rule involves replacing an existentially quantified variable with
a free variable. This is similar to Skolemization, in which an existentially quantified
variable is replaced with ground term. Akelimination rule that used ground Skolem
terms instead of free variables would be sound in FOL; but when applied to a formula
in which the existentially quantified variable occurs in a negatively embedded belief
context, such a rule woultbtbe sound. Consider a belief machine that always answers
yes to the queryP(7) Vv —P(r) for any ground termr. For this machine, the sentence
Jx—B(a, [P(z) V —=P(z)]) is consistent (and satisfiable, namely by models in which
some individual is not denoted by any ground term), but no Skolemized version of the
sentence is consistent, because the rule of simulative inference can be used to prove
B(a, P(t) v = P(7)) for any ground term-.

Since our version oB-elimination uses free variables instead of ground Skolem
terms, it avoids drawing unjustified conclusions. However, if this were the only form
of 3-elimination available, the logic would be weaker than necessary, because using
Skolem terms impositivelyembedded belief contexts can lead to sound conclusions
that could not be reached otherwise. For example, consider a belief machine that al-
ways applies a rule of-introduction, so that if an agent believégr) for any term
7, then it must also believez[P(x)]. For such a machingjz|[B(a, P(x))] entails
B(a,3z[P(z)]), but that conclusion cannot be derived using only the inference rules
we have introduced so far. The proof would require an application of the rule of simu-
lative inference, but the belief arguments of the premises of that rule must be sentences,
andP(x) is not a sentence. Therefore, we introduce a rule of belief Skolemization:

37

wherev is a free variable ap, andx is some “ordinary” individual constant
that does not occur i\, «, ¢, or ¢ (the definition of an ordinary constant
will be given below).

For the completeness proof, it will be useful to note the following: this rule ensures
that if {A, B(«, vx/v), & = v} is inconsistent for some constanthat doesn’t occur
in A, «, or ¢, then{A, B(a, ¢)} is also inconsistent. This is seen by lettingn the
inference rule bel.

This rule is not sound for all belief machines. Consider a belief machine that treats
the individual constant differently from all other terms: in some states the machine
will answeryes to the queryP(c), but no matter what it has beérELLed, it always
answersuo to P(7) for any termr other thare. For this belief machine, the sentence
JxB(a, P(x)) is satisfiable, but Skolemizing with an arbitrary constanmtill result in
the unsatisfiable sentenéda, P(d)).

Consider another belief machine that can beli&ye) for any constant, but only
for one such constant in any given belief state. For this machine, eaBkuof (b))
andB(a, P(c)) is satisfiable on its own, but their conjunction is not. The theory

{B(a, P(b)),3zB(a, P(x))}
is satisfiable, but the theory
{B(a, P(b)),3zB(a, P(x)), B(a, P(c))},

which is the result of Skolemizing the original theory with the Skolem constaist
unsatisfiable.

We can allow belief machines to have constants that receive special treatment, but
such constants are not appropriate for use as Skolem constants. As long as there is also
an infinite supply of "ordinary” constantse. ones about which the belief machine
has noa priori disposition, belief Skolemization is still possible. The following con-

38

straint formalizes this requirement; we will then prove that for machines that satisfy
constraints C1-C4 and the new constraint, the belief Skolemization rule is sound.

C5 (monotonicity under substitution) There must be infinitely many individual con-
stantsk such that for any ground termand sentenceg,, . . ., ¢,,

1. if
ASKTELL(Sy, ¢1,.-.,¢n),¥) = yes
and i, /., - - -, ¥ns, IS Monotonically acceptable ify, then

/ASK(TELL(;SO7 gplr/n? R 90n7/5)7 wT/H) = Yyes

ASK(TELL(SO> D1y 9071)7 901) = no

for somel < i < n, then

ASKTELL(S0, 917 s -+ Prr) s i) = 110

for somel < j < n.

The intuition behind this constraint is that if one set of sentences contains no less
information than another, then the belief machine should draw no fewer conclusions
from the first set than from the second. An assertion about a term that has already been
used in other assertions, or about a functional term containing function and/or individ-
ual constants that have been used in other assertions, conveys more information than
the same assertion about a previously unseen constant (such as a Skolem constant). For
example, if we knowP(c¢) but know nothing about, then the assertiof(c) conveys
more information thard)(d), because it makes a connection to other knowledge. The
first half of the constraint says that if the belief machine draws the conclusaditer
beingTELLed something about a Skolem constastihen it must draw the correspond-
ing conclusiory)., if it is TELLed the same thing about any termunlessy.,. is
inconsistent with its previous beliefs. The second half of the constraint says that if a
sequence of assertions about a Skolem constant is not acceptable, then the sequence
must still not be acceptable if the Skolem constant is replaced by any other term.

The constraint of monotonicity under substitution does allow for the possibility that
certain constants have special computational significance to a belief machine. For ex-
ample, a machine might have hard-coded beliefs about numbers, expressed using the
constantd), 1,2, For such a machine, the assertiseight-ofa) = 15 conveys in-
formation that is not contained imeight-ofa) = ¢, for example, assuming the machine
has not seen the constanbefore. The constarith might not satisfy the constraint of
monotonicity under substitution for this machine. If not, then it would of course be in-
appropriate to usés as a Skolem constant, even if the machine had not previously been

39

TELLed anything involvingdl5 (i.e. if all of its beliefs involving15 were intrinsic to its
mechanism). This is permitted by the constraint, as long as infinitely many non-special
constants are available for Skolemization.

We now prove the soundness of proofs that use any of the above inference rules,
including 3-elimination and belief Skolemization.

Theorem 10 (Soundness of Proofsiiven a belief machine: satisfying constraints
C1-G@5, anm-model)M, set of formulag’, and formulay, if M =T andI +- ¢ using
the inference rules listed above, théh = .

Proof: The proof is by induction on the length of the derivation-). For current
purposes, we define the length of a proof to include the lengths of any subproofs used
in reductioand3-elimination steps. The basis of the induction is proofs of length zero:

if ¢ € T, then trivially M = . Assume that every proof of length » is sound. A

proof of ¢y from I" of lengthn + 1 is composed of a proof of length n, followed by a

final proof step whose premises ardior were conclusions of earlier steps, and whose
conclusion isy. If that final step is an application of anything oth&elimination or

belief Skolemization, then the entire proof is sound, because we have already shown
that those other rules are sound. We now consider the two remaining rules in turn.

If the final step is an application akelimination, letA and—VYvy be its premises,
and letA, —¢[u/v] F 1 be the required subproof. By the induction hypotheais|—=
A U {—Vrp}, since the premises of this proof step were all proved in steps from
the original premise$. By the semantics of andV (i.e. the semantics ofl), there
is a modelM’, which differs from M by at most its interpretation af, for which
M’ |~ ¢, so thatM’ = —p. Construct another modél/” identical toM/ except that
|uM” = |v|M". ThenM” = —p,./,. Sincep doesn’t occur free i, it is also the case
that M” = A. Since all the premises of the subproof are trud/f, and the subproof
is sound by the induction hypothesis, it follows thdt’ = . SinceM” and M differ
only in their interpretation of:, which does not occur free in, it also follows that
M .

If the final step is an application of belief Skolemization, Aetand B(«,) be its
premises, and leh, B(«a, ¢,./,), < = v - v be the required subproof of length n.
M = AU{B(a,)} by the induction hypothesis, because these premises were derived
at earlier steps in the proof. Sindé = B(«, ¢), there is some variable substitution
o that is extension-preserving undéf for which M = B(a,¢”). Let7 beo(v).
From the subproof\, B(a, ¢,./,), & = v F 1, we can construct another proof of the
same length by replacing each occurrence w@fith 7. We must show that the result-
ing sequence is itself a valid proof, by showing that each step is licensed by one of
the inference rules. This can be done case-by-case for each of the inference rules that
might be used in the proof. Itis clear for all of the rules other than those of positive and
negative simulative inference: none of the other rules is ever sensitive to the form of a

40

ground term. In other words, given a valid application of one of these rules, if one term
is uniformly replaced with another in the premises and the conclusion, then the resultis
still a valid application of the rule. If one of these rules licenses the conclusioom

the premisesp, . . ., ¢,, then it also licenses the conclusign,,. from the premises
©1r/ms - - Prrsee THiS IS NOt always the case for the rules of positive and negative sim-
ulative inference. These two rules depend on the behavior of the belief machine, which
may be sensitive to the form of a term (for example, some belief machines may have
hard-coded beliefs about the special condiahat they do not have about other ground
terms). However, the first part of the constraint of monotonicity under substitutign (C5)
restricts sensitivity to the form of terms in such a way that if simulative inference li-
censes the conclusioBi(«, 1) from the premise$3(«, ¢1),. .., B(a, ¢,), and those
premises are simultaneously satisfiable, then simulative inference also licenses the con-
clusion B(a, 1, /.) from the premise®3(«, ¢1./,), - - -, B(@, ¢n,). The second part

of the constraint ensures that if the rule of negative simulative inference licenses the
conclusionl from the premise®3(«, ¢1), ..., B(a, ¢,), then it also licenses the con-
clusion L from B(«, 1,,) - - B(a, ¥nr /)

Sincex was chosen so that it doesn't occurdn o, ¢, or ¢, the premises\,
are the same a4, and the conclusion ., is the same ag. Sincer is o(v), ando
is extension-preserving undéf, M = 7 = v; and since(y,,,)? is the same ag”’,
M = B(a, (¢r)7), SOM |= B(a, o7).

We have constructed a prodf, B(«, ¢-/,), 7 = v = ¢ of length< n, and we have
shown the premises of that proof are truélin By the induction hypothesis, the proof
is sound, so its conclusiaf must be true inV/ as well.O

3.4 Completeness

Depending on the choice of the belief machingthe inference rules given here may or
may not be complete, and in fact there are some belief machines for which no complete
proof system can exist. However, for a restricted subset of the language, the set of
inference rules introduced above is refutation complete for every belief machine.

Konolige [1986] presents a logic of belief that is similar to ours, but for which a gen-
eral completeness proof does exist. Sedftion b.5.3 points out an unrealistic assumption
that weakens the notion of entailment in Konolige’s model, making the completeness
proof possible.

3.4.1 General Incompleteness

The proofs in this section are due to Len Schubert.

41

Consider a very simple belief machine which performs no inference at all. It keeps
a list of the sentences it has beBLLed, and sayges to exactly those sentences and
no to all others. This machine meets all the criteria for the soundness of our inference
rules. Using such a machine, the sentencg(a, P(x)) has only finite models: for this
sentence to be true in an infinite modBl,a, P(7)) would have to be true for infinitely
many termsr, which is impossible since the belief machine can have Gdgr ed
only finitely many sentences.

Let A be a theory that has only infinite models. For instantecould be this
axiomatization of the “greater-than” relation:

Vady(y > x)
VaVyVz(z > y) A (y > 2) D (2 > 2)
VaVy(x > y) D —(y > x)

Let A’ be the theory
AU{VxzB(a, P(x))}.

SinceA has only infinite models, andzB(a, P(z)) has only finite models)’ is un-
satisfiable. However, intuition about the inference rules we have introduced says that
A’ is consistent (has no disproof). If that is so, then the logic is incomplete. A more
formal proof will use the following lemma:

Lemma 11 Itis undecidable in general whether a given finite theory of first-order logic
has a finite model.

Proof: If there were a decision procedure for this problem, it could be used to construct

a decision procedure for the halting problem. To decide if a given Turing machine halts
on a given input, encode the (finite) initial state of the machine and its tape, and a
description of how the finite state machine operates, as a finite theory of FOL. This can
be done in such a way that any model of the theory will include one individual for each

of the finitely many states of the machine, one for each of the finitely many symbols in
the tape alphabet, one for each of the spaces on the tape used in the computation, and
one for each unit of time at which the machine changes state, moves its tape head, or
writes a symbol on the tape. If the machine halts at some time, the theory will have a
finite model; if it runs forever, the theory will have only infinite modéls.

Theorem 12 For a belief machine that answers affirmatively to those sentences it has
explicitly been TELLed, and no others, the logic is incomplete.

Proof: If there were a complete proof system for our logic, then it could be used to
decide whether an arbitrary theafy has a finite model, contrary to Lemrnal 11.Af
had no finite model, then

A = AU {VazB(a, P(z))}

42

would be unsatisfiable, and given a complete proof system we could eventually prove
this. If A did have a finite model, then one could eventually be found simply by picking
an arbitrary domain of cardinality for eachn = 1,2, ..., each time enumerating and
testing all possible models (for the subset.dbuilt only from vocabulary occurring in

A’) with that domainO

This proof also shows that given certain belief machines, our logic lacks the prop-
erty of compactness: there can be an infinite unsatisfiable theory that has no unsatisfi-
able finite subset.

3.4.2 Restricted Completeness

We have shown that for some belief machines, no set of inference rules is complete.
However, we will now show that the set of rules introduced above is complete for
a restricted subset of the language, given any belief machine for which the rules are
sound. Loosely stated, the restriction is that universal quantification into a positively
embedded belief context is not allowed.

As mentioned in Sectign 3.3.3, to make the definition of a positive embedding pre-
cise, we treaHlvy as an abbreviation forVyv—), andy O y as an abbreviation for
-V x. Another complication is that universal quantification can be “disguised” as ex-
istential quantification by nesting an existential formula inside the scope of a universal
quantifier:vz3y[z = y A B(a, P(y))] is logically equivalent t&/zB(a, P(z)). For the
completeness theorem, we defibgto be a language constructed like but with the
restriction that when all existential quantifiers are rewritten as universal quantifiers with
negation, no free variable of the belief argument of a positively embedded belief atom
is bound by a positively embedded (universal) quantifier, nor by a negatively embedded
(universal) quantifier that is inside the scope of a positively embedded one.

Theorem 13 (Restricted Refutation Completeness)f formula ¢ € L; is unsatisfi-
able, thenp - L.

Proof: The proof is an adaptation of the completeness proof for standard FOPC found

in [Hodges, 1983]. There are two main steps: first, it is shown that any consistent
formulay € L; can be extended to a Hintikka s&£*= in which only finitely many
formulas are asserted to be beliefs of each agent; and second, that every such set has a
model. Any model forAS*= is a model fory (sincep € AS*=), and therefore every
consistent formula has a model. This is the contrapositive of the refutation complete-
ness theorem, so the theorem itself follows.

To begin, choose an ordering), 11, 15, . .. of the formulas ofL; such that every
formula occurs infinitely often in the list; and choose some ordeting,, », . .. of all
the terms inl; so that every term in the language has a finite index.

43

To extend an arbitrary formula € L, to a Hintikka set of formulas i, we define
theoriesA, Ay, ... by induction.A is the sef{¢}. Fori > 0, every formula in; is
in A;;1; in addition, if the formulay); (from the ordering chosen above) is an element
of A;, then certain new formulas are elementg\ef,, depending on the form af;:

1. if ¢; is of the form——y, theny € A, ;.

2. if ¢; is of the form—(y A w), then—x V —w € A;4;.
3. if v, is of the form—(y V w), then—y A —w € A; ;.
4. if v; is of the formy A w, then bothy,w € A;;.
5

. if9; is of the formy V w, then eithery orw isin A;,;. The choice is made such
thatA,; . is consistent.

6. if ¢, is of the form—Vvy, and there is no variable for which -y, is already
in A;, then—y,,, isin A, for some new variablg that doesn’t occur in\;.

7. if1; is of the formvvy, theny., ,, isin A;, for the first termr; from the ordering
chosen above for whick, , isn't already inA; and for which the substitution
doesn’t cause any free variablegfto become bound.

We need to prove that at each stepAif is consistent, then there existsg,,, as
described in the appropriate one of the above cases, which is also consistent. It is im-
mediately clear that no inconsistency will be introduced by dased 1, 2| B, or 4, because
the new formulas they introduce correspond to inferences licensed by the rule of dou-
ble negation, DeMorgan’s rules forandv, andA-elimination, respectively. Since the

new formulas were derivable from the formulasAg, and A, is consistent, the new
formulas must be consistent with;. The new formula-y,,, introduced in cas@G is

not licensed as a sound inference, bukjfu {—y, .} - L, thenA; - L by the rule of
J-elimination.

Casd b is not as simple, because it involves making a choice. Bjtbetw, but
not necessarily both, is added £f9,,. But one of the two choices must result in a
consistent\,; ;. If not, i.e. if there were proofs\;, x - L andA;,w F L, then there
would also beaeductioproofsA; - —x andA,; - —w. From there, one could construct
a proofA; = —(x V w) usingA-introduction and DeMorgan’s rule. Singev w € A,
that would mean thah; was inconsistent, contrary to assumption.

Casg 7 corresponds to the the rule/ehstantiation. For that rule to be applicable,
the variabler must not occur in a positively embedded belief context. This restriction
is met if the formulay is in L; and indeed it must be, because we assumed:tisin
L,, and none of the casgp/1-7 introduces any new quantifiers, nor changes the polarity
of the embedding of any quantifier.

44

We have shown that each; exists and is consistent. L&t be the union of all
the A;. For A, to be inconsistent would mean that there was a prodf &fom some
subset of it. Since proofs are finite by definition, that subset would have to be finite.
Any finite subset ofA . is contained in\; for some finitei, so if A, were inconsistent
then some\; would have to be inconsistent. Therefafe, exists and is consistent.

Next we will show that, while there may be infinitely many belief atoms that are el-
ements ofA ., only finitely many formulas occur as the belief arguments of such belief
atoms. Caseg| [[}-7 break down complex formulas into their component subformulas.
When a new formula is introduced into some > where: > 1, it is always because
of the presence of some other formuladn ;, and each atom occurrence in the new
formula corresponds to one atom occurrence in the old one. Therefore, the ancestry of
each atom occurrence ik, can be traced back to one atom occurrence. iie begin
by showing that if two belief atoms are themselves elements.o{as opposed to sub-
formulas of elements of\,) and have the same-ancestor, then they have identical
belief arguments. In cases[1-6, each atom occurrence in the chpisagiven at most
one immediate descendant. In other words, the ancestry tree only branches[ih case 7.
Since every), is a subset of.,, if ; is a universally quantified formula, then there
is no quantification (neither existential nor universal) into positively embedded belief
contexts imy;. Therefore, all descendants of positively embedded belief atom occur-
rences in); have identical belief arguments (since the only cases in which a child is not
identical to its parent are those involving quantification). The ancestry tree rooted at a
given positively embedded belief atom occurrence is linear up to the first applica-
tion of casg |7, and after that point all descendants have the same belief argument, so it
follows that all unembedded belief atoms that are elements ofand descendants of
the samep-ancestor have the same belief argument.

Sincey is a finite formula, it contains only finitely many belief atom occurrences,
and, in particular, only finitely many positively embedded ones. We have shown that
all descendants of each such occurrence that are (unembedded) elem&nthade
identical belief arguments. Therefore, only finitely many formulas occur as belief ar-
guments in belief atoms that are elementa\gf.

We now construct another theor>*, which contains all of the formulas A,
plus Skolemized versions of any top-level positive belief literals whose belief argu-
ments have free variables. The terms that occukincan be partitioned into equiv-
alence classes such that termsand,, are in the same class iff there is a sequence
T1,...,T, SUCh that the equations = 75,5 = 73,...,7,_1 = T, are all elements of
A (treating the order of an equation as unimportant, so that an equatien; is just
as good as, = ;). LetIl, II,, ... be all the equivalence classes of terms that occur in
Ao, and letr; 1, 7, 0, ... be all the terms in equivalence cldsds For each equivalence
classll;, there is a set of formulas

{|B(:5,1) € Ay for some }.

45

We have shown that there are only finitely many of these formulas; call them
Vi1, Yin,. For each formulay;;, let ¢ ; be a Skolemized version, in which
all of the free variables; ;,...,v; ;.. are replaced by previously unused Skolem
constantss; j1, - . ., ki jm, respectively. To formAS*, we add toA,, the formulas
B(Ti1,%i4), -, B(mi1,v;,,.) (73,1 is an arbitrarily chosen member of the equivalence
classll;) and the equations ; , = &, ;. Since the number af; ; for each equivalence
classll; was finite, and we add only ong ; for eachy); ;, the number of formulas that

occur as belief arguments of each equivalence class is still finite.

We now show than\5* must be consistent: for each formubdr, 1, ¢/ ;) in ASF —

A, the un-Skolemized versioB(7; 1,1, ;) can be derived from\,, by the rule of
substitution of equal terms. This is becausér; i, ;) is in A, for somek, and

7,1 andr; ;, are in the same equivalence class’j is 1, ; with free variables replaced

by Skolem constants, and an equation between each free variable and its respective
Skolem constant is also iAS*. Therefore, if there were a proof df from premises

in AS*, then there would also be a proof offrom A, alone, using the rule of belief
Skolemization. We have already shown that is consistent, sc\>* must be as well.

Finally, we construct another theory*=, which is the closure oA2* under the
application of the rule of substitution of equals; that isAif* contains an equation
«a = (8 and a formulap, then any formulay’ that can be constructed by replacing one
or more instances af that are outside of belief contexts withis in AS*=, provided
that none of the occurrences®@being replaced contain variables bounghirand such
that the substitution doesn’t cause any free variable tof become bound ip’. While
this may introduce new equations (whenever the formukaitself an equation), it does
not merge any two equivalence classes fiag). Each equivalence class = is an
equivalence class frofy ., with the addition of some Skolem constants. Also, since the
substitution of one term for another does not apply within belief contexts, there are still
only finitely many formulas that occur as belief arguments of each equivalence class.
AS*k= must be consistent, becaud€” was consistent, and*= is simply the closure
of AS* under one of the inference rules.

Having shown how to extend a given formuytato a Hintikka setA3*= in which
only finitely many belief sentences are associated with each equivalence class of agent
terms, we will now show that any such set has a model. Given an arbitrary belief ma-
chinem = (I', Sy, TELL, ASK), we construct am-modelM = (D, I,) that satisfies
all formulas in AZ%=, including ¢ itself. The domainD is the set{Il;,I,,...} of
equivalence classes of terms that occuniff=. The interpretation functiod maps
each individual constant and free variable to the equivalence class of which it is a
member; it maps each-ary predicate constant to the set of all tuples of equiva-
lence classedll;, I1,, ..., I1,) such that a formula(ay, as, . .., a,) € ASk= where
eacha; € II;; and it maps each-ary function constartt to a function from a sequence
of n equivalence classes to another equivalence class, such(théil;,, ..., IL;,) is
the equivalence class of the tefifx;,, . . . , x;,), where each;, is any member ofl,; .

46

For each equivalence clags € D, we have shown that only finitely many sen-
tences);,, ..., v;,, occur as the second argument of a belief atom that is an element
of A3%= whose first argument is ifl;. We define the functiory, which maps each
agent to its belief state, so that

(L) = TELL(So, ¥ 1, Y50, - -, Vi,)-

Now that we have defined the mod#|, it remains to be shown that all of the formu-
las inAS*=, including, are true inM. This is done by induction on the complexity of
formulas. For present purposes, we define the complexity of a formula to be the number
of occurrences of, A, andV in the formula, not counting those inside belief atoms.
We continue to considet and> as defined in terms of the other operators, and we do
not count occurrences oef in the complexity because we handle negation at each step
of the induction.

As the base case, we need to show that for any atomic forgjufay preceded by
an even number of negations, pitself, is an element oAS*=, thenM [y, and if
x preceded by an odd number of negations is an elementtf thenM [~ y. Case
@ ensures that if with an even number of negations isA&t*= theny itself is, and if
x With an odd number of negations is i&?*= then—y is. Therefore, it suffices (for
the base case) to show that the atomic elementg’6f are true, and that atoms whose
negations are elements Af*= are not true. This is clearly the case for ordinary (non-
belief) atoms, by the way we constructed the interpretati{the argument is the same
as in the proof for FOL), so we will prove it only for belief atoms.

For the case of top-level positive belief literals, note that all of the sentences
i1 Vi, that weTELLed to theith agent’s belief machine must be believed in

the resulting state. If they were nag. if

ASK(TELL(SOa ¢£,1’ s 7w;,ni)7 w;,j> = no

for somel < ;5 < n; then Aiﬂ“: would have been inconsistent: the rule of
negative simulative inference would license the conclusiorfrom the premises
B(a,v;,), ..., B(a,;,,) for anya in equivalence clasH;. Sincey; ;... ;. are
all believed in the belief state thaf assigns to ageit;, M satisfies all of the positive,
top-level belief literals inA5*= whose belief arguments are closed, namily, v; ;)
for all 7, 7, anda such thatx is in the equivalence clags;. Furthermore, for any top-
level positive belief literalB(«, w) € AS%= whose belief argument has free variables
vi,..., s, the step that constructed3*= from A, resulted in the introduction of a
Skolemized formB(o, wy, u,.... s /v,) @nd the equalities; = vy,...,k, = v, iNto
ASk= as well. A variable substitution that maps each; to the corresponding; is
extension-preserving undéf, andM = B(a,w’), SOM | B(a,w).

The remaining part of the base case is the top-level negative belief literals. Consider
a literal=B(a,w) € ASk=_If M [~ -B(a,w), thenM = B(a,w), so there is some

47

variable substitutiom that is extension-preserving undef for which M = B(a, w?).
Wherell; is the equivalence class of temm this means that

ASK(TELL(Sy, w;l, . ,zﬁ;ni), w?) = yes.

Then the rule of simulative inference licenses the conclusiom w”) from A=, Let

v, ...,y be all of the free variables of. Foro to be extension-preserving under the
constructed model, the equation&,) = v1,...,0(v,,) = v, Must be elements of
ASk=_ But thenm applications of the rule of substitution in negative belief contexts
to the literal—B(«,w) would license the conclusionB(a,w?), so AS¥= would be
inconsistent, which it is not.

The induction step is to show that if every elemenf\gf= of complexity at most
is true inM, then the same holds for those elementagf= of complexityi + 1. Once
again, casf|1 of the construction makes it only necessary to prove this for formulas with
zero or one top-level negation. For a non-negated elemehftf whose complexity
is 7 + 1 and whose outermost operatoriscase § ensures that each of the conjuncts
is also an element af5*=. Since each of them is of complexity 4, the induction
hypothesis says that each of them is truelinand therefore the conjunction is also
true. Similarly, if the outermost operator s casg b ensures that at least one of the
disjuncts is inAS*=, and therefore true in/, so that the whole disjunction is true. If
the formula is of the fornvvw, then cas@? ensures that, < AS*= for every term
7. All of thesew,, are of complexityi, so by the induction hypothesis they are all true
in M. The terms of the language cover all of the individuals\of so the universal
formulaVvw is also true inM.

We are now left with the negated formulas of complexity 1. Case$ |2 and 3 dis-
tribute negation over conjunction and disjunction, so the proofs for negated conjunc-
tions and disjunctions are reduced to those for non-negated disjunctions and conjunc-
tions, respectively. For each negated, universally quantified formlas € AS*=,
cas{fs ensures that there is a terfor which-w., € ASk=_ Since this latter formula
is of complexityi, the induction hypothesis says that it is truelifj and consequently
so is the negated universal formula.

3.5 Some Common Axioms

We now examine some of the properties that the belief relation has in other logics of
belief, and discuss the kind of computation the belief machine must perform in order
for these properties to hold in our model.

48

The classical modal logics (see [Hughes and Cresswell,| 1968] for example) are
characterized by various combinations of a rule of inference and five axioms:

B,) O Bla, B(a, ¢))
_'B(aﬂO)) B(aa _'B(a790>)

N. If F ¢, concludeB(«, ¢)

K. B(a,p D) D (Bla,g) D Bla, 1)
T. Bla,p) D¢

D. —B(a,¢ A —p)

4.

5.

The classical modal logics are all built around the idealization that agents are log-
ically omniscient. This condition is obtained by the inclusiorNoAndK in all of the
traditional axiomatizations. Our computational model of belief was designed explicitly
to avoid logical omniscience, and therefore there is no belief machine for which any of
the traditional axiomatic bases is valid. However, some of the axioms are interesting in
their own right, and are by themselves valid for certain belief machines.

N: RuleN is the rule of epistemic necessitation. It says that agents believe all theo-
rems (sentences derivable from just the logical axioms). Since our logic is an extension
of first-order logic, it is undecidable in general whether a given sentence is a theo-
rem. Therefore, while there are machines for which this rule is sound (for example, the
machine that always answeyss to everything), none of them implement reasonable
inference techniques.

K: Axiom K, also known as the distribution axiom, is valid for belief machines for
which

if ASK(S,¢) = yes andASK(S, ¢ D ¢) = yes thenASK(S, 1) = yes.

Although Levesque’s influential approach to the elimination of logical omniscience
involved eliminating this axiom, it alone does not ensure logical omniscience. Belief
machines for which the axiom is valid are easily constructed.

T. Axiom T says that everything an agent believes (or, more commonly, knows) is
true. This axiom is usually taken to be the one that differentiates between knowledge
and belief, the difference being that one can have false beliefs, but not false knowledge.
Our model is a model of belief, not knowledge; the only belief machines for which
axiomT is valid are those that answees only to tautologies, no matter what state
they are in.

Axiom T can be thought of as describing the way an agent uses its belief machine,
as well as describing the belief machine itself. If an agent d&lLs its belief machine
sentences that are true, and the machine only makes sound inferences, thef axiom
holds.

49

D: Axiom D is sometimes proposed as an alternative for describing belief instead

of knowledge. It says that no agent can believe a contradiction. In the classical logics,
belief sets are closed under logical consequence, so any inconsistent belief set must
contain an explicit contradiction. However, axiddrby itself only prohibits belief sets

that contain an explicit contradiction, so there do exist belief machines for izhfbht

not bothN andK) is valid. These are machines for which

ASK(S, p A =) = no (3.14)

for every belief state5 and sentence. It is a simple matter for a machine to satisfy

this constraint, by performing a syntactic check on all queries to see if they are of the
form ¢ A —p for any ¢, and if so answeringo. However, it is less obvious that there

are machines that satisfy this constraint and are also reasonably competent at handling
conjunctions. For example, for a machine to satisfy both {3.14) and the constraint

ASK(S, p A1) = yes iff ASK(S,) = ASK(S,) = yes

requires more involved computation.

There are in fact machines that satiqfy (3.14) and also reason competently about
the Boolean connectives: consider a machine wiAd3k function is implemented by
another functiorDECIDE, which is similar toASK but has three possible values in-
stead of two. Let those values hel/2, and0, meaning true, unknown, and false,
respectivelyDECIDE could be a recursive function defined as follows:

DECIDE(S, —¢) = 1 — DECIDE(S, ¢)

DECIDE(S, ¢ A) = min(DECIDE(S, ¢), DECIDE(S, 1))
DECIDE(S, ¢ V 1)) = max(DECIDE(S,), DECIDE(S, 1))
DECIDE(S, ¢ O) = max(1 — DECIDE(S, ¢), DECIDE(S, ¥)))

If ASKis defined as

yes if DECIDE(S, ¢) =1
no otherwise

ASK(S.) = {

then [3.14) is clearly satisfied, and the machine is a complete propositional reasoner.

4 and 5 (Introspection): Axiom 4 is the positive introspection axiom. It says that if
an agent believes a sentengethen it believes that it believes Using the indexical
constantne introduced in Section 2.4, one can express the positive introspection axiom
as

B(a,¢) O B(a, B(me, ¢)).

The axiom is valid for all machines for which

if ASK(S, ¢) = yes thenASK(S, B(me, ¢)) = yes.

50

There are non-trivial machines that satisfy the positive introspection constraint as well
as constraints C1{C5. For a simple example, consider a machine that answers a query
affirmatively if and only if it can prove the query from the premises on a list of previ-
ously TELLed sentences by applying the rule of conjunction splitting and DeMorgan’s
rules. This machine satisfies CI4C5, and still does so if it is modified so that it makes
self-queries to prove sentences of the fdBfme, ¢).

The converse of the positive introspection axiom,
B(a, B(me, ¢)) D B(a, ¢),

is also known as the positive faithfulness axiom. It is valid under the converse con-
straint,
if ASK(S, B(me, p)) = yes thenASK(S, ¢) = yes.

The example machine could also be made to satisfy this constraint: Vibielred a
new sentencé(me,), it could TELL itself p as well.

The negative introspection axiom can be written as
-B(a,¢) D B(a,B(me, ¢)).
This axiom is made valid by the semantic constraint
if ASK(S, ¢) = no thenASK(S, —~B(me, ¢)) = yes.

It is simple to build a machine that satisfies this constraint, using a similar construction
to the one used for positive introspection. When queried about a sentéteee, ¢),

the machine could query itself about the sentencand answeyes if the answer to the
sub-query wasio. However, unlike for the positive introspection constraint, only ma-
chines whose introspection is trivial can satisfy both this constraint and the monotonic-
ity constraint. For a non-trivial machine to satisfy the monotonicity constraint, every
sentence believed in the initial state must be believed in all states, because otherwise
no sequence of ELLs would be monotonically acceptable. Therefore, if a machine
believes—B(me, ¢) in the initial state, and it satisfies the monotonicity constraint, then

it must believe-B(me, ¢) in all states, including ones in which it believes

Since a machine with non-trivial negative introspection must violate the monotonic-
ity constraint, our original positive simulative inference rule is not sound for such a ma-
chine. However, monotonicity is not required for the soundness of negative simulative
inference, and as we will show in Section|3.6, when combined with a rule of negative
introspection the negative simulative inference rule can in a sense take over the role of
the positive rule.

Negative faithfulness, the converse of negative introspection, is characterized by the
axiom
B(a,—B(me,p)) D ~B(a, p),

51

which is valid for machines satisfying the constraint
if ASK(S, —B(me, y)) = yes thenASK(S, ¢) = no.

The example machine would satisfy this constraint if it sSimply never changed state in
response to AELL of the form—B(me, ¢).

Quantifier Raising and Lowering: The Barcan formula,
(VvB(a, ¢)) D B(a, Vry)

is valid only for trivial belief machines that answgfs to every query of the formvp.

The constraint
if ASK(S, ¢-/,) = yes for every termr,

thenASK(S, V) = yes for any variables

describes belief machines that perform universal generalization, but does not ensure the
validity of the Barcan formula because of the possibility a3 («, ¢) might be true

“by accident.” if o believesy., individually for each termr in some set, and that

set happens to cover the entire domain, theB(«, ¢) is true, even if there are many
other terms- for which o doesnotbelievey, .

However, it is worth noting that certain assumptions al#dsiK andTELL can ren-
der the Barcan formula true in all sufficiently large models (and thus in all infinite
models). In particular, suppose that we make the following assumptions.

1. ASKanswers the query, ,,, wheneverr is a ground term that has not appeared
in its TELL-history, by (a) checking if it has seen at leastonstants in it ELL-
history (say for some fixed like n = 10) that it believes to be distinct (by getting
yes when it ASKs itself (7 = 7’)), and if not, answeringio; (b) otherwise,
ASKing itself ¢, for every ground term”’ it has seen in ity ELL-history, and
if all answers arges, answeringyes to ¢, elseno,

2. ASK answersvvy by ASKing itself ./, for some constant that has not ap-
peared in itsSTELL-history, and answeringes if the answer tap,, is yes, and
answeringno otherwise

In effect, such a machine would make inductive generalizations based on some number
of instances that it believes to be distinct. Of course, it may be mistaken about the dis-
tinctness beliefs. But it's reasonable to suppose that agents are connected to the world,
e.g. through perception, in such a way that they are not too likely to be wrong about
distinctness. The inductive generalization may still be incorrect even if the distinctness
beliefs are correct, but that is an unavoidable Ejskl.ow observe that if'vB(a, ¢)

2This is not to say that (1a) couldn’t be improved to reflect a more subtle theory of induction.

52

holds and the domain of individuals is larger than the number of ground terms that have
appeared in the agenflELL-inputs, thenASK(S, ¢, /) must beyes for some ground
term~ that has not appeared among eLL-inputs (where S is the state afs belief
machine), and hence by (1BSK(S, ¢, ,,) = yes for all ground terms”’, and so by

(2) ASK(S, Vrp) = yes as well, verifying the Barcan formula.

The converse Barcan formula,
B(a,Vvy) D YvB(a, @)

is a theorem of the extension of modal systéno predicate logic. It is valid only for
trivial belief machines that answeb to every sentence of the formvp. A sentence of
the formVv B(«, ¢), wherev occurs inyp, is satisfied in a model if for each individual
in the domain, there is some termdenoting that individual for whiclx believes the
sentencep, . If B(«, Vvy) is satisfied by some modéf, then it is also satisfied by a
model identical tal/ except that its domain contains one extra individual which is not
denoted by any term. Such a model does not satisfy(«, ¢).

The constraint

if ASK(S, V) = yes for some variables
thenASK(S, ¢-,,) = yes for any termr,

is satisfied by machines that dfeelimination, and imposes a condition similar to the
converse Barcan formula, but with an exception allowed for individuals that are not
denoted by any term.

Instances of the schema
vB(a,) D B(a,dvy)

are also theorems of the extensionToto predicate logic. The schema is valid for
machines that satisfy the constraint

if there is a termr for which ASK(S, ¢-,,) = yes,
thenASK(S, vp) = yes

i.e. machines that perform-introduction.

We have considered a number of classical axioms about belief, and seen that only
some of them can be realized by belief machines. Those that can’t be realized, or can
only be realized trivially, describe idealizations that ascribe computationally unrealistic
properties to believers. The ones that can be realized non-trivially describe machines
with interesting and perhaps desirable inferential capabilities.

53

3.6 The Simulative Inference Rule for Introspective
Machines

We showed in Section 3.5 that the original simulative inference rule is not sound for
belief machines with negative introspection, because they violate the monotonicity con-
straint. However, the negative simulative inference rule does not require that the mono-
tonicity constraint hold, and as we will now show, the combination of the negative sim-
ulative_inference rulle and arule o.f negative introspect}ﬁ@%, or equivalen.tly

the axiom of negative introspection plosodus ponenss complete in the following
sense: for any finite sd@t of belief literals whose belief arguments are closed formulas,

if @ is unsatisfiable, then there is a refutation préaf L.

Theorem 14 (Completeness for Belief Literals)For any belief machine satisfying
the closure, acceptable basis, and commutativity constraints, and the negative intro-
spection and negative faithfulness constraints, and for any finite set of belief literals

P = {B(Oé, 301)7 ey B(aﬂpn)v ﬁB(O&,Qﬂlj)7 ceey ﬁB(OMDm)},

if ® is unsatisfiable the® - L using the rules of negative simulative inference and
negative introspection.

Proof: Assume thatb is unsatisfiable. That means there is no belief stagich
that ASK(S, p;) = yes for all 1 < i < n and such thaASK(S, ;) = no for all

1 <4 < m. Since the negative faithfulness constraint holds, there must be ndSstate
such thatASK(S, ;) = yes forall 1 < i < n andASK(S, —B(me,;)) = yes for all

1 <i < m. Therefore, the sequengs, ..., ¢,, 7 B(me, 1), ..., B(me,v,,) is not
acceptable irb.

A proof ® - | can be constructed as follows: from each litet&l(«, v;), the rule
of negative introspection licenses the conclusitfa, =B(me, ;)). Then, from

B, ¢1), .-, Ble, n), Bla, 2B(me, ¢)), ..., Bla, 2 B(me, ¥m)),

the rule of negative simulative inference licenses the conclusiaince the sequence
D1y ey Pn, 7 B(me,n), ..., B(me,1,,) is not acceptable if,. O

The completeness result shown in Secfion 3.4.2 (for the set of rules including the
original simulative inference rule) said that if a theory with no universal quantifying-
in was unsatisfiable, then it had a refutation proof. We have not attempted to prove
a similar property for a set of rules in which the original simulative rule is replaced
by a rule of negative introspection. However, Theofein 14 has the corollary that if the
new rules are augmented with a set of rules that is complete for ordinary first order

54

logic, the resulting set is refutation complete for the variant of our logic that prohibits
quantifying-in entirely.

The above completeness result suggests that the combination of negative simulative
inference and negative introspection replaces, in a sense, the original positive simulative
inference rule. We now show that to be true, by showing that the following rule, which
is similar in form to the original positive simulative inference rule, can be derived from
negative simulative inference, negative introspection,raddctio ad absurdum

B(a, 1), ..., B(a,¢n)
B(a, 1)
if ASK(TELL(So, ¢1, ..., vn, 7B(me, 1)), x) = no for some
X € {9017 <oy Pny —|B(me, ¢>}
The premises and conclusion of this rule are the same as those of the original posi-

tive simulative inference rule. Only th&SK/TELL condition under which it applies is
different. Theorerh 15 shows the derivation of the new inference rule.

Theorem 15 For any terma and sentencegy, . .., ¢, and, if
ASKTELL(Sy, ¢1, - - -, @n, 7 B(me,¥)), x) = no
for somey € {¢1, ..., n, "B(me, 1)}, then there is a proof
B(a, 1), ..., Bla,p,) F B(a,v)
using the rules of negative simulative inference, negative introspection, and reductio ad

absurdum.

Proof: The proof can be constructed as follows: begin with the premises

B(a, 1), ..., Blagy,),

and make the assumptionB(«,)) for the purposes of deriving a contradic-
tion. From the assumption, the negative introspection rule licenses the conclusion
B(a, = B(me,)). From this conclusion and the original premises, the rule of negative
simulative inference licenses the conclusibnsince the sequencs, . .., —~B(me, 1)

is not acceptable. Discharging the assumption, we can con@ddey) by reductio

ad absurdumHere is the proof in tabular form:

1. B(a,¢1),...,B(a,p,) premises

2. Assume-B(a, 1)

3. B(a,—B(me,v)) 2, negative introspection

4. L 1,3, negative simulative inference
5. B(a,) reductio ad absurdum

55

3.7 Summary of Mathematical Results

The most important technical results are those related to the soundness of positive and
negative simulative inference. The positive simulative inference rule is sound for any
belief machine that satisfies constraints C1-C4. The negative simulative inference rule
is sound under constraint§|C1,|C2, and G4 (C3, monotonicity, is not required). Not only
are the constraints jointly sufficient for the soundness of the simulative inference rules,
but some of them are also necessary.

With the indexical constantie in the language, negative introspective belief ma-
chines are possible. Non-trivial negative introspection is a violation of the monotonicity
constraint, which means that positive simulative inference is not sound for such ma-
chines; but the negative simulative inference rule doesn't require monotonicity for its
soundness, and can be combined with a rule of negative introspection to yield a new
form of positive simulative inference which is sound. Essentially, negative introspec-
tion allows a simulation to be given explicit information about the absence, as well as
the presence, of beliefs, so simulative inference can be monotonic even when using a
nonmonotonic belief machine.

We listed some other inference rules, gave various soundness proofs for them (some
are only applicable in restricted environments, or in the absence of the indexyal
and proved that the entire set of rules is complete, for the language without the indexical
and without universal quantification into positive belief contexts.

We also considered a number of classical axioms of belief, and discussed the classes
of belief machines for which each is valid. Some are valid for reasonable and interesting
belief machines, while others are idealizations that aren’t satisfied by any machines, or
only by trivial ones.

56

4 Implementation

The development of the mathematical model we have presented was of course moti-
vated by the desire to add simulative inference about belief to a reasoning system in
a principled way. In this chapter, we explore some of the practical considerations in-
volved in doing so, by describing our project to add simulative inferencertods, a
knowledge representation and reasoning system designed to support natural language
processing.

We begin by introducing the HLOG system, as it existed before this project began,
and we use constraints C1-C4 to determine how simulative inference can appropriately
be added to the system. Then we discuss the problem of implementing simulative in-
ferenceefficiently an important issue which is not addressed by the theoretical work.
In the course of the implementation, we discovered thatL &G has some properties
that make simulative inference difficult to implement in an efficient way; these are gen-
eral architectural properties which are not unique foUBG, but are shared by other
Al systems. The problem is also not specific to simulative inference. It will arise for
any reasoning technique that involves keeping track of the inferential path by which a
formula was derived, which (as we will show) includes simulative inference, as well
as other techniques such as truth maintenance for belief revision, probabilistic reason-
ing, and explanation generation. We describe how we worked around the problem in
EPILOG, and discuss how general this solution might be.

4.1 EPILOG

We will first describe the features ofPE.0G which are relevant to this work. A more
thorough description can be found |n [Schubert and Hwang, |2000; Hwang and Schu-
bert, 1993] and ahttp://www.cs.rochester.edu/research/epilog/

The system is also available at that address.

Episodic Logic (EL) is a knowledge representation language intended for use as the
semantic representation in a natural language processing system. It is a very expressive
logic, designed to make the mapping between natural language and the logical form

57

straightforward. It combines features of Montague grammar, situation theory, DRT,
and other formalisms, with the aim of being as expressive as natural language but with
a precise, unambiguous, model-theoretic semantics.

EPILOG is a computer program that performs inference in EL. Rather than being a
general-purpose theorem prover, the system is tuned to perform efficiently certain kinds
of inference, intended to approximate the inferences a human would make. The system
has been demonstrated at story understanding tasks, in which a fragment of a narrative
or newspaper article, translated into EL, is entered, and then the system answers ques-
tions about the contents. Typically, first a bodyvedrld knowledge common-sense
facts about the world, ancheaning postulatesaxioms that describe relationships be-
tween the meanings of various words, is entered. (We will sometimes use the term
“world knowledge” broadly to encompass meaning postulates as well; the distinction is
not relevant for our current purposes. Both are background information that all compe-
tent adult speakers of English can be assumed to know.) Next, the story itself is entered.
As each sentence is entered, the system performs sgaedriven inferenceexplic-
itly drawing conclusions which were implicit in the text, given the world knowledge
and meaning postulates. These are intended to be the conclusions which would occur
spontaneously to a human upon reading the story. After the story has been entered,
the system can answer queries. The inference involved in answering queries is called
goal-driven inferenceAgain, the aim is not for the system to be able to prove arbitrary
theorems of EL, but for it to be able to answer the sorts of questions that a human could
answer after reading the same story.

To this end, the system has a variety of different inference techniques and knowl-
edge representations at its disposal. The primary knowledge representation is EL, the
same language in which the input and queries are expressed. Sentences of EL are
indexed by the predicates and individual constants that occur in them, for efficient re-
trieval of relevant sentences for inference, and the system has natural deduction style
inference rules that operate on sentences of EL. In addition to this general-purpose rea-
soning facility, the system contains a numbespécialists modules that use special-
purpose techniques and knowledge representations to accelerate particular kinds of rea-
soning. For example, there are specialists for handling temporal reasoning, taxonomic
(type subsumption and exclusion) reasoning, reasoning about sets, and reasoning about
equality. All information is initially entered as sentences of EL, and is stored in that
form; but when a sentence is entered, if it involves a kind of information in which one
of the specialists has indicated interest, it is also entered into the specialist, which may
store the information in a different, non-sentential form. For example, the temporal spe-
cialist builds a graph structure, in which nodes represent time points and links represent
before/after relationships.

We will describe a few more details of the system as they become relevant to the
following discussion.

58

4.2 EPILOG as a Belief Machine

The practical importance of the theoretical work we have presented is that it identifies a
class of inference algorithms to which simulative inference can be added in a principled,
demonstrably correct way. We will now useEEOG as a case study in applying the
model in the real world.

The first question is whether the system can be modeled as a belief machine. E
LOG does essentially work according to thELL/ASKmodel, and is guaranteed to halt
on any input, but there is one substantive extension: in addition to yes/no queries, it can
answer “wh-queries,” such as “Who killed JFK?”. This ability does not cause a prob-
lem for the application of simulative inference—if we simply ignore it, never making
wh-queries to a simulation, then the simulation can be viewed as a belief machine.

Doubts about the applicability of the model are also raised by the fact that the syntax
and semantics of Episodic Logic are quite different from the mostly ordinary first-order
logic we used in Chaptefg 1 apfl 3. Our most important result, the soundness proof
for simulative inference, doesn’'t depend on the details of the language of belief—it
simply treats sentences as units, without regard to their internal structure—and so is
also applicable in this richer language. For other results, particularly ones that involve
guantifying-in, it is not so clear. More work would be required to reconcile our logic of
belief completely with EL.

For present purposes, let us concentrate on the soundness of simulative inference.
Having accepted that the part of the system being used for simulation can be modeled
as a belief machine, we can next ask whether it satisfies, or can be made to satisfy,
constraints C1-C4.

Monotonicity: One feature of Episodic Logic not found in ordinary first-order logic

is the probabilistic conditional—in EL, one can express rules such asiélf person,

then with probability> .95, x lives in a building.” In EPILOG's internal representation,
each sentence is labeled with a lower bound on its subjective probability. Input facts
are given a probability of 1, but sentences derived via probabilistic rules can have lower
probabilities. It is possible for the system to assign non-zero probabilities to both a
sentence and its negation. When a queng posed, the system answers “yes” if the
probability ofy is greater than the probability efp, and “no” otherwise. Probabilities

can change in light of new information. If the probability of is initially lower

than that ofp, but is later increased past that@f then effectivelyy is believed and

then retracted; this retraction is not necessarily accompanied by the retraction of any
of the premises on which belief ip was founded. This is clearly a violation of the
monotonicity constraint. Therefore, for simulative inference to be sound, we must
avoid entering sentences with probabilistic conditionals into simulations.

The monotonicity constraint is perhaps the most difficult to accept, because non-
monotonicity is such a prominent feature of human belief. At the same time, of all the

59

constraints, monotonicity is the most obviously necessary for the soundness of simu-
lative inference. The natural conclusion is that in practice, simulative inference must
rarely be sound—we must make defeasible inferences about others’ beliefs, based im-
plicitly on defeasible assumptions about what they believe and don’t believe. While it
is somewhat disappointing (though not surprising) to have to make this concession, it
does not negate the significance of our results. To use a defeasible rule in a principled
way, one must understand for what reasons it might fail. As we are about to see, con-
straints C1-C4 can illuminate several different potential sources of error for simulative
inference in a system. One must consider each of them, and decide whether it is a le-
gitimate source of defeasibility, as with this particular violation, or a true mistake, the
result of applying an inference rule inappropriately.

The propagation of changes in probability i®IEOG'S only way of dealing with
inconsistent input, so without probabilistic reasoning the system is radically monotonic:
not only is every acceptable sequence monotonically acceptable, as required by the
constraint, but in facéverysequence is monotonically acceptable. Opadse believed,
it will always be believed, even ifip comes to be believed as well.

Acceptable basis: This constraint says that for every possible belief set, there must
be an acceptable sequence of inputs that induces that belief set. With probabilistic
reasoning disallowed, the acceptable basis constraint is trivially satisfied, because every
input sequence is acceptable. (It might be the case thatde has unreachable states,

I.e. states which can’t be induced Bypyinput sequence; but if so, there is an equivalent
abstract belief machine that has no such states.)

Closure: The closure constraint requires tAd&LLing the belief machine something

it already believes does not change the belief set. This constraint does not hold if we
use EPILOG's full-strength question answering function as the simulati&®K The
termination of goal-driven inference is guaranteed by imposing a limit on the number
of inference steps. It violates the closure constraint in essentially the same way as
the example machine on page 6, which imposed a time limit on question answering.
However, EPILOG's query function has an optional argument which specifies the effort
level to be used. With an effort level of zero, the system only assents to sentences
which have previously been explicitly stored, as a result of being entered or inferred,
and to sentences the specialists can confirm using constant-time inference methods. At
effort level one, it will break a goal into subgoals and attempt to verify each of them
independently, by the methods used at level zero or by further decomposition, but will
not apply inference rules that combine multiple facts or rules to generate new subgoals.
At levels two and higher, inference chaining is performed, and limited by a threshold,
and therefore the closure constraint is violated. So for simulative inference to be sound,
we must define th&SK function to be EEILOG's query function with the effort level

set to one.

60

As we pointed out in Sectign 2.5.4, the belief machine need not be seen as describ-
ing an agent’s entire reasoning capability. In this case, we needn’t promniDE
from using effort levels two and higher in answering a user’s queries; it is only simula-
tions of other agents’ beliefs that must be restricted to the low-cost query method.

This restriction does not mean that no inference chaining will take place in sim-
ulations. In addition to the inference performed by the specialists, which potentially
uses many input facts simultaneously, there is the input-driven inference mechanism.
Input-driven inference is not restricted by a depth threshold (we will describe shortly
the mechanism by which it is constrained), so forward inference needn’t be disabled to
satisfy the closure constraint. This state of affairs is quite intuitively plausible, and in
keeping with the conception of belief we have described. An agent believes that which
it can verify without reflection, but learning new information may trigger reflection,
and what is inferred as a result of that reflection is then believed.

If the monotonicity constraint had not already forced us to disallow probabilistic
reasoning in simulations, the closure constraint would do so. If probabilistic inference
is allowed, then the system can assign a sentereg@robability less than 1. As long
as— is not assigned a higher probability, the system will answer “yes” to the query
. Butif ¢ is then entered as a new input sentence, its subjective probability will be
raised to 1. The probability increase might propagate through the system, with the
possible result that some previously disbelieved sentence comes to be believed. This
would violate the closure constraint.

Commutativity: In certain well-defined situations,PH.OG is sensitive to the order

in which information is entered. One is that if the system’s world knowledge is aug-
mented after the processing of a story has begun, then some inferences may be missed
that would have been made if all of the world knowledge was available at the beginning
of the story. The other is that if an assertion about an entity’s type is made after other
facts about that entity have been entered, then some inferences may be missed that
would have been made if the type had been known when the entity was first mentioned.
These order dependencies are artifacts of the way the inference mechanisms are imple-
mented, not intended properties—although certain inferences are only made when the
premises are presented in a particular order, we would like to attribute those inferences
to others regardless of what order we believe them to have learned the premises. There-
fore, just as the EILOG manual warns the user about the order dependencies so that he
can take care to enter information in the most effective order, we can simply implement
simulative inference so that it enters information into simulations in the most effective
order.

In the actual implementation, we have not taken any action to ensure this, leaving
to the user the burden of presenting sequences in the most useful order (as was already
the case). If the user is able to enter all of the world knowledge before the narrative
begins, then it will be available at the beginning of each simulation, as desired (this will

61

be explained in Sectidn 4.3); and just as the user previously had to inform the system
of an entity’s type before providing any other information about it, he now must tell the
system what type an agent believes an entity to be before reporting what else the agent
believes about that entity.

A second threat to commutativity comes from a criterion that can be used used to
limit the extent of input-driven inference. The system maintains an “interestingness”
value for each predicate, term, and formula, and input-driven inference can be trun-
cated when the interestingness of the conclusions being drawn goes below a threshold.
Changes in the way interestingness is calculated are planned, but currently it works as
follows. The interestingness of a predicate is fixed, part of the system’s lexical knowl-
edge. The interestingness of a term starts at a particular value, and then increases as
formulas involving the term are learned. The interestingness of a formula is calculated
when the formula is first entertained, and remains fixed thereafter; the calculation in-
volves the interestingness of the predicates and terms occurring in the formula, and,
if the formula was inferred from others, is augmented by a fraction of their interest-
ingness. The component of a formula’s interestingness inherited from its inferential
ancestors is the potentially problematic part. Suppobkas a low intrinsic interesting-
ness, but is derivable from, which has a high interestingness. Consider first the case
in which ¢ and theny are entered. Wheag is entered, input-driven inference yields
1, which inherits some ap’s interestingness. If this inheritance raisgs interesting-
ness above the threshold, then input-driven inference will continue, perhaps deriving
x. Subsequently entering will have no effect, since it was already believed. Now
consider the case in which and theny are entered. When is entered, its intrinsic
interestingness is found to be below the threshold, so no input-driven inference is at-
tempted. Nexty is enteredz) is derived, but is found already to be believed (and recall
that a formula’s interestingness remains fixed after the formula is first entertained), so
no further inference is attempted. With the inputs presented in this order, the conclusion
x IS not reached.

In the current version of BILOG, the interestingness threshold is set to zero by de-
fault, meaning that input-driven inference continues until all possibilities are exhausted.
This is presumably because the metric currently being used for interestingness was
found to be ineffective (we have not communicated with the original author about this).
Inference is guaranteed to halt eventually, thanks to checks other than the interesting-
ness threshold, but the consequences of every new conclusion are explored, regardless
of how uninteresting it is. With the threshold set to zero, we needn’t worry about the
commutativity constraint being violated, but the system’s ability to handle large knowl-
edge bases is undoubtedly impaired. There are no ill effects when using knowledge
bases as small as those in our test example (see Sgction 4.6.2), but with larger knowl-
edge bases the input-driven inference would take unacceptably long, drawing untold
numbers of uninteresting conclusions. ABIEOG'S interestingness metric is refined in
the future, we can take constraints C1-C4 into account to ensure that it is appropriate
for use with simulative inference.

62

In this case study, we have used the formal results of Chgpter 3 to identify a num-
ber of ways in which simulative inference irrE0G might yield incorrect results, and
the solutions we have chosen illustrate the variety of ways in which such problems
might be managed. One problem, the violation of the closure constraint, can actually
be corrected by implementing simulative inference properly. For the problems of com-
mutativity introduced by the interestingness criterion, what we have discovered will
inform future refinement of the criterion. In the case of the system’s known sensitivity
to the order of its inputs, we simply presented an argument that the problem will not
manifest itself in normal use. Finally, in the case of the system’s nonmonotonicity, we
showed how the problem can be avoided (by prohibiting the entry of probabilistic infor-
mation into simulations), but had to acknowledge that this solution is not satisfying. For
this reason, simulative inference ultimately should be considered a defeasible method,
rather than a sound one; but by pointing out and dealing with the various other reasons
for unsoundness, we ensure that this will be done in a principled way, not allowing
incorrectness to hide behind legitimate defeasibility.

4.3 Efficient Implementation

There is an enormous amount of “common sense” information that every competent hu-
man knows, and that must be imparted to a computer system if it is to emulate human
reasoning. People know that things fall downward when dropped, that elephants are
bigger than ants, and that bread is a kind of fﬁcaxdtd having this knowledge is crucial

for a system to perform human-like reasoning or to communicate with humans. All of
this information is not only known by every competent person, but is “common knowl-
edge” among us. This means that everyone knows that everyone knows it, and knows
that everyone knows thatic. It is because we have so much common knowledge that
we can rely so much on inference for the success of our communication.

In order for EPILOG to emulate human reasoning, then, it must have a large amount
of world knowledge, and it must also attribute possession of this knowledge to those
about whose beliefs it reasons. This means that the information available to a belief
simulation will be not just a few sentences that the system has explicitly identified as
beliefs of that agent, but also a vast number of sentences which the system knows that
everyone believes.

It would be a tremendous waste of storage space to duplicate all of this information
in every simulation. To build a reasonable implementation of simulative inference,
we must store the common world knowledge only once in the system, and allow all
simulations, as well as the system’s own reasoning, access to it. At the same time, there
must be a way for the system to hold some beliefs without attributing them to others,
and vice versa.

1Al of these “facts” are defeasible in the right circumstances; people know this, too.

63

We have done this by introducing structures cadd@giironmentsnto EPILOG. An
environment is an encapsulization of all of the various data structures the system uses
for storing knowledge. A single environment contains an instance of each such data
structure that was present in the origina#I|EOG, but now many environments can
be maintained simultaneously in one running instancemi.&c. One environment
stores the common world knowledge that the system uses for itself and also attributes
to others; another stores the system’s own beliefs that it doesn’t attribute to others; and
for each agent that the system simulates, there is another environment for beliefs the
system attributes specifically to that agent.

We have modified BILOG's inference mechanisms so that information from mul-
tiple environments can be used simultaneously. At any given time, only some environ-
ments are accessible. One is designated as the primary environment, and there may also
be any number of secondary ones (we currently use only one secondary environment
at a time, always the common world knowledge environment, but we envisage more
complicated schemes in which an environment stores beliefs attributed not to everyone,
but to every member of some group; in such a scheme, several secondary environments
might be accessible simultaneously). Knowledge from any of the accessible environ-
ments may be used in inference, but if changes are to be made as a result of new infor-
mation, only the primary environment can be modified. Ordinarily, the system uses its
own private environment as the primary one, and the common world knowledge envi-
ronment secondarily. When simulating another agent’s beliefs, the system temporarily
makes its own private environment inaccessible, and makes the simulation environment
for that agent primary. The common world knowledge environment can also be made
primary, in order to add new knowledge to it.

The designers of other systems have also used the partitioning of a knowledge base
into environments (also callecbntextsby some authors) to solve various other, in-
dependent problems. In Cyc [Lenat and Guha, 1990], propositions are grouped into
environments based on common implicit assumptions, as a way of maintaining a kind
of consistency across a large knowledge base; in many systems, going back at least
as far as CONNIVER| [McDermott and Sussman, 1972], a hierarchical arrangement
of environments allows the system to reason simultaneously about different possible
scenarios; and in Rhét [Allen and Miller, 1991], an environment mechanism is used to
implement simulative inference as well as the sort of hypothetical reasoning introduced
by CONNIVER.

As we described in Sectidgn 4.1PEOG consists of a general-purpose reasoning
facility, which stores information as sentences of EL, and a number of specialist mod-
ules, some of which use their own special-purpose data structures to speed up particular
kinds of reasoning. The data structure that supports the general-purpose reasoning is
simply a hash table containing sentences of EL, indexed by the most important predi-
cates and terms they contain. Partitioning this data structure into multiple environments
is straightforward: each environment contains one of these hash tables. When retriev-
ing sentences for possible use in inference, when the system previously would have

64

looked in a single hash table and collected a list of candidate sentences, it now looks
in the hash tables of all accessible environments. As long as the number of accessi-
ble environments is small (we currently use no more than two, one for agent-specific
knowledge and one for common world knowledge), the extra cost is negligible.

For some of the specialists’ data structures, it is not so simple. For example, con-
sider the representation used by the equality specialist, which uses the well-known
“union-find” algorithm. In this representation, each equivalence set of terms is rep-
resented by one set object. Each term has a pointer to the structure denoting the set
of which it is a member, and each set structure contains a list of all of its members.
The question of whether two given terms are equal can be answered in constant time
(assuming a perfect hash function), by finding which set each term belongs to, and
comparing to see if they are the same. The set of all terms equal to a given term can
also be found in constant time. In this representation, the set of sentences

a=1"b
b=c
c=d
e=f

gives rise to the structure shown in Figlire|4.1.

Figure 4.1: A union-find data structure

a
b
C
d
e
e, f
f

The problem is that for this data structure, unlike the simple hash table of sentences
used by the general-purpose reasoning mechanism, it is not obvious how to partition
it into one structure for beliefs shared by all agents and another for each individual’'s
private beliefs. Say the identities= b, ¢ = d, ande = f are common world knowl-
edge, but the identity = c is a belief that the system holds but does not attribute to
others. One possibility is to build a separate graph for each environment. The same
propositions would then be represented as in Figure 4.2.

65

Figure 4.2: The structure split between two environments

shared private

a

a,b
b b

b,c

C C

c,d
d
(&

e, f
f

But then when reasoning normallyg. with both environments simultaneously, the
system can no longer read the equality= d, for example, directly from the special-
purpose representation. The graph query algorithm could of course be modified so
that it could discover such inter-environment transitivities. It would then be less effi-
cient than the original algorithm for queries that involve information from both envi-
ronments, but would retain its efficiency for purely intra-environment queries, so the
special-purpose representation might still serve some purpose.

Since the private knowledge base is always used in conjunction with the shared
one, never by itself, the ability to answer queries that depend on information from both
environments could be regained by maintaining another environment, representing the
combination of the shared and private environments. We would then have the structures
shown in Figuré 4]3.

66

Figure 4.3: Duplicating shared knowledge in the private environment

shared private + shared
a a
a,b
b b
C C
c,d
d d
e e
e, f e, f
f f

However, the shared knowledge base in a practical system is likely to be very large,
so it would be undesirable to duplicate all of that information in the system’s private
environment, and in all of the environments the system uses for simulating other believ-
ers. Therefore, as a further refinement, instead of explicitly storing the entire contents
of the combined private+shared environment, one could build a structure that repre-
sents only the differences between the combined environment and the shared one. The
resulting structures would be as shown in Figure 4.4.

Figure 4.4: Duplicating only modified information

shared private + shared
a a
a,b
b b
C C
c,d
d d
e
e, f
f

Note that the combined private+shared structure contains no informationcatout
f, since that information would have been identical to what can already be found in the

67

shared environment. When reasoning with both the private and shared environments,
one retrieves an equivalence class by looking first in the combined environment, and
then in the shared environment if it was not found.

This last strategy, of representing a particular agent’s beliefs by storing the differ-
ences between those beliefs and the larger set of common beliefs, is the main technique
we have used to adapt special-purpose representations to multiple-environment reason-
ing in EPILOG. If the system (or, likewise, a simulation) believes nothing but what is
common knowledge, then its primary environment is empty. This will typically be the
initial state of the system when it begins processing a new narrative, and of a simula-
tion when nothing has yet been entered about an agent’s private beliefs. In this state, the
system answers queries using only the structures in the shared environment. When new
information is entered, it is first stored in the general-purpose sentential representation,
in the current primary environment (which is the system'’s private environment ordinar-
ily, or a simulation environment during a simulation). If no specialists are interested
in the new information, then the process is finished. If a specialist decides to store the
information in its special-purpose representation, then it finds all of the parts of its data
structure that need to be modified to reflect the new information. If any of these are
in the secondary environment, then copies are made in the primary environment before
the changes are made. When a piece of the data structure is duplicated, the version in
the primary environment takes precedence.

This strategy yields efficiency similar to that of the single-environment case under
the assumptions that the changes to the data structure required to reflect the assertion
of new information are relatively localg. that assertion of a new literal requires mod-
ification of relatively few nodes of the graph. This assumption is valid for the equality
representation (the number of members per equivalence class is typically small com-
pared to the number of equivalence classes), and for some of the other representations
used in EPILOG, but not for all of them. In particular, the locality assumption does not
hold for the representation used by the temporal reasoning specialist, which accelerates
reasoning about the relationships between events in time. In this representation (but
ignoring some of the details for the moment), the information

beforda, b)
beforgb, c)
beforgb, d)
beforda, e)
before(11:0@),

plus more information about events that take place aftel ande, might be repre-
sented by the structure shown in Figlre 4.5.

68

Figure 4.5: A temporal graph

d
Index:
Min: 11:00 — -
Max:
a b c
Index: 1 Index: 2 Index: 3
Min: Min: 11:00 Min: 11:00 — -
Max: Max: Max:

Index:
Min: R
Max:

Note that the available information about the times of these five events only induces
a partial ordering, but we do have a total ordering for the sufasét ¢}, and those three
nodes of the graph have been given integer indices to indicate their relative positions
in that ordering. A query such as bef@#ec) can be answered quickly by simply
comparing the labels of the two nodes: since the indexislower than the index af,
beforda, ¢) is true. Answering this type of query would take only a constant amount of
time no matter how long the chain of events betweamndc happened to be. Also note
that information about absolute time (assume for this simple example that the date is
implicit) has been propagated through the graph where possible:isimedter 11:00,
andc andd are aftemn, the graph shows that d, ande are all after 11:00.

To see how non-local the effects of a single change can be, consider the effects of
adding the assertion before(12:@0(meaning that 12:00 is before or equivalently
thata is after 12:00) to the above graph. Every node in the tree rootednall be
modified to reflect the fact that they all occurred after 12:00. Now, if the information
that gave rise to the original graph is all common knowledge stored in the shared en-
vironment, but the new belief before(12:@Pis not to be attributed to others, then the
entire tree will need to be copied from the shared environment into the private one, so
that every node can be modified there.

This kind of large-scale duplication is what we are attempting to avoid. The so-
lution we have used is simply to block the propagation of absolute time information
between environments. The cost of this decision is that some “before/after” queries
that could formerly be answered in constant time, by comparing absolute times, will
now be answerable only by performing a graph search.

69

We have considered, but have not yet tried implementing, another alternative,
namely to dispense with the strategy of duplicating segments of the shared environ-
ment in the private environment before modifying them. Instead, there would be a
single graph combining the information from all environments, and each field of each
node would contain, rather than a single value, a list of values, each labeled with the
name of the environment in which it holds. The example graph would become the one
shown in Figuré 416, where values (including links) to be considered part of the shared
environment are labeled ’'S’, and those in the private environment are labeled 'P’.

Figure 4.6: A single graph containing both private and shared knowledge

Index:
Min: (P . 12:00) (S . 11:00}—»= = =
Max:
a b c
Index: (S.1) S Index: (S . 2) S Index: (S . 3)
Min: (P . 12:00) Min: (P . 12:00) (S . 11:00 Min: (P . 12:00) (S . 11:00}—»" * *
Max: Max: Max:
S e
Index:
Min: (P . 12:00) =
Max:

The disadvantage of this technique is that retrieving the value of a field of a graph
node now requires a search through a list, and is therefore no longer a constant-time
operation. As the number of different environments becomes large, this could become
significant; but if the number of agents being reasoned about remains relatively small,
or if the beliefs we attribute to different agents tend to involve mostly disjoint sets of
nodes, then this approach may be successful.

A hybrid of the two techniques is also conceivable: one could use the copy-on-write
technique when modifying some fields (those for which modifications tend to have
localized effects), and annotated field values for others (ones for which modifications
tend to propagate widely).

70

4.4 The Generality of the Efficiency Problem

In addition to the idea of partitioning knowledge into multiple reasoning environments,
we initially considered an alternative scheme. In this scheme, the system would main-
tain its private beliefs and common world knowledge in the same data structures, just
as it was done before the implementation of simulative inference. To perform a sim-
ulation, it would first temporarily assume as its own, in addition to all of the existing
private and shared knowledge, any beliefs that were attributed specifically to the agent
being simulated. Then it would attempt to answer the simulative query using its or-
dinary query-answering mechanism. If the query was successful, the system would
examine each of the premises used in the proof (this information is returned by the
guery mechanism when a proof is found), and determine whether belief in that premise
could be attributed to the agent. If the agent was thought to believe all of the premises,
then the simulation would be considered to have answgredand the simulative in-
ference would go through. When the simulation was finished, the agent’s beliefs that
the system had temporarily assumed as its own would be retracted.

Conceptually, this scheme has several advantages. It would be simpler to imple-
ment, since the complexity of partitioning the knowledge into multiple environments,
and reasoning with information from multiple environments simultaneously, could be
avoided. It would require each input sentence to be annotated with the source from
which the system learned the sentence, so that it could be determined whether the agent
being simulated had access to that source; but this is easily implemented, and it might
even allow more fine-grained distinctions between information sources. Instead of just
a single mass of world knowledge labeled as “common knowledge,” one could just
as easily have the system’s knowledge come from arbitrarily many different informa-
tion sources, and have the system reason explicitly about whether a particular agent
had access to each source. This wouldn’t be practical using the environment method,
since with that many environments accessible simultaneously, the inference mechanism
would be much less efficient.

The problem with this scheme is that whil®lEOG's question answering mecha-
nism ordinarily does return a list of premises that were used in a proof, if any specialists
were involved in the proof, the premises on which they based their answers are not in-
cluded in the list. Once a set of sentences has been entered into a specialist’s data
structure, there may be no way to identify the contribution of each individual sentence
to that structure, and no way to list the sentences that are responsible for the specialist’'s
answer to a particular query. This is precisely the problem with which we dealt in the
previous section, and the alternative approach to simulative inference we are currently
considering does not suggest any alternative solutions to the problem.

What is particularly interesting about the alternative approach is that it brings out
a similarity between simulative inference and a set of other, more widely studied in-
ference techniques. It shows that what we are doing to support simulative inference

71

can be viewed as a sort of reason maintenance. We need to keep track of the system’s
reasons for holding each of its beliefs, in order to know whether another agent might
believe the same thing. The obstacle we dealt with in the previous section is a conflict
between two different knowledge representation techniques: reason maintenance, and
special-purpose knowledge representations that accelerate specific kinds of inference.

In addition to simulative inference, there are several purposes for which a system
might keep track of its reasons for believing things. One is for generating explanations:
if a system keeps track of the inferential paths it follows, then it can present those paths
to a user as an explanation of its conclusions. Another is to support belief revision: if a
system keeps track of all of the conclusions it has drawn from a particular premise, then
if it later needs to retract that premise, it can also be sure to retract any conclusions that
are no longer justified. Probabilistic reasoning can involve a variation on this theme:
a system that labels its beliefs with epistemic probabilities might keep track of its evi-
dence for each formula, so that if its degree of confidence in that evidence changes, the
change can be propagated to the conclusion.

We are not the first to encounter this problem. For example, Rhet [Allen and Miller,
1991] uses the union-find algorithm as well as multiple reasoning environments, and
combines them in a way that is essentially similar to what we have done. The contribu-
tion of this section, therefore, is to point out the broad generality of the problem. The
two knowledge representation techniques we have discussed have each been written
about extensively in isolation, motivated by seemingly compatible considerations, and
presumably with the understanding that an eventual comprehensive inference system
would make use of both; we have not previously seen it documented that the combina-
tion of the two techniques is problematic.

Our particular way of dealing with the problem is based on some very specific
assumptions, among them that the body of common world knowledge is much larger
than any other category, that the number of categories of information being used at one
time will be small, and that there will be no need to retrieve a list of sentences that are
believed by an agent but are not common knowledge. These are reasonable assumptions
for our application, but are likely not to be for others.

4.5 Current State of Implementation

The development of BILOG is an ongoing project. A form of simulative inference is
currently implemented and working, but there are many extensions and improvements
that could be made.

Before this work began, the system’s state was stored in a number of global vari-
ables. Of these, some could be viewed as storing a part of the system'’s knowledge base
(KB), and others part of the inferential state. After our modifications, the locations that
store KB state are no longer global variables; instead, they are fields of an environment

72

structure. Any number of environments may exist in the system simultaneously. There
is a global variable that picks out the current primary environment which is initially set
to the system’s private environment.

In addition to fields that store KB state, an environment structure contains a list of
other environments accessible from that one. All of the environments accessible from
the primary environment, and the environments accessible from #temare treated
as secondary environments (currently we only use a single secondary environment,
the common world knowledge environment, which has no accessible environments of
its own, but this limitation is not built into the system). This means that the system
cannot be asked to reason with an arbitrary combination of environments; it can only
be instructed to use a single environment as its primary environment, and the set of
secondary environments is determined by the primary one.

We have made the simplifying assumption that primary environments only augment
the knowledge contained in their secondary environments, rather than contradicting or
blocking the inheritance of any facts. This is quite a substantial assumption—it means
that an agent who believes all but one of the (potentially millions of) facts in the shared
environment cannot be modeled, unless by making the shared environment inaccessible
to that agent’s simulation, and duplicating the entire shared environment, less the dis-
believed sentence, in his private environment. To relax this assumption would require
a facility for retracting an arbitrary sentence from the knowledge base, something E
LOG does not currently have. We also assume that the contents of an agent’s secondary
environments do not change after knowledge has been entered into the primary one.
Relaxing this would be useful in certain scenarios, but would require more expensive
computation each time information was entered into a primary environment.

The bulk of the work of the implementation involved adapting the inference mech-
anism to use environments. Wherever the mechanism formerly referred to a global
variable, it must now use a field of the environment structure, and it must consider not
a single environment, but all accessible environments. Because of the nature of E
LOG, making this conversion involves a number of separate and independent tasks: the
general-purpose inference mechanism and each of the specialists must be converted in
turn.

The change for the general-purpose inference mechanism has been completed, and
was quite straightforward. Where the mechanism once looked in a single hash table for
relevant sentences to use in inference, it now looks in the hash table of each accessible
environment, and collects sentences from all of them.

For each of the specialists, a different sort of change is required. Some of the spe-
cialists don’t maintain any state of their own, so they require no modification. Others
must be modified to store their state in a field of an environment, rather than a global
variable. This simple modification has been made to all of the specialists. The next step
is to modify a specialist’s inference mechanism to use multiple environments simulta-
neously; this has been completed for only some of the specialists, namely those for

73

reasoning about set-theoretic relations, equality, and time. The remaining specialists
which maintain some kind of state and have not been modified to use multiple environ-
ments are those for type subsumption, part-of relations, color, and numerical relations.
For the time being, these specialists have been instructed always to use the common
world knowledge environment as if it were the primary environment. Anything entered
into these specialists is treated as common knowledge, available to all simulations and
to the system itself.

With this infrastructure in place, simulative inference has been implemented by
adding a specialist module that handles the predigelieve . Whenever a sentence
of the formbelieve(«, ¢) is asserted, the belief specialist is notified. If this is the
first belief that has been attributeddothe specialist creates a new environment, adds
the common world knowledge environment to its list of accessible secondary environ-
ments, and stores it in a hash table indexed under the naoteerwise, it retrieves the
existing environment forr from the hash table. Then it enters the sentenaao the
environment by temporarily making the environment the primary one, and then calling
the same entry function that a user would call to enter information into the system.
Input-driven inference occurs just as it would if the user had given an input, except that
it is done in the simulation environment.

Similarly, when the system wants to evaluate a sentémtieve(«, ¢), the
specialist is queried. It finds’s simulation environment and temporarily makes it the
primary environment, as above, and then calls the same query function that a user would
call, but with the effort level turned down (see pagé 59). If the query answers in the
affirmative, then the specialist indicates thatieve(«, ¢) istrue.

Given this mechanism and a sentence of a certain form, it is possible for the system
to enter an infinite chain of nested simulations. In such a case, the system may never
return when asked a query, and therefore cannot be modeled as a belief machine. This
points out the fact that when using our model to evaluate the appropriateness of adding
simulative inference to a system, it is the entire systéth simulative inference added
that must be evaluated. For the time being, we are avoiding infinite regress by enforcing
a fixed cutoff at three levels of nesting. In the future, heuristics might be used to allow
deeper nesting when it is potentially useful.

The global variables which comprise the state of the inference mechanism are given
a new dynamic scope during a simulat®8K or TELL, so that a simulation can take
place in the middle of an input-driven or goal-driven proof attempt, as a step of that
proof. Note that the hash table containing simulation environments is itself stored in an
environment, as part of the belief specialist’s state in that environment, so that simula-
tions can be nested to an arbitrary depth.

Being implemented as a specialist module, the simulation mechanism is subject to
the limitations of the specialist interface. Among these is the fact that only ground
atoms are passed to specialists for evaluation, so simulative inference can't be used to
help prove quantified-in belief sentences, or sentences in which the believer term is a

74

variable of quantification. If this limitation could be overcome, there would be an inter-
esting possibility of reasoning about quantified-in sentences via simulative wh-queries:
intuitively, there is anc which John believes to b2 if John can answer the question
“What is P?”. This would involve extensions of both the theoretical framework and the
program’s interface to simulations.

Another, more serious limitation involves reasoning about changes in an agent’s be-
liefs. EL uses a variant of situation semantics, in which a sentence may be asserted to
be not simply true, but true in a particular situation, which may have limited temporal
(and/or spatial) scope. Therefore, the knowledge representation can support reasoning
about an agent’s beliefs at a particular time, and how beliefs change over time. But the
specialist interface only passes timeless propositions to the specialists, not assertions
about what holds in a particular situation, and so the belief specialist can’t contribute
to reasoning about belief change. For all of the previous specialists, this was an accept-
able limitation: for example, the type specialist needn’t reason about change over time
because the truth of assertions like “Dogs are mammals” does not vary over time. But
agents’ beliefs do vary over time, in important ways, and so this limitation will even-
tually need to be overcome. While this limitation of the specialist interface is the most
immediate obstacle to reasoning about belief change, it is not in fact the most difficult
one. If the specialist were able to receive information about agents’ beliefs at partic-
ular times, it is by no means clear what it should do with this information. Some of
the problems that arise look quite similar to those we have been addressing: an agent’s
beliefs tomorrow will be largely similar to his beliefs today, just as one agent’s beliefs
are largely similar to another, so it would be wasteful to build a separate environment
for each time at which one wants to reason about an agent’s beliefs. Reasoning about
belief change is an interesting problem, and one of quite large scope.

There is also a conceptual liability to using the scheme of reasoning with multi-
ple environments. Before we modified the system, the meaning of sentences stored
in EPILOG was clear, since EL has a rigorously defined formal semantics. But now,
to interpret a token of a sentence in the system, we must consider not only the sen-
tence itself, but the environment in which it is stored. Actually, this was already true
in the system before our changes in some of the specialist representations, since they
maintain a separate structure for each propositional attitude context. But the situa-
tion is even more complex now, since we have defined environments such that one
can be accessible from another. There is no formal statement of, for example, what
state of the world is described by an instantiation of the system in which a sentence
is present in the common world knowledge environment, and its negation is present in
the system’s private environment. The reason the practice of Al involves formal se-
mantics is so that systems can be built in a principled way, such that their state can be
formally interpreted. By partitioning the knowledge base into multiple environments
with different semantics, we have acted somewhat counter to this desire for clear inter-
pretability. This is not to say that#fLOG'’s states could not be formallly interpreted.

75

Logics of common knowledge, and logics of context [Dinsmore, 1991; 8uiA93;
McCarthy, 1993] might be useful in this direction.

4.6 Evaluation

We have made significant changes teIEOG in order to implement simulative infer-

ence, and so we should attempt to demonstrate that these changes don’t impact the
system’s performance, or that they impact it to a small enough degree to be warranted
by the increased inferential ability. But evaluating common-sense inference systems is
tricky. Such systems are designed to be used with a large knowledge base of common
sense facts, but no such knowledge base is currently available. The problem of acquir-
ing, in a computer-usable form, the vast amount of information that all humans know
is the most important and most difficult obstacle to the development of logical Al; this
dissertation makes no contribution towards its solution.

In the absence of a comprehensive world knowledge base, we must settle for other
means of verification. One method is to choose an example question to ask the system,
decide what knowledge a human would use to answer it, and enter that knowledge by
hand before making the query. This sort of testing demonstrates the kind of inference
the system is capable of, but shows little about performance. When using a small, hand-
coded knowledge base, one might do quite well using any logically complete theorem
prover; but when the knowledge base is much larger, selectivity and the right heuristics
become crucial.

To test how the system behaves with a larger knowledge base, we can use randomly-
generated “knowledge” in place of genuine world knowledge. This method is no more
useful for testing the validity of the designer’s assumptions, because the very same as-
sumptions must be used to generate input with what we believe to be realistic statistical
properties. But large random datasets can at least test how well the design has been
carried outj.e. how well the system can be expected to perform if the assumptions are
correct.

Spending a significant amount of time fine-tuning the performance of a system like
EPiLOG without having the real data with which it is designed to work would be rather
futile. For the time being, BILOG is better viewed as a prototype, an illustration of
concepts, than as a practical system. Therefore, we are content with rough estimates of
the impact of our changes. Our modifications to the general-purpose reasoning mecha-
nism, and to the set and equality specialists, are all of the same character: where once
a single hash table lookup was performed, now two are performed, one in the primary
environment and one in the secondary. From this description alone, we can'’t predict by
exactly what fraction the system’s run time will increase for an average query, but we
are convinced that it will be rather small. Therefore, we have not carried out extensive
performance testing of the system as a whole. We will simply present, in Section 4.6.2,

76

a transcript of the system processing a sample story, as a demonstration of the type of
inference it can perform. The changes we made to the time specialist are potentially
of more significant impact on performance, since they involved replacing direct pointer
references with hash table lookups, in a graph structure that is potentially quite large.
Therefore, we have written code to generate large amounts of temporal information of
the sort processed by the specialist, enter the information into the specialist, and make
gueries, and we have collected timing data both for the versionpafds from be-

fore our changes and from our modified version, in order to measure the impact of our
changes.

4.6.1 Performance Study of the Time Specialist

The time specialist implements the TimeGraph | algorithm for temporal reasoning
[Gerevini et al., 1995; Miller and Schubert, 1990, see also Hplog User's Man-

ual, available along with the source code at the URL given at the beginning of this
chapter.]. This algorithm is specifically designed to work efficiently with the kinds of
temporal information that narratives typically convey: sequences of events for which a
total ordering is known, with less information about relative ordering between events
in different sequences. A node of the graph represents an instantaneous point in time,
and a link represents a before/after relationship, possibly with a duration, between two
points. An event is represented by a pair of points, the start point and the end point. A
totally ordered sequence of points is calledrain A time point can belong to only

one chain—even if it belongs to more than one totally ordered sequence, it is placed
in only one chain, and connected to the other sequence(s) by cross-chain links. The
points in a chain are marked with their number in the sequence, so that a before/after
determination between any two points in a chain can be made in constant time, by com-
paring their indices. Queries about the relative order of two points on different chains
are answered by searching the graph for a path between the two; a “meta-graph,” which
stores information about links between chains, and the labels on nodes in each chain
speed up the search.

A node may be marked with an upper bound, a lower bound, both, or neither, on its
absolute time (measured in seconds since a fixed zero point). An edge may be marked
with an upper bound, a lower bound, both, or neither on its duration.

Our graph generation code creates random graphs with specified statistical proper-
ties. In the first step, it chooses a set of points on a bounded interval, with the following
parameters (in the test whose results are reported below, we varied the number of chains
from five to 560, and set the other parameters to the values in parentheses):

e the number of chains

o the expected length of each chain, chosen with a geometric distribution (20)

77

¢ the expected ratio of the duration of a chain to the duration between the maximum
and minimum time. Chains are generated one at a time, and a running average
of this ratio is kept; for each new chain, if the average for the previous chains
is above the expected value, the new chain’s ratio is chosen between zero and
the expected value with a uniform distribution, and if the average was below the
expected value, it is chosen between the expected value and the maximum with a
uniform distribution. (0.3)

In a second step, the code generates an imprecise description of the set of points from
step one, by choosing upper and lower bounds that surround each absolute time and the
duration of each interval. This process has the following parameters, again with their
values for the reported test suite in parentheses:

¢ the expected ratio of transitive edges (edges from one node to another in the same
chain which is not its immediate successor) to direct edges, chosen for each chain
with a geometric distribution (0.3)

¢ the ratio of cross-chain edges to direct in-chain edges (0.3)

e uncertainty: the expected size of the interval between a point’s upper bound and
its lower bound, as a fraction of the durations of the links on either side; also
used as the expected size of the interval between the upper and lower bounds on
a link’s duration, as a fraction of that link’s duration (0.1)

¢ the probability that a point's upper bound will be reported ®UHG; also the
(independent) probability that its lower bound will be reported (0.1)

o the probability of a link’s duration being given a non-zero lower bound (all dura-
tions are given upper bounds) (0.5)

Finally, a description of the resulting information is generated in EL, using the follow-
ing types of sentences, where T1 represents a time point name, T2 represents either a
time point name or an absolute time, and D represents an absolute duration:

(T1 before T2)
(T1 after T2)
(T1 at-most-before T2 D)
(T1 at-least-before T2 D)

We used this code to generate a test suite of graphs with nineteen different graph
sizes, and three graphs at each size. We also generated 1,000 random queries of the
form (Tl before T2),where T1 and T2 are both time point names, for each graph.
We entered each graph description into both the original versiorpafds& and our
modified version, and posed all of the queries to each, and recorded the time taken to

78

construct the graph and to answer the queries. The results are shown in Figpres 4.7
and 4.8. They show that the overhead introduced by our modifications increases graph
construction time negligibly for graphs of less than 4,000 nodes, and by about a third
for very large graphs of 13,000 nodes. Query times were not significantly affected. We
cannot account for the sharp drop in complexity for graphs around 10,000 nodes.

Figure 4.7: Time graph construction times
100

© Origli nal time specialI ist .
+ Modified time specialist .

9 - ‘ N

80 - —
T 0t e
c
i
& L o i
GE) 60 R
& o0t ¢ .
E .
}'é; 40 0’ o*
8 - . * -
<
8‘ * & ¢o
o 30 - . * <><> o .

<><>
20 ¢ oo © i
. *
o @
10 - . 88 0o T
-
- 22888 ¢
0 - I I I I I I
0 2000 4000 6000 8000 10000 12000 14000

Number of nodesin graph

79

Figure 4.8: Time graph query times

18

o Origlinal timespeciallia I I I I
. Modified time specialist *
<
16 - R
LR 4
<
Ce
& *
14 + ¢ o s e
> <
.S
@
< 12
) P
=]
o
o]
o
[0} - -
g 10
'_
8 © i
*
*® o s
< oo
© b3 .
L » i
® Q’s‘ ¢ 35; o 22 o EXS o
x * B & 0o
4 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Number of nodesin graph

4.6.2 An Example Story

Over the years of EILOG'S development, the story of Little Red Riding Hood has
been used as an ongoing test and example. We will now demonstrate that simulative
inference brings BILOG closer to understanding one fragment of the story.

The sentence to be interpreted is the following: “The wolf would have liked to eat
Little Red Riding Hood, but he dared not on account of some woodcutters nearby.”
The challenge is to explain the connection between the woodcutters’ presence and the
wolf’s decision not to eat Little Red Riding Hood (henceforth LRRH). Human readers
understand that the wolf believed that if he tried to eat LRRH, the woodcutters would
do something about it. We would likePH. OG to make the same inference.

The example below consists of input given telEOG. The information is expressed
in a LISP-friendly version of Episodic Logic. See the references listed at the beginning
of this chapter for the details of EL; here are a few important points for understanding
the example:

e Each expression is a LISP list (surrounded by parentheses).

e For similarity to English syntax, a predicate follows its first argumeng.
“‘LRRH is a girl” is represented & RRH girl)

80

e Episodic Logic takes its name from its use of episodes, which are similar to the
situations of situation semantics. They are elements of the domain of discourse,
can be referred to by terms, and may have temporal and/or spatial extent. The
operator** | an infix operator, relates a sentence to an episode that the sentence
characterizes. For example, the sentefidehn run) ** el) means that
el is an episode of John running.

e The syntax of quantification is richer than that of ordinary first-order logic. A
guantified formula consists of a quantifier, an optional restrictor, and the matrix.
This allows quantifiers such as “most” which aren’t easily expressed in ordinary
FOL, but for the universal and existential quantifiers is only a syntactic difference.

(A x (x man) (x mortal))
is equivalent to

(A x ((x man) implies (x mortal))) :
and

(E x (door x) (green x))
is equivalent to

(E x ((door x) and (green x)))

e The operatoKa forms a term from a predicat¢ka run) is a kind of action,
namely running.

e The operatopair takes terms denoting an individual and an episode, and forms
a term denoting the action performed by that individual in that episode.

e The operatothat takes a formula and makes a term denoting a proposition.

e The operatocoll takes a predicate and forms another predicéte(coll
woodcutter)) means that is a collection of woodcutters.

e An underscore and a label after a term indicate the term’s sort. The label only
needs to be used on the first occurrence of the term; the system remembers it after
that. The label ep indicates a term that denotes an episode.

e The quasi-quotation operatqq allows one to give EILOG rules of inference
that can't be expressed as formulas of EL. It creates an environment in which
both ordinary EL expressions and variables over EL expressions are permitted.
When variables over EL expressions appear g anvironment, and are bound
by a quantifiers outside of that environment, the quoted expression’s meaning is
the result of replacing the variables with their values.

81

In EPILOG, the functiongmeta , mp(for “meaning postulate”)kn (“knowledge”),
andstory are all ways of entering information, and the functepis for asking ques-
tions.

The global variabl&environment* indicates the current primary environment.
It normally points to the system’s private environment, but it is automatically set to a
simulation environment during a simulation, and the user can set it manually. In the
example, the forms within the scope of the

(let ((*environment* *wkb*)) ...)

have their effect on the environment that stores the shared world knowledge base.

We will now display the input that the system processes, and then discuss some of
the representational and inferential issues involved. The following world knowledge is
entered into the shared environment:

;; Everything within this ’let’ is common knowledge, i.e. believed by
;; everyone.
(let ((*environment* *wkb*))

;; Eating, attacking, and punishing are actions.
(meta

‘(eat %action-pred)

‘(attack %action-pred)

'(punish %action-pred)

)
(mp

;; If there is a collection of things of some type, then there is a
;; thing of that type which belongs to the collection.
'(A p_pred (A y_set ((qq (y (coll p))) true)

((gg (E z (z member-of y) (z p))) true)))

;; Rules to convert between the equivalent forms
i ((x pred) ** e) and ((pair x e) instance-of (Ka pred))

‘(A p_pred (p %action-pred)
(A el term (A x_term ((qq ((pair x el) instance-
of (Ka p))) true)
((qa ((x p) ** el)) true))))
(A p_pred (p %action-pred)
(A el term (A x_term ((gg (not (pair x el) instance-
of (Ka p))) true)
((qa (not (x p) ** el)) true))))
(A p_pred (p %action-pred)
(A el _term (A x_term ((qq ((x p) ** el)) true)
((qg ((pair x el) instance-of (Ka p))) true))))
(A p_pred (p %action-pred)

82

(A el _term (A x_term ((gg (not (x p) ** el)) true)
((qg (not (pair x el) instance-of (Ka p))) true))))

)
(kn

;; If a creature believes that an action will have undesirable
;; consequences, he won't perform that action.
(A x (x creature)
(A y (y action-type)
(A context-ep_ep
((x believe
(that
(A action-ep_ep
(((pair me action-ep) instance-of y)
and
(action-ep during context-ep))
(E result-ep_ep (action-ep cause-of result-ep)
(result-ep undesirable)))))
implies
(A el_ep (el during context-ep)
(not (pair x el) instance-of y))))))

;7 | am a creature
'‘(me creature)

;; Being punished is undesirable.
(A el_ep
(A x ((x punish me) ** el)
(el undesirable)))

;; Eating a living creature involves attacking it
(A x (x creature)
(A'y ((y alive) and (y creature))
(A el ep ((x eat y) ** el)
(E e2_ep (e2 during el)
((x attack y) ** €2)))))

;; To attack a child is wicked
‘(A X (x creature)
(A y (y child)
(A el ep ((x attack y) ** el)
((pair x el) wicked))))

;; Doing something wicked when someone is nearby will bring
;; punishment.
(A x (x creature)
(A y (y human)
(A el _ep ((pair x el) wicked)
(A e2_ep ((y near x) ** e2)

Ep

83

(E e3_ep (el cause-of e3)
((p punish x) ** e3)))))))

:; Woodcutters are human
(A x (x woodcutter) (x human))

)
)

;; End of the common knowledge

In addition to the above knowledge, the system has a taxonomic predicate hierarchy,
from which it knows, among other things, that girls are humans, and that wolves and
humans are creatures.

Using this knowledge, the system can process the following story fragment:

(story

LRRH met a wolf.
'(E meet-ep_ep
(E wolfl (wolfl wolf)
((LRRH meet wolfl) ** meet-ep)))

;; Little Red Riding Hood is a girl, and the wolf knew that.
'(LRRH girl)
'(wolfl believe (that (LRRH girl)))

;; She was alive, and the wolf knew that.
'(LRRH alive)
'(wolfl believe (that (LRRH alive)))

;; There were woodcutters nearby, and the wolf knew that.
'(E y_set (y (coll woodcutter))
(A x (x member-of y)
(E se3 _ep (meet-ep during se3) ((x near wolf) * se3))))
'(wolfl believe
(that
(E y_set (y (coll woodcutter))
(A x (x member-of y)
(E se3_ep (meet-ep during se3) ((x near me) ** se3))))))

Given all of this information, the system answers “no” to the question “Did the wolf
eat Little Red Riding Hood when they met in the forest?”, asked as follows:

(g '(E el_ep (el during meet-ep)
((wolfl (eat LRRH)) ** el)))

84

The inference involved in answering the question includes a simulative inference
step, in which itis derived that the wolf believes that if he eats LRRH during the episode
of the story fragment, then an undesirable episode will result. The sentence that the
system proves that the wolf believes is

(A EP-X (((PAIR ME EP-X) INSTANCE-OF (KA (L L-U (L-U ATTACK LRRH))))
AND
(EP-X DURING VAR18))
(E EP-V (EP-X CAUSE-OF EP-V) (EP-V UNDESIRABLE)))

This question is not exactly the one we had hoped the system could answer, although
the simulative inference involved is the same. The natural translation into EL of the
guestion “Why didn’t the wolf eat LRRH” says roughly “What episode is the cause of
the episode of his not eating her?”, and the answer is the episode of his believing that
it would have undesirable consequences. As we mentioned in Sgctjon 4.5, the belief
specialist currently only reasons about belief as an eternal state, and can’t associate
beliefs with episodes. Consequently, the system can't prove that there is an episode of
the wolf believing something.

An important caveat about the example is that the effort level used in simulations
(see p[5P) is a tunable parameter, and the system can only answer the question when
all of its inferential abilities are enabled in simulations. As we discussed in Séction 4.2,
this causes the belief machine to violate the closure constraint, and therefore raises the
possibility that simulative inference will generate incorrect conclusions.

We provided the system with the information that the wolf knew LRRH was a girl
and alive. These facts are of course not given explicitly in the original story—the system
should infer them from the fact that the wolf could see LRRH, and that the properties of
being a girl and alive are readily apparent. There is no reason in principle rhab &
couldn’t do this.

Little world knowledge is certain. Many of the rules we have given the system
would be more appropriately expressed as probabilistic rules, so that it could use them
defeasibly. The form of simulative inference we use is not sound in a system that rea-
sons defeasibly, but a more sophisticated form, in which the system reasons explicitly
about beliefs the agent doesn’'t have, could be both appropriate and useful.

EPILOG doesn’t have facilities for planning and action, but if it did, it might process
the story in a more natural way. We gave the system the knowledge that creatures avoid
actions they believe will have undesirable consequences, and that being punished is
undesirable, in a declarative form; but an artificial agent designed to act in the world
would have that information encoded procedurally, and it might very naturally attribute
such dispositions to others by simulation, just as we have done for belief.

Much work remains to be done, to improve the efficiency of simulative inference
and to increase the range of situations in which it can be applied effectively, but even
the current state of the implementation is a useful extensiorrafds’s original capa-
bilities.

85

5 Other Work on Reasoning About
Belief

In Sectior{ 2.5]1, we gave a brief overview of one branch of literature on belief. That
community is composed primarily of philosophers of language, and their disputes tend
to be about whether a given theory of meaning is sufficiently fine-graireedyhether

or not English sentences which according to the theory have the same meaning can in
fact differ in truth value. The work described in this dissertation belongs to a different
line of inquiry, one followed primarily by researchers in Al. For this community, the
primary emphasis is on inference. We are concerned with what can be inferred about
someone’s beliefs from more directly observable phenomena and from (implicit or ex-
plicit) knowledge about how belief systems function, and with what can be predicted
about someone’s actions based on knowledge about his beliefs. In this chapter, we ex-
plore some of the literature on reasoning about knowledge and belief. After giving a
survey of this literature, we will return in more depth to one model, Konolige’s deduc-
tion model of belief, which has important similarities to ours. $See [Faggi. 1995]

for a more extensive survey of the field.

5.1 Possible Worlds Theories

The point of departure for much work on reasoning about belief is the possible worlds
model of Hintikka [1962], with important refinements by Kripke [1963]. According

to this elegant theory, if one knows thatbelievesy, andy entailsvy, then one can

infer thata also believes). This can often be a useful sort of inference for predicting
behavior, but it is an idealization, not a realistic model of human belief. Entailment
in any logic at least as expressive as first-order logic is undecidable, so according to
the model agents can have uncomputable belief sets. This offends the sensibilities of
proponents of Al, whose fundamental hypothesis is that cognition is computation; but
one needn’trely on that identity to show that the possible worlds model doesn’t describe
human belief. Many people know the rules of chess, yet no one knows whether white
can force a win from the beginning of a game, even though the answer to that question
is determined by the rules.

86

Not all authors in computer science have rejected the classical model, despite the
property of logical omniscience; in fact, the model has been built upon and extended
for many different purposes. Like the frictionless surface of physics problems, logical
omniscience is an idealization which can be useful as a means of breaking down a
complex phenomenon into more easily analyzable parts. However, in this dissertation
we have explicitly set out to define a model in which logical omniscience does not
obtain, so we will leave aside that branch of the literature.

Several other models have used the ideas of the possible worlds model, but modified
in such a way as to eliminate logical omniscience. In the classical model, a possible
world is essentially an ordinary first-order model. Levesque’s influential model of “ex-
plicit belief” [1984], in contrast, usesituationswhich are models of a four-valued
logic: a situation can support the truth or falsity of an atomic sentence, or both, or nei-
ther. The truth and falsity of complex sentences are determined recursively by rules for
each of the logical connectives; notably, the rule for negation is that a situation supports
the truth of— iff it supports the falsity ofp, andvice versa Consequently, there can
exist a situation that supports the truthénd ofy D), but not ofy: a situation that
supports the falsity of supports the truth of.p, and therefore of-p V 1, or equiv-
alentlyp O ; such a situation can also independently support the trugh ahd we
have placed no constraints at all on the truth or falsityyoBecause of the existence
of such situations, the theory can model an agent who believaasd » O ¢ but not
¥. As in the classical possible worlds model, beliefdm « still entails belief inep,
and belief iny entails belief inp Vv . Levesque’s original logic was a propositional
one, but it has been extended to a first-order logic in [Lakemeyer) 1994] (in addition to
blocking embeddethodus ponenghe propositional version blocks embedded existen-
tial generalization from disjunctionse. believingP(a) v P(b) doesn’t entail believing
Jx P(x)); the original proposal didn't allow for nested belief, but this is solved in [Del-
grande, 1995].

In Levesque’s model, believers can be seen as perfect reasoners in a weaker-than-
ordinary logic which is decidable, and in fact tractable (we have paid little attention
to the question of tractability in this work, but it was one of the explicit desiderata for
Levesque). Since the logic is decidable, there is a belief machine that implements a
sound and complete inference procedure for it, and so there is an instantiation of our
logic that is equivalent to Levesque’s. Furthermore, there are other instantiations of our
logic that are more interesting than Levesque’'s—ones in which the belief machine is
less minimal, more like human belief. Some authors, for apparently aesthetic reasons,
prefer “purely semantic” models like Levesque’s to ones like ours in which syntactic
entities (sentences of a language of belief) are part of the semantics. But to us, it seems
unlikely that belief can be fully explained or described without making reference to the
mental representations of the believer, and so it seems entirely appropriate for a model
of belief to include representations.

Levesque’s model of belief has been used as a tool in some work on subjects related
to introspection and nonmonotonic reasonimg, [Levesque, 1990; Lakemeyer, 1997].

87

It would be interesting to explore the possibility of using another logic of belief in the
same role.

Fagin and Halpern [1988] suggest a version of possible worlds semantics in which
an agent may have many frames of mind. If an agent believesdaiind), but in
different frames of mind, then he believes allg$é consequences and all ofs conse-
guences, but not necessarily any consequences of their combination. The entailments
concerning belief are therefore even weaker than those in Levesque’s model. Fagin and
Halpern cite [Stalnaker, 1984] and an unpublished manuscript of Levesque as earlier
statements of the idea of multiple frames of mind. Similar ideas are also used in|[Lenat
and Guha, 1990] and [Giunchiglet al., 1993].

5.2 Sentential Theories

We now turn to models which, like ours, define belief in terms of sentences, and use
the concept of inference in the definition of belief. None of these models makes the
assumption of logical omniscience.

Our logic can be viewed as a refinement of that of Ebérle [1974]. That logic has
an inferability predicatel, where I(¢1, ..., ,;¥) means that) is inferable from
o1, ...,0,. The inferability relation can be an arbitrary set of tuples of sentences,
so logical omniscience needn’t obtain. An axiom of the logic says that,if. ., o,
are believed, and is inferable fromyq, ..., ¢,, thenvy is believed. This is clearly
analogous to our rule of simulative inference. Eberle also shows that if a constraint
analogous to our closure constraint is placed on the inferability relation, then his logic
is sound and complete. Our model extends that of Eberle by treating the premises of
simulative inference as a sequence rather than a set, and by defining the inferability
relation in computational terms.

Halpern, Moses, and Vardi [1994] describe a model of “algorithmic knowledge”
that is similar to our model in that an agent is modeled has having a reasoning algorithm,
and its beliefs are taken to be the sentences that the algorithm can verify given the
information encoded in the agent’s knowledge state. The agent’s reasoning algorithm
is analogous to ouASK function, but their model contains nothing analogous to our
TELL function,i.e. the model doesn't specify the process by which an agent comes to
be in a particular knowledge state, or how learning new information would cause the
state to change. The technique of simulative reasoning has not been discussed in the
framework of algorithmic knowledge.

The mode of reasoning described by Haas [1986;1995] is also simulative reasoning,
but of a different kind. It can be summarized as followsy ibelievesp at timet, and |
can provey from ¢ in n time units, thenv believesy by timet + n. Since beliefs are
indexed with a time at which they are known to be believed, this simulative technique is
sound for a broader class of reasoning mechanisms than ours. Specifically, the closure

88

constraint is not required for soundness, because the logic differentiates between base
beliefs and derived beliefs. However, implicit in Haas’ presentation is the assumption
that the computation that generates new beliefs is undirected forward inference, simply
the enumeration of conclusions that can be reached from a set of premises, not goal-
directed inference that attempts to verify or refute a particular query sentence. If the
mechanism being used in simulative reasoning were a goal-directed theorem prover,
then one would not be justified in concluding that another agent with similar inferential
ability had reached the same conclusion in the same amount of time. For simulation
to be justified, one would have to know, in addition, that the agent had had occasion to
“wonder” about the query sentencée. had begun attempting to prove it. This kind of
information seems unlikely to be available in many ordinary situations.

Related ideas of time-bounded inference can be found in the “step logics” of Elgot-
Drapkin and Perlis [1990]. In these logics, an agent’s beliefs are seen as a set of sen-
tences that changes over time, at integral time steps, as a result of both observation
and inference. Inference can introduce new sentences derived (via sound or unsound
rules) from sentences believed in the previous time step, and can also cause the retrac-
tion of beliefs held in the previous step, as a result of contradictions discovered in the
earlier belief set. This nonmonotonicity makes the formalism more general than that of
Haas, but by the same token makes it less likely to be useful for reasoning about the
beliefs of others: Haas’ method of reasoning about belief requires only that one have
an upper bound on the time at which an agent learned a particular fact, but a step logic
requires that one know th@ecisetime at which each relevant fact was learned, since
a conclusion could be drawn from that fact early on, but later retracted. Indeed, Elgot-
Drapkin and Perlis make no claims about simulative inference. The step logics come
in pairs, consisting of an agent language which a machine could use for maintaining its
beliefs, and a meta-language characterized as a “scientific theory” of such a machine’s
beliefs, for use by humans in thinking about the machine’s behavior, but not intended
as a knowledge representation language for use in a computer program.

The logics of [Haas, 1995]| [Perlis, 1988], and [Grove, 1995] have in common
that they allow explicit quantification over names. In our model, in contrast, while
guantifying-in is implicitly quantification over names, terms of the logic are not ele-
ments of the domain of discourse. As a result, our logic is not quite as expressive;
Grove gives some examples of situations in which reasoning explicitly about names is
desirable. The tradeoff is that both the syntax and the inference methods for our logic
are significantly simpler.

Finally, the deduction model of belief of Konolige [1986] is similar to ours in im-
portant ways. We devote Section]5.5 below to a comparison of the two.

89

5.3 Implementations of Simulative Inference

Our work, like that of Konolige and Haas, provides both a technique for reasoning about
belief by simulative inference, and a formal definition of belief involving inference.
Many more systems have used the idea of simulative inference, but without the semantic
basis of an inferential model of belief.

In [Moore, 1973], Moore sketches an imagined system that would represent the
proposition ‘@« believesy” by creating a separate databasedé beliefs, and storing
pinit. Later queries of the form “does believey)?” would be answered by evaluating
the queryy in the context of that database. Moore later rejected this schHeme [1977],
pointing out that such a system would be unable to represent disjunctions of belief
sentencesg(g. “either o believesy, or he believeg)”) and negationsd.g. “« doesn'’t
believey”). His solution in [Moore, 1977] was to abandon simulative reasoning for a
technique that involves reasoning explicitly about possible worlds.

Creary [Creary, 1979] pointed out that the faults Moore found with the database
approach were valid arguments against using reasoning contexts f&iothgeof in-
formation about beliefs, but were not reasons to abandon simulative reasoning as an
inferential technique. Creary envisioned that facts about belief would be stored in their
objective form, a form that makes use of a belief operator, but that when simulative rea-
soning became appropriate, a new reasoning context could be created and the contents
of any relevant beliefs entered into it, just prior to a simulative query being made.

Unfortunately, as we discussed in Secfior] 4.3, in real applications a system is likely
to have an enormous amount of information about what other agents believe, and iden-
tifying the beliefs that are relevant to a particular query is by no means a trivial problem.
Therefore, in BILOG we have chosen to use the “database approaehrhaintaining
a persistent reasoning context for each agent about whose beliefs the system has some
information, as much as possible, while also having a belief operator in the general-
purpose representation language so that disjunctions and negations of belief sentences
can be stored in objective form. (We must note that whiteLBG's knowledge repre-
sentation is adequate for storing disjunctions and negations of beliefs, it remains to be
seen whether the inference mechanism can make use of this information fruitfully and
efficiently.)

The main assertion of the work of Chalupsky and Shapiro [Chalupsky and Shapiro,
1996 Chalupsky, 1996] is that one can never know for certain what inferences someone
else will make, and that therefore conclusions reached by simulative reasoning must be
defeasible. They have built an inference system that keeps track of the hypotheses
and assumptions upon which each derived sentence depends, so that if a hypothesis is
withdrawn, or an assumption proves to be incorrect, the conclusion will no longer be
believed. A conclusion drawn by simulative inference, although it is a derived conclu-
sion, is also marked as an assumption, and if it is contradicted by more authoritative

90

information {.e. information not derived by simulative inference), it ceases to be be-
lieved.

Incidentally, Chalupsky and Shapiro eschew truth-conditional semantics, but they
define a justification relationship which is intended to be analogous to the notion of
entailment in ordinary logics. Given that one has some set of base beliefs, this relation-
ship defines mathematically the set of propositions that one is justified in concluding.
The relationship is defined so that if someone with base beligfs ., ¢, is justified
in concludingy, then someone with base belig®$a, 1), ..., B(a, ¢,) is justified in
concludingB(«, v). In other words, simulative inference is alwgystified but some-
times it can bencorrect—sometimes an agent may simply fail to make an inference he
might well have made. (This is surely the only time an author has claimed an inference
rule to be both sound and defeasible [Chalupsky, 1996, p. 164].)

Given that current machines are very far from imitating human reasoning, and that
even humans can predict the beliefs of other humans only in very controlled circum-
stances, the idea of making simulative inference a defeasible rule is a very useful one,
and Chalupsky and Shapiro have demonstrated in great detail how the techniques of de-
fault logic and assumption-based truth maintenance can be applied to reasoning about
belief. We acknowledge that in practice the conditions for sound simulative inference
are rarely met, but nevertheless it is important to identify these conditions, in order to
be able to recognize the various ways they can be violated. Treating an inference rule
as defeasible only prevents it from swamping the system with absurdities if the rule’s
conclusion is contradicted by other information. Not all incorrect inferences are im-
mediately contradicted, and defeasibility doesn't protect the system from making poor
decisions based on incorrect assumptions. Ultimately, simulative inference should be a
defeasible rule, but one which is only applied in situations where it might be correct.

In Section 4.4, we noted a similarity in the representational needs of simulative
inference and assumption-based truth maintenance. Creary alluded to this similarity
when he suggested using a CONNIVER-like system of reasoning contexts for simula-
tive reasoning, and the similarity is realized in both SIMBA [Chalupsky, 1996] and Rhet
[Allen and Miller, 1991], each of which handles hypothetical reasoning and reasoning
about belief with a single mechanism. SIMBA’ justification management system is
simply to keep a list of the hypotheses on which each conclusion depends. As we
pointed out in Section 4.4, while this technique is attractive for its simplicity, it can’t be
used in EPILOG because of the non-sentential knowledge representations used by the
specialists, which can conflate the contents of multiple hypotheses, so that it becomes
impossible to obtain an exact list of the hypotheses used in a proof. Our alternative
was to use environments that combine all of the “hypotheses” that a particular agent
is thought to believe. This is also the approach used in Rhet, and for similar reasons,
since that system has an equality specialist like thatrof &G.

91

5.4 Related Issues

Our work on reasoning about belief has focused on simulative inference. This technique
can only be applied when one has already attributed some initial beliefs to an agent, and
we have said relatively little about how to obtain those premises. Others have written
about this question. Isozaki [1995] writes about ascribing belief by reasoning about
the observability of actions and common knowledge of their consequences. Jameson
[1995] discusses (probabilistically) ascribing beliefs to a person based on, for example,
the ascriber’s own beliefs, and knowledge about typical beliefs for some group. Ballim
and Wilks [1991] also write about a reasoner that ascribes its own beliefs to others,
using a default framework rather than a probabilistic one. Interestingly, their point of
view seems to be that any logicist theory of belief must try to characterize belief sets
using only semantic properties. They rightly hold that this can only lead to idealized,
unrealistic models, because it ignores the computational mechanism that generates the
belief sets; they cite this as justification for using a less principled approach to reasoning
about belief. Our work incorporates computational mechanisms into reasoning about
belief, without abandoning the logicist paradigm.

5.5 Konolige’s Deduction Model

In its essence, our model of belief bears a strong resemblance to Konolige’s deduction
model [1986]. In the deduction model, a believer is representedd®daction struc-

ture, which is composed of a set of sentences (the base beliefs) and a set of inference
rules. An agent’s belief set is the set of all sentences that can be derived from the base
beliefs by exhaustive application of the inference rules. Agents that are not logically
omniscient can exist in the deduction model, because the set of inference rules is not
required to be complete.

The fundamental difference between the deduction model and ours is the contrast
between deduction structures and belief machines, and we will focus primarily on the
consequences of this difference. However, at the end of this section we will briefly
mention some other differences.

5.5.1 Expressiveness

Neither model is strictly more expressive than the other. That is, each model is capable
of describing certain agents that can’t exist in the other. But, as we will now show, the
agents that exist only in the deduction model are merely mathematical constructions
that have no implementation as actual programs, while among those that exist only in
the computational model are some that reason in interesting and tractable ways.

92

One thing that distinguishes the computational model from the deduction model is
that it describes not only agents’ beliefs in a single state, but how their beliefs change
when they learn new information. In the deduction model, learning something new can
only be modeled as adding a new sentence to the base beliefs. This is sufficient when
the new information is consistent with the agent’s previous beliefs, but when it isn't,
it means that the agent must believe a contradiction. Naturally, to restore consistency
the agent should retract some of its previous beliefs, but a deduction structure cannot
describe how an agent chooses which beliefs to retract. A belief machine, in contrast,
can encode this kind of information. The functi®&LL describes how the belief ma-
chine’s state changes in response to any sentence, not only ones that are consistent with
what has preceded them.

Because our model of belief can describe reasoners whose beliefs change in in-
teresting ways, we anticipate that it will prove more fruitful to extend to a temporal
logic than the deduction model would. But even if we consider only the static logic
presented here, the possibility of belief revision distinguishes the computational model
from the deduction model. If a belief machine can reject beliefs when it discovers a
contradiction, then there may be certain sets of sentences that an agent can never be-
lieve simultaneously. For example, it is possible that, upon békig.ed the sentence
—P(c), a machine might cease to belie#éc), even if it had previously beeRELLed
P(c). For such a machine, the senter®e:, P(c)) A B(a, —~P(c)) is unsatisfiable (and
also inconsistent, thanks to the negative simulative inference rule). In Konolige’s logic,
regardless of the set of inference rules used by the agent’s deduction structure, the anal-
ogous sentence is satisfiable—in the deduction model any base belief set is possible,
even an explicitly self-contradictory one.

Negative introspection is one particular type of nonmonotonic reasoning that is pos-
sible in our model but not in Konolige’s. It is simple to design a belief machine with
negative introspection, but there is no equivalent deduction structure because there is
no way to write a deduction rule whose premise is dhsenceof a belief from the
belief set. Konolige does write a chapter on introspection [ch. 5]; it is about machines
that can query themselves, but aatherwisebe modeled as deduction structures. His
use of the negative introspection axiom to describe a class of machines [Theorem 5.4,
p. 78] is therefore misleading. In presenting this axiom, he is using the notation of his
logic of belief to describe an agent that cannot, in fact, exist in that logic.

For the purpose of further comparison, let us set aside agents that sometimes re-
ject what they ar@ELLed, and explore how the remaining agents in the computational
model compare with agents in the deduction model. Formally, let us add a new con-
straint, the “credulity constraint,” which requires that every sentence is monotonically
acceptable in every states.

B-SU{p} C B-TELLS,)

for every stateS and sentence. Belief machines satisfying this constraint never re-
ject information or revise their beliefs—they always believe everything they have been

93

TELLed, even if it is contradictory. With this constraint, the analogy between the two
models becomes much closer. For a machine satisfying the closure, commutativity, and
credulity constraints, the order of a sequence is never significant (the commutativity
constraint applies to all sequences, since since the credulity constraint says that every
sequence is acceptable), nor is repetition of elements in the sequence, so to determine
an agent’s belief set it is sufficient to know teetof sentences it haSELLed to its

belief machine, regardless of the sequence in which they were presented. The set of
TELLed sentences therefore becomes analogous to the base belief set of a deduction
structure. The one difference is that the sequendd=hi ed sentences must be finite in
length, while the base belief set of a deduction structure may be infinite. Any expres-
siveness gained from this difference is ill-gotten, because no agent that has existed for
only a finite amount of time can have explicitly stored infinitely many facts. We will
henceforth consider only finite base belief sets.

Under these three constraints, a believer in the computational model can be thought
of as a function from finite base belief sets to (possibly infinite) belief sets, as can a
believer in the deduction model. But neither model admits all such functions, so we
can now compare the two by comparing the set of such functions that each allows.

One readily apparent difference is that in the computational model, belief sets are
always computable, while in the deduction model they need not be. For example, if a
deduction structure includes a logically complete set of inference rules, then it generates
uncomputable belief sets, since the question of logical consequence is only semidecid-
able. Of course, it is by explicit stipulation that we requk8K and TELL to be re-
cursive functions, since the possibility of an uncomputable belief set conflicts with our
intuitions about what it means to believe.

Further comparison requires that we look more closely at the specification of what
sorts of inference rules may be used in a deduction structure. Konolige gives the fol-
lowing two requirements [p. 21]:

Provinciality: The number of input sentences (premises) of the rule is fixed and finite.

Effectiveness: The rule is an effectively computable function of its premises.

As we will show presently, these restrictions are stronger than is actually necessary
for Konolige’s purposes; but first let us consider how the two models compare if the
restrictions are taken literally. Note first of all that the requirement of provinciality,
as stated, would seem to imply that rule sets must be finite, since infinite rule sets
would allow this constraint to be circumvented: a single rule with a variable number
of premises could be replaced by an infinite set of rules, each with a fixed number
of premises. Theorein L6 shows that there is a belief machine satisfying all of the
constraints we have accumulated so far for which no equivalent deduction structure
exists, if the requirements of provinciality and effectiveness are taken at face value.

94

Theorem 16 There exists a belief machine, satisfying constraints C1-C5 and the
credulity constraint, for which there is no finite set of provincial, effective inference
rules R such thatn and R always yield the same belief set when given the same base
beliefs.

Proof: E]The construction for this proof can be summarized as follows: given a map-
ping between finite sets of sentences and Turing machines, we construct a belief ma-
chine whose belief set is finite exactly when the set of sentences it hasTB&¢rd
corresponds (via the given mapping) to a Turing machine that never halts on input 0.
This belief machine cannot be modeled by a finite set of deduction rules, because if it
could, then the set of Turing machines that never halt on input O would be recursively
enumerable: a Turing machine would run forever only if the closure of the correspond-
ing set of sentences under the assumed inference rules were finite, and that condition
can be effectively detected.

We construct a belief machine so that when iTEELLed a sentence, it simply adds
the sentence to a set, which we will henceforth call the machi&tabase The
database is empty in the initial statg. The treatment of the sentences as a set will
be guaranteed by the definition ASK which will be order-independent. We can thus
think of a database likgy1, . . ., ¢, } as a name for a belief state of the belief machine.
Different sets may turn out to name the same state.

For the definition ofASK, we will fix two recursive, non-repetitive enumerations
of sentences. First}, P, ... is an enumeration of some infinite set of tautologies in
which variables are the only terms. We will refer to these as the “chosen tautologies.”
Secondwy, w1, ... is an enumeration of all the remaining sentences of L, exclusive
of Py, P,.... Given a sentence; among thewg, wy, ..., we will refer to: as the
“rank” or “index” of the sentence. For th&), P, ... we could have chosen any infinite
recursive set of sentences that still leave infinitely many other sentences, but tautologies
are a “tidy” choice, ensuring that a believer does not make inconsistent extrapolations
from a consistent database. The beliefs of the belief machine we are constructing will
consist of the database, possibly (depending on the state of the machine) augmented by
infinitely many of the chosen tautologies, namély P;, ... for some; > 0. The
chosen tautologies are defined to have no terms other than variables as a simple way of
satisfying the constraint of monotonicity under substitution (C5).

We define the output oASK for databasd ¢, ..., ¢,}(n > 0) and queryy, i.e.
ASK({¢1,...,¢n}, 1), as follows:

o If € {p1,...,pn}, returnyes.

e If n > 0 andy = P, for somey, (i.e. it is a chosen tautology), then if for some
w; in {e1,...,p,} (i.e. for some sentence in the database that is not a chosen
tautology), theith Turing machine with input O halts withipsteps, returmyes.

This proof is due to Len Schubert.

95

o If neither of the above conditions applies, retwmn

Note that we are using the query in case it is a chosen tautology, to supply a com-
putation bound; (via its rank) on a a set of Turing machine computations. If those
computations never halt, we will retugras only for formulas explicitly in the database,
i.e. the belief set will be finite. If one of the computations does halt wigtsteps, then
we will returnyes for all tautologies from thgth-ranked onward, and so the belief set
will be infinite.

We now show that this belief machine satisfies constraints C1-C5. The closure
constraint (C[L) says th&tELLing the machine a sentence it already believes leaves
it unaffected. This is clearly true if the sentence is in the database. The only other
sentences the machine can believe are the chosen tautologies, frgtim-thaked (for
somej) onward. If weTELL it such a tautology, no new beliefs are induced since
the chosen tautologies occurring within the database are not used for Turing machine
computations.

The commutativity and monotonicity constraints [C2 afdl C3) are obviously satis-
fied, since allTELLed sentences are accepted (in any order), and the resultant state is
independent of order of presentation.

For the acceptable basis constrairjt|(C4), it is clear from the definitidicbf and
ASKthat the database of a belief machine provides a set of formulas that is acceptable
(in any order) by the machine in the initial state (named by the empty database). Further,
TELLing the machine these formulas, starting in the initial state, obviously brings it into
the state named by the database.

The constraint of monotonicity under substitution |(C5) is satisfied since the belief
set of the belief machine contains only sentences that were explidilyed, plus
possibly some chosen tautologies, which contain no ground terms to be renamed.

It remains to show that no finite set of recursive inference rules can model this be-
lief machine, in the sense of allowing the same simulative inferences (or “attachment”
inferences, as Konolige terms them). This follows from the fact that if there were such
a set of inference rules, we could recursively enumerate the Turing machines that do
not halt on input 0, which is impossible.

In particular, given recursive inference rulés, ..., R,,, where these derive the
same belief set from a given databaseA&#< we would proceed as follows to enu-
merate these Turing machines. We dovetail a set of computations corresponding to
singleton premise sefsuvy}, {w:}, ..., where for each such premise det;} we sys-
tematically generate all conclusions that can be obtained with Riyles ., R,,, start-
ing with {w;}. In other words, we initiate a deductive closure computation{fos}.

For each such closure computation, we continually check whether we have reached
closure yet. Note that if a closure computation generates only a finite set of sentences,
then we will eventually detect this; viz., at some point we will find that every rule in

Ry, ..., R, generates a conclusion (if any) that has already been generated, no matter

96

how we apply the rule to the conclusions already generated. (There are only finitely
many ways of applying an inference rule to a finite set of possible premises, and since
the rules are computable functions of their premises, they terminate after some time
with a conclusion, or, possibly, with a signal that no conclusion follows for the given
premises.)

Whenever we detect closure for the closure computation of samg we add:
to the list of indices of the Turing machines that do not halt with input 0. Note that
this identification of a non-halting Turing machine is correct, sih&&obtains a finite
set of beliefs from{w;} only if i is the index of a Turing machine which does not halt
for input 0. (If the Turing machine halt&4SK will say yes for infinitely many cho-
sen tautologies.) Further, since simulative inference with premisgusgtusingASK
will clearly generateall beliefs corresponding to databage; }, the rulesi,, ..., R,,
should also generate all of these beliefs. So clearly the above procedure should effec-
tively enumerate all Turing machines that do not halt with input 0, which is impossible.
HenceRy, ..., R,, must not existd

However, the requirements of provinciality and effectiveness, as stated by Konolige,
are stronger than what is really required, and relaxing them in either of two ways can
lead to the equivalence of the two models (with the computational model still subject to
the constraints of commutativity, closure, and credulity). One potential weakening is to
drop the provinciality constraint, with its implicit assumption that the rule set is finite.
Konolige’s intent in introducing that restriction appears to have been simply to prohibit
default rules, which draw conclusions from the entire knowledge base rather than some
subset of a particular size. But the essential feature of default rules that makes them
unsuitable is not the variable size of their premise sets, but their defeasibility. As long
as the inference rules are monotonic, it would seem that all of Konolige’s results still
hold, even if infinite rule sets or rules with varying number of premises are allowed.

If we allow deduction structures to contain infinitely many inference rules, then
given any belief machine meeting the closure, commutativity, and credulity constraints,
one can straightforwardly construct an equivalent set of inference rules: for every pos-
sible set of base beliefs and every conclusion the belief machine draws from those
beliefs, the set contains an ad hoc rule that licenses that conclusion given those base
beliefs. This construction is described more concretely in the proof of the following
theorem.

Theorem 17 If a belief machine satisfies the closure, commutativity, and credulity con-
straints, then there is an infinite set of inference rules that always yields the same belief
set when given the same base beliefs.

Proof: Given belief machinen = (T, Sy, TELL, ASK), we construct the set of in-
ference rulesR = {ry,rs, ...}, wherer; is defined as follows: to apply; to a set of

premisespy, . .., ©n,

97

1. Decode rule index as a pair of integerg;, k), where the encoding is based on
a 1-1 recursive function fronN x N onto N (whereN is the set of natural
numbers).

2. Decodej as a finite seb of sentences itk, i.e. interpret; as the @del number
of S, based on a &del numbering of all finite sets of sentenced.in

3. Decodek as a sentence in L, based on a @del numbering of all sentences in
L.

4. 1f S = {p1,...,pn} aNdASK(TELL(Sy, ¥1, ..., ¢n),¥) = yes, return conclu-
sioni. (Use some fixed method of ordering thg e.g. lexicographic ordering.)

5. If no conclusion was generated in step 4, signal that the rule is inapplicable to the
premises.

Consider an arbitrary base belief get;, . . ., ¢, }. For conciseness, define

Br = {¢|p1,...,on Fr Y}

and
B, = {|ASK(TELL(Sy, 1, - - -, ¢n),) = yes}

In the definition of B,,, the order of the sequencs, ..., v, IS not significant: m
satisfies the commutativity constraint, which says that order is not significant for any
acceptable sequence, and the credulity constraint, which says that every sequence is
acceptable.

Every sentencg € B,, is also inBg, becauser is constructed to contain the rule
% In the other direction, we need to show that for every sentgricewhich there
exists a proofpy, ..., p, F x, that sentence is iB3,,,. We will show this by induction
on the length of the proof of. If the length of the proof is zerage. x € {¢1,...,¢n},
theny € B,, because the credulity constraint says théecame a belief when it was
TELLed to the machine, and that no succeediig-L could cause that belief to be
revised. Assume that every sentence provable with the Rii@sat most/ steps from
o1, ..., o, isin B, and that the proof of from ¢4, ..., ¢, hasl + 1 steps. All of the
premises used in the lagt;+ 1st step in the proof of were themselves proved from
v1,...,9, In at mostl steps, and are therefore m),, by the induction hypothesis.

ASK(TELL(Sy, 11, ...,%m),x) = yes. The credulity constraint says that every se-
quence is monotonically acceptable, SOASK(TELL(Sy,¥1,...,%m),x) = vyes
then ASK(TELL(So,¢1,...,Ym,©1,---,0n),X) = yes. By the com-
mutativity constraint, ASK(TELL(Sy, ¢1,-- -, ©n, V15« %m), X) = yes.
Since eachvy; € B - TELL(Sy, ¢1,...,¢,), by the closure constraint
B - TELL(So, ¥1,- -, @ns 1,y m) = B - TELL(Sy, ¢1,...,¢,). Therefore,

X € B-TELL(So, ¢1,...,¢n),1.6.x € Bp,. O

98

In addition to dropping the provinciality restriction in favor of a prohibition against
defeasibility, one could also weaken the effectiveness restriction: instead of requiring
the (unique) conclusion to be derivable from the premises by an effectively computable
function, we could require only that there be an effectively computable function that
decides, given a set of premises and a conclusion, whether the premises justify the
conclusion. Inthat case, given any belief machine satisfying the closure, commutativity,
and credulity constraints, there is (trivially) a single inference rule that generates the

same belief sets, namely
P13 Pn

(4
whenASK(TELL(Sy, 1, - .., ¢n),) = yes.

While this is clearly not the kind of inference rule Konolige had in mind, the weak-
ened restrictions are arguably still reasonable, and none of Konolige’s technical results
are affected by the change.

To summarize the expressiveness comparison between the two models:

e Agents in the deduction model, but not in the computational model, can have
uncomputable belief sets. This is no advantage, since such agents obviously can’t
exist in practice.

e There are agents in the computational model, but not in the deduction model, for
which simulative inference is not sound. In the next section, we argue that this
is an advantage for the computational model, since it provides a vocabulary for
describing many kinds of inference mechanism, and for expressing constraints
that distinguish ones for which simulative inference is sound.

e Agents in the computational model, but not in the deduction model, can choose
to reject some of their input sentences, for instance in the case of contradictory
inputs. Therefore, for some belief machines a sentence suéh@s’(c) A
—P(c)) is not satisfiable, while there is no deduction structure for which the
analogous sentence is unsatisfiable.

o If we limit consideration to belief machines that satisfy the constraints under
which we’ve shown that that simulative inference is sound, and we add the fur-
ther restriction that the machine may not reject input sentences even if contradic-
tory, then any remaining belief machine describes an agent that can also exist in
the deduction model (but only if we relax Konolige’s definition of a deduction
structure in a non-trivial way).

99

5.5.2 Practical Applicability

Our aim in developing a model of belief has been to understand exactly when it is
appropriate to add simulative reasoning to a reasoning system, that is, a computer pro-
gram that manipulates logical formulas. In some cases, Konolige’'s model can serve
that purpose. If the program in question actually works by exhaustively applying a set
of deductive inference rules to its inputs, or by performing an exhaustive search for
a proof of a query sentence from the input sentences, then the deduction model ap-
plies quite straightforwardly. Of course, few reasoning programs work this way. Some
systems represent information in forms other than logical formulas, for example using
graphical representations that lend themselves to efficient reasoning in particular do-
mains (such as maps for spatial reasoning, graph structures for reasoning about partial
temporal ordering, etc.). Even in systems that reason by applying inference rules to
logical formulas, the inference rules are typically not applied exhaustively; rather, there
is a control mechanism that decides which rule to apply when, and when to give up.
For such programs, the deduction model may still apply, but not as straightforwardly.
Even if such a program has an equivalent deduction structure, the set of inference rules
in that deduction structure is not the same set of rules used by the program itself, since
the program doesn’t apply those rules exhaustively. If the system can be modeled by
a deduction structure at all, then it is one with a relatively complex set of inference
rules that incorporate both the system’s inference rules and its control structure. The
belief machine abstraction is a more straightforward way of describing a program that
performs inference.

It's true that to use the deduction model to justify simulative reasoning in a par-
ticular program, it is not necessary to list the inference rules of a deduction structure
that describes the program’s behavior. It is only necessary to show that such a deduc-
tion structure exists. But there are programs that are not described by any deduction
structure, and Konolige does not discuss how one can distinguish such programs. The
belief machine abstraction provides a vocabulary for expressing this question, and the
technical results reached in this paper can be used to answer it.

Konolige hints at a technique of augmenting the language of belief to accommodate
in the deduction model reasoning methods that violate the closure constraint [p. 24].
His example is to model a reasoner that only discovers conclusions that can be reached
from its base beliefs in at most applications ofmodus ponensfor some fixedn.
The technique is to add a “depth predicafe’'to the language, and give the agent the
following deduction rule:

D(E)Np, D) A D9
Dk+14+1)Avy
This proposal is simply not consistent with the semantics of Konolige’s logic. Deduc-

tion structures are supposed to use only sound inference rules, but the above rule is
clearly not sound, unless we take the agent being modeled to be using a non-standard

fork+1+1<n.

100

semantics, one that restricts the interpretation of the predicatehich is different

from the semantics by which our own beliefs are interpreted. This is, in fact, left im-
plicitly as a possibility [p. 32], but it is a distasteful one—if the sentences we attribute as
the beliefs of others are interpreted with a different semantics than the sentences of our
own beliefs, then how are we to understand what beliefs we are attributing? Further-
more, once the predicafe has been introduced into the language of belief, sentences
such asB(a, D(5) A P(b) A D(8)) andB(a, D(5)) are syntactically well-formed, even
though they have no meaning in the proposed scheme.

5.5.3 Completeness in the Deduction Model

In Sectior] 3.4]1, we showed that our logic is incomplete,given certain belief ma-
chines, there are formulas that are unsatisfiable yet cannot be disproved. In contrast,
Konolige proves a general completeness theorem, which holds given an arbitrary choice
of inference rules, for his deduction model. Since the concepts of the belief machine
and the deduction structure are quite similar, it is natural to ask why there are belief
machines for which our logic is incomplete, but there are no corresponding sets of in-
ference rules for which Konolige’s is incomplete. The answer, as we will now show,
is that completeness in Konolige’s model depends on the fact that the base belief set
may be infinite (the attachment lemma [Lemma 3.3] depends on this), while our model
requires that there be only finitely many base beliefs. At a given time, a real agent can
only have explicitly learned finitely many facts, so it is unrealistic to allow the base
belief set to be infinite.

We noted in Sectioh 3.4.1 that our proof theory is incomplete given a belief ma-
chine that answerges only to those sentences it has already b&BhlLed, because
given such a machine, the senteneeB(a, P(z)) has only finite models. In Kono-
lige’s model, there is a set of inference rules, namely the empty set, that makes the
same deductions as our example belief machine; but given that set of inference rules,
the sentenc&zB(a, P(x)) has both finite and infinite Konolige-style models. In the
infinite models, the agent denoted bogimply has infinitely many base beliefs.

This shows that the difference in completeness between our logic and Konolige’s is
not very significant. The difference is simply that in Konolige’s logic, certain theories
that intuitively should be unsatisfiable are satisfiable and consistent, whereas in our
logic those theories are unsatisfiable but still consistent.

5.5.4 Other Differences

In addition to modeling inference in a different way, we have made some other choices
in the design of our representation that differ from Konolige’s. These other differences
are orthogonal to the more fundamental choice of how to model inference.

101

ID constants: Konolige requires that for each agent, there be a naming map that maps
each individual in the domain to a unigigeconstant In other words, while an agent

may use several different terms to refer to the same individual, one of those terms is
always distinguished as the canonical name. ID constants are used in the semantics of
quantifying-in: an open belief formuldz B(a, P(x)) (translating Konolige’s notation

into ours) is true iff there is some id constanfor which B(a,Pk)) is true. We have
chosen not to require that individuals have canonical names, and we have defined the
semantics so that a quantified-in formdlaB (a, P(x)) is true if there is any term for

which B(a, P(7)) is true.

Quantification over believers: In Konolige’s logic, there is a different belief operator

for each agent, rather than a single operator that takes a believer argument. Therefore,
guantification over believers is impossible in Konolige’s logic—there is no equivalent
of the formulavzB(z, P(c)) of our logic.

Equality: Our logic includes an equality operator, while Konolige’s does not. This
is one of the things that makes the (restricted) completeness proof for our logic more
complex.

102

6 Conclusions

The concept of belief is an essential part of our intuitive understanding of human be-
havior. If we are to design a machine whose ability to reason about and interact with
humans approaches our own, we should make it able to reason about humans in terms
of their beliefs. This means we must provide it with a predictive model of human belief.
This is certainly not an easy task, but in a sense it is the very aim of all Al research.
The idea of simulative inference is that in order to reason about humans, an Al system
can use itself as a model of human belief.

This is not a new idea. Forms of simulative inference have been described in the
Al literature at least since [Moore, 1973]. But, while the intuition behind simulative
inference is clear, we feel that prior to our work, the intuition had not been transformed
into an adequate formal semantics for belief.

The role of semantics in an Al system is to define the meaning of the representa-
tions the system uses, thereby serving as justification for inferences the system makes.
Historically, simulative inference has often been applied without any formal basis, but
there have been a few previous attempts to define belief precisely and in a way that jus-
tifies simulative inference. One approach was to use Hintikka's possible worlds model,
but this is well-known to be problematic. It requires that agents’ beliefs be closed
under logical consequence, even in cases where the closure isn’'t computable, and it
denies the possibility of an agent that maintains contradictory beliefs in a useful way.
Levesque and others have modified the possible worlds model to weaken logical omni-
science while retaining a characterization of belief sets as closed under some form of
consequence. This approach has arguably been successful at defining a “lower bound”
for belief, by stipulating, for example, that believiggA ¢ is the same as believing
Y A . Butin these models, many reasonable and desirable entailments are eliminated
along with the unreasonable ones. They don't predict consequences which intuitively
we know exist, for example that someone who believes that Fido is a doberman and
believes that dobermans are dogs also believes that Fido is a dog.

Konolige responded to these theories with the claim that belief has the character-
istics it does because beliefs are held by a believer, which (the field of Al holds) is a
computational entity. The properties of belief depend crucially on the properties of the

103

computation that entity performs. Therefore, Konolige laid out a semantics of belief in
which a believer is modeled as a particular sort of computational mechanism, namely a
set of inference rules which are applied exhaustively.

Konolige’s model is important for acknowledging that computation is a crucial part
of the definition of belief. However, the class of models of believers allowed by Kono-
lige’s theory is quite limited. Al programs are intended to be models of believers, but
many such programs can’t be described in the terms the deduction model provides.
Furthermore, it isn’t always clear whether a given program can be described in those
terms or not.

Therefore, we have set out to define a theory of belief that allows a much more
general class of believer models. Konolige’s approach was to use a very restrictive
definition of a model of a believer, and to prove that simulative inference was sound for
all such models. Our approach was to use a much more general definition, so general
that simulative inference is cleartot always sound, and then to ask what properties
the believer's computation must have in order for simulative inference to be sound.

Perhaps not surprisingly, the conditions under which simulative inference is sound
turn out to be ones that many Al programs don’t satisfy. It will rarely be the case that
one can examine a system and simply declare, thanks to our results, that simulative
inference performed by the system is correct. The value of our work, therefore, is
in that it clearly and explicitly states the assumptions underlying simulative inference,
assumptions which before now had often remained implicit.

The case study of simulative inference imIEOG demonstrated how our model
can be of use in the principled design of a reasoning system. We found rhah &
violated the conditions for sound simulative inference in many ways. When a violation
is discovered, one can modify the system so that it no longer performs the problematic
sort of computation, at least not during simulations when it is being used as a model of
a believer, or one can simply show that problematic cases will not arise in practice.

Our work on EPILOG also brought to light a problem we had not foreseen for the
efficient implementation of simulative inference. In fact, the problem is not specifically
related to belief or simulation, but to the more general and widely-studied technique
of reason maintenance. What we discovered is that in a reasoning system that, like
EPILOG, stores information in various non-sentential forms, reason maintenance is dif-
ficult to implement without destroying the efficiency advantage the special representa-
tions are designed to provide. This problem has undoubtedly confronted many system
designers before in various guises, but we are not aware of its previously having been
identified in such general terms.

104

6.1 Future Work

We have seen that real reasoning systems often violate the conditions for correct sim-
ulative inference. Some of these violations suggest directions for refinement of the
model, to handle in a more principled way the situations in which the conditions are
not met. For example, we acknowledged the fact that, in practice, different people have
different inferential ability, but we appealed to the intuition that there is a basic level
of ability that is common to all. We also acknowledged that current Al systems are
far from perfect models of human belief, but appealed to the intuition that they usu-
ally derive a subset of the beliefs a human would reach from the same information, so
the difference between the model and reality is not likely to cause simulative inference
to give incorrect results. Both of these intuitions could be explored more formally by
allowing different agents in the model to have different belief machines, and defining
what it means for one machine to subsume another.

The monotonicity constraint is one that Al systems often don’t satisfy, and this too
suggests directions for future work. We have shown how with negative introspective
machines, simulative inference can essentially take into account information about what
an agent is knownotto believe, as well as what it is known to believe, thereby allow-
ing monotonic simulative inference using a nonmonotonic belief machine. Levesque’s
[1990] logic of “only knowing” does this too, but is more flexible: rather than specify-
ing particular sentences that an agent doesn'’t believe, the logic allows one to circum-
scribe what the agent does believe. It has an operator whose meaningdskiddws
is »,” i.e. for any sentence, o doesn’t knowy unless knowing) is a consequence of
knowingp. This operator could be adapted to our computational model, and a form of
simulative inference that uses “only knowing” information could be defined. This kind
of information might seem difficult to obtain (how can we knewerythinganother
person knows?), but [Lakemeyer, 1995] refines the idea of d&hows is¢” to “All
a knows that is relevant tg is ¢;” our computational framework could be used to give
a very satisfying account of relevance.

The notion ofcommon knowledgeénformation that all members of a group know,
and know that they all knovetc. ad infinitumarises in various areas of Al, for example
in theories of theommon grounaf a dialog. The possible worlds model is often used
in the semantics of common knowledge, and is problematic there for the same reasons
as for ordinary belief. This could be fertile ground for a computational account.

Reasoning about belief is not an end in itself. It is useful because it allows us to
explain and predict behavior. We stated glibly at the beginning of this chapter that
building a model of human belief is the aim of all Al research, but it would be more ac-
curate to say that the aim of Al research is to build a unified model of human perception
and action. Internally, such a model will undoubtedly incorporate not only the concept
of belief, but also other mental states such as desires and intentions. An Al system
that models many of these states could reason about all of them at once by simulation.

105

It would be interesting to extend our theory of belief to a more general computational
theory of agency.

The ternrationalis used in economics and sociology, particularly in game-theoretic
approaches, to describe an agent who always acts in a way that will maximize the
expected value for him of the resulting situation. The idealization of rationality is
closely related to that of logical omniscience, and is unrealistic for the same reasons. A
computational model of belief, and perhaps of other propositional attitudes, might be
useful in theories of “bounded rationality.”

Our implementation of simulative inference IrPEEOG is at a rather preliminary
stage, and there are many things that could be done to improve it. Perhaps the most im-
portant missing functionality is the ability to reason about belief change. Another issue
of primary concern is the design of the interestingness criterion. Input-driven inference
predicts what a human will believe after learning a given series of facts, regardless of
whether he has other reasons to ask himself particular questions. It therefore provides
a way to build an inference mechanism that is non-trivial but satisfies the closure con-
straint. The interestingness metric should be designed to maintain commutativity of
consistent inputs, in order to be compatible with simulative inference.

106

Bibliography

[Allen and Miller, 1991] James F. Allen and Bradford W. Miller, “The RHET Sys-
tem: A Sequence of Self-Guided Tutorials,” Technical Report 325, University of
Rochester, Rochester, NY, July 1991.

[Ballim and Wilks, 1991] Afzal Ballim and Yorick Wilks, Artificial Believers (The
Ascription of Belief) Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, 1991.

[Barwise and Perry, 1983] J. Barwise and J. PerSjituations and Attitudes MIT
Press, Cambridge, MA, 1983.

[Braun, 1998] David Braun, “Understanding Belief ReportBhilosophical Review
1998.

[BuvaC, 1993] S&a Buv&, “Propositional Logic of Context,” In Richard Fikes and
Wendy Lehnert, editorfroceedings of the Eleventh National Conference on Atrtifi-
cial Intelligence pages 412-419, Menlo Park, California, 1993. American Associa-
tion for Artificial Intelligence, AAAI Press.

[Carnap, 1947] R. CarnapMeaning and Necessity University of Chicago Press,
Chicago, 1947.

[Chalupsky, 1996] Hans ChalupskyIMBA: Belief Ascription by Way of Simulative
Reasoning PhD thesis, Department of Computer Science, State University of New
York at Buffalo, 1996.

[Chalupsky and Shapiro, 1996] Hans Chalupsky and Stuart C. Shapiro, “Reasoning
About Incomplete Agents,” IIRProceedings of the Fifth International Conference on
User Modeling 1996.

[Church, 1950] Alonzo Church, “On Carnap’s Analysis of Statements of Assertion
and Belief,” Analysis 10(5):97-99, 1950.

[Creary, 1979] Lewis G. Creary, “Propositional Attitudes: Fregean Representation and
Simulative Reasoning,” IWKCAI-79: Proceedings of the Sixth International Joint
Conference on Atrtificial Intelligen¢eolume 1, 1979.

107

[Cresswell, 1985] M. J. CresswelBtructured Meanings: The Semantics of Proposi-
tional Attitudes MIT Press, Cambridge, Massachusetts, 1985.

[Delgrande, 1995] James P. Delgrande, “A Framework for Logics of Explicit Belief,”
Computational Intelligencel1(1):47—-88, 1995.

[Dinsmore, 1991] John DinsmorePartitioned RepresentationsKluwer Academic
Publishers, 1991.

[Eberle, 1974] Rolf A. Eberle, “A Logic of Believing, Knowing, and Inferring8yn-
these 26:356-382, 1974.

[Elgot-Drapkin and Perlis, 1990] Jennifer J. Elgot-Drapkin and Donald Perlis, “Rea-
soning situated in time |: basic conceptdgurnal of Experimental and Theoretical
Artificial Intelligence 2:75-98, 1990.

[Fagin and Halpern, 1988] Ronald Fagin and Joseph Y. Halpern, “Belief, Awareness,
and Limited ReasoningAtrtificial Intelligence 34:39-76, 1988.

[Faginet al, 1995] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi, Reasoning about Knowledg®lIT Press, Cambridge, Massachusetts, 1995.

[Fodor, 1975] Jerry A. Fodor,The Language of ThoughfThomas Y. Crowell Com-
pany, New York, 1975.

[Frege, 1892] Gottlob Frege Uber Sinn und BedeutungZeitschrift fir Philosophie
und Philosophische Kiritikl00:25-50, 1892, Translated as "On sense and reference”
in [Frege, 1977].

[Frege, 1977] Gottlob Fregdranslations from the Philosohpical Writings of Gottlob
Frege Blackwell, Oxford, 1977, trans. P. T. Geach and M. Black.

[Gereviniet al, 1995] A. Gerevini, L. K. Schubert, and S. Schaeffer, “The tempo-
ral reasoning tools TimeGraph I-llJnternational Journal of Artificial Intelligence
Tools 4(1 and 2):281-299, 1995.

[Giunchigliaet al,, 1993] Fausto Giunchiglia, Luciano Serafini, Enrico Giunchiglia,
and Marcello Frixione, “Non-omniscient belief as context-based reasoning,” In
Thirteenth International Joint Conference on Artificial Intelligent893.

[Grove, 1995] Adam J. Grove, “Naming and Identity in Epistemic Logic Part II: a
First-Order Logic for Naming,Artificial Intelligence pages 311-350, 1995.

[Haas, 1986] Andrew R. Haas, “A Syntactic Theory of Belief and Actiofrtificial
Intelligence 28:245-292, 1986.

108

[Haas, 1995] Andrew R. Haas, “An Epistemic Logic with Quantification over Names,”
Computational Intelligencel 995.

[Halpernet al,, 1994] Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi, “Al-
gorithmic Knowledge,” In Ronald Fagin, editorheoretical Aspects of Reasoning
about Knowledge: Proc. Fifth Conferencpages 255-266, San Francisco, 1994.
Morgan Kaufmann.

[Hintikka, 1962] Jaakko Hintikka,Knowledge and BeliefCornell University Press,
Ithaca, New York, 1962.

[Hodges, 1983] Wilfrid Hodges, “Elementary Predicate Logic,” In D. Gabbay and
F. Guenthner, editorglements of Classical Logigolume | ofHandbook of Philo-
sophical Logi¢ chapter 1. D. Reidel, Boston, 1983.

[Hughes and Cresswell, 1968] G. E. Hughes and M. J. Cresswallntroduction to
Modal Logic Methuen, London, 1968.

[Hwang and Schubert, 1993] Chung Hee Hwang and Lenhart K. Schubert, “Episodic
Logic: A Comprehensive, Natural Representation for Language Understanding,”
Minds and Machines, Special Issue on KR in NB@):381-419, 1993.

[Isozaki, 1995] Hideki Isozaki, “Reasoning About Belief Based on Common Knowl-
edge of Observability of Actions,” In Victor Lesser, editbitst International Con-
ference on Multi-Agent Systeppages 193—200. AAAI Press/ The MIT Press, 1995.

[Jackendoff, 1983] Ray Jackendo8gmantics and CognitioMIT Press, Cambridge,
Massachusetts, 1983.

[Jameson, 1995] Anthony Jameson, “Logic is Not Enough: Why Reasoning About
Another Person’s Beliefs Is Reasoning Under Uncertainty,” In Armin Laux and
Heinrich Wansing, editoré¢nowledge and Belief in Philosophy and Artificial Intel-
ligence Akademie Verlag, Berlin, 1995.

[Kaplan, 1969] David Kaplan, “Quantifying in,” In D. Davidson and K. J. J. Hintikka,
editors,Words and Objections: Essays on the Work of W. V. Quiages 206—242.
Reidel, Dordrecht, 1969.

[Konolige, 1986] Kurt Konolige, A Deduction Model of Belief Morgan Kaufmann
Publishers, Inc., Los Altos, California, 1986.

[Kripke, 1963] S. A. Kripke, “Semantical Considerations on Modal Logidicta
Philosophica Fennical6:83—94, 1963.

[Kripke, 1980] Saul Kripke Naming and NecessitBlackwell, Oxford, 1980.

109

[Lakemeyer, 1994] Gerhard Lakemeyer, “Limited reasoning in first-order knowledge
bases,"Artificial Intelligence 71:213-255, 1994.

[Lakemeyer, 1995] Gerhard Lakemeyer, “Relevance in a Logic of Only Knowing
About and its Axiomatization,” In Armin Laux and Heinrich Wansing, editors,
Knowledge and Belief in Philosophy and Atrtificial Intelligenééademie Verlag,
Berlin, 1995.

[Lakemeyer, 1997] Gerhard Lakemeyer, “Relevance From an Epistemic Perspective,”
Artificial Intelligence 97(1-2):137-167, 1997.

[Lenat and Guha, 1990] D. B. Lenat and R. V. GuhBuilding Large Knowledge-
Based Systems: Representation and Inference in the CYC Rrapaison-Wesley,
Reading, Massachusetts, 1990.

[Levesque, 1984] Hector. J. Levesque, “A Logic of Implicit and Explicit Belief,” In
Proceedings AAAI-84ages 198—-202, Austin, 1984.

[Levesque, 1990] Hector J. Levesque, “All | Know: A Study in Autoepistemic Logic,”
Artificial Intelligence 42:263-309, 1990.

[McCarthy, 1958] John McCarthy, “Programs With Common SensePrbteedings
of the Teddington Conference on the Mechanisation of Thought Procdg;
Reprinted in[[Minsky, 1960].

[McCarthy, 1993] John McCarthy, “Notes on Formalizing Context,”Pioceedings
of the Thirteenth International Joint Conference on Artificial Intelligerpzeges 81—
98, Los Altos, California, 1993. Morgan Kaufmann.

[McDermott and Sussman, 1972] Drew McDermottand G. J. Sussman, “The Conniver
Reference Manual,” Technical Report 259, MIT, 1972.

[Miller and Schubert, 1990] S. A. Miller and L. K. Schubert, “Time Revisite@@m-
putational Intelligence6(2):108-118, 1990.

[Minsky, 1960] Marvin Minsky, editorSemantic Information ProcessiniylIT Press,
Cambridge, MA, 1960.

[Montague, 1973] Richard C. Montague, “The Proper Treatment of Quantification in
Ordinary English,” In J. Hintikka, J. Moravcsik, and P. Suppes, edifypproaches
to Natural LanguageReidel, Dordrecht, 1973.

[Moore, 1973] Robert C. Moore, “D-SCRIPT: A Computational Theory of Descrip-
tions,” In Third International Joint Conference on Artificial Intelligengeages 223—
229, 1973.

110

[Moore, 1977] Robert C. Moore, “Reasoning About Knowledge and ActionPrim
ceedings of the International Joint Conference on Artificial Intelligenoéume 1,
pages 223-227, 1977.

[Moore, 1995] Robert C. Moore,Logic and RepresentatipnCSLI Lecture Notes.
Center for the Study of Language and Information, 1995.

[Moore and Hendrix, 1982] Robert C. Moore and Gary G. Hendrix, “Computational
Models of Belief and the Semantics of Belief Sentences,” In S. Peters and E. Saari-
nen, editorsProcesses, Beliefs, and Questiobs Reidel, Dordrecht, Netherlands,
1982, reprinted in [Moore, 1995].

[Perlis, 1988] Donald Perlis, “Languages with Self-Reference II: Knowledge, Belief,
and Modality,” Artificial Intelligence 34:179-212, 1988.

[Rapaportet al, 1997] William J. Rapaport, Stuart C. Shapiro, and Janyce M. Wiebe,
“Quasi-Indexicals and Knowledge Reports,’Cognitive Science21(1):63-107,
1997.

[Salmon, 1986] Nathan SalmoRrege’s PuzzleMIT Press, Cambidge, MA, 1986.

[Schubert and Hwang, 2000] Lenhart K. Schubert and Chung Hee Hwang, “Episodic
Logic meets Little Red Riding Hood: A comprehensive, natural representation for
language understanding,” In L. lwanska and S.C. Shapiro, edidasjral Lan-
guage Processing and Knowledge Representation: Language for Knowledge and
Knowledge for LanguagéVIT/AAAI Press, 2000.

[Soames, 1988] Scott Soames, “Direct Reference, Propositional Attitudes, and Se-
mantic Content,” In Nathan Salmon and Scott Soames, ediwogositions and
Attitudes Oxford University Press, Oxford, 1988.

[Stalnaker, 1984] Robert Stalnakénquiry, MIT Press, Cambridge, Massachusettes,
1984.

	Curriculum Vitae
	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Perspective and Motivation
	Belief
	Simulative Inference

	The Model
	Syntax, Semantics, and Some Notation
	The Simulative Inference Rule
	Negative Simulative Inference
	Indexicality and Introspection
	Philosophical Considerations

	Mathematical Properties of the Logic
	Soundness Proofs
	Are the Constraints Necessary?
	Other Inference Rules
	Completeness
	Some Common Axioms
	The Simulative Inference Rule for Introspective Machines
	Summary of Mathematical Results

	Implementation
	Epilog
	Epilog as a Belief Machine
	Efficient Implementation
	The Generality of the Efficiency Problem
	Current State of Implementation
	Evaluation

	Other Work on Reasoning About Belief
	Possible Worlds Theories
	Sentential Theories
	Implementations of Simulative Inference
	Related Issues
	Konolige's Deduction Model

	Conclusions
	Future Work

	Bibliography

