
Artificial Intelligence 120 (2000) 119–160

A computational model of belief

Aaron N. Kaplan∗, Lenhart K. Schubert1

Computer Science Department, University of Rochester, Rochester, NY 14627-0226, USA

Received 9 June 1999; received in revised form 9 March 2000

Abstract

We propose a logic of belief in which the expansion of beliefs beyond what has been explicitly
learned is modeled as a finite computational process. The logic does not impose a particular
computational mechanism; rather, the mechanism is a parameter of the logic, and we show that
as long as the mechanism meets a particular set of constraints, the resulting logic has certain
desirable properties. Chief among these is the property that one can reason soundly about another
agent’s beliefs by simulating its computational mechanism with one’s own. We also give a detailed
comparison of our model with Konolige’s deduction model, another model of belief in which the
believer’s reasoning mechanism is a parameter. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

If an observer sees dark clouds and hears thunder, it might cause him to believe that it
will rain soon. Similarly, if the observer knows that Mary sees clouds and hears thunder,
he might conclude that she believes it will rain. The observer draws this conclusion by
drawing an analogy between Mary’s mental processes and his own: by observing how his
own beliefs work, he sees that if he were in her position, he would believe rain was coming.

This kind of reasoning, calledsimulative reasoning, has been explored in the AI
literature (e.g., [2,3]), but with the exception of [17], which we discuss below, the
treatments have lacked precise descriptions of conditions under which simulative reasoning
yields all and only correct conclusions.
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In order to make precise arguments of this kind, we need a formal model of belief. The
classical “possible worlds” model [18] might seem a natural choice, because it has the
following property: in the possible worlds model, if an agent believes some propositionϕ,
andϕ logically entailsψ , then the agent also believesψ . If the reasoning performed in a
simulation is sound, then any conclusion reached by simulative reasoning is justified by
the possible worlds model. But there are two problems with this model. First, believers can
only perform sound inference, while real believers may use unsound reasoning techniques
such as default reasoning. We will not address this issue in the current paper, but it is the
subject of [13]. Second, in the possible worlds model, believers are “logically omniscient”.
This means that if some proposition follows from an agent’s beliefs, then, according to the
model, the agent believes that proposition, no matter how difficult it might be to discover.
This violates common intuitions about what it means to believe something. We take “α

believesϕ” to mean that agentα can see with no conscious effort thatϕ is true given
what he has learned. If something does follow from whatα has learned, but it would
take a significant amount of reflection to discover this connection, then we do not say
that α believesϕ, only that after sufficient reflection he could come to believe it. This
view seems to us consistent with ordinary usage of the word “believes” (and similarly
“knows”). For example, most people who can correctly answer simple questions such as “Is
Copenhagen north of Rome?”, “Is twelve a prime number?”, or “Are squirrels primates?”
will also maintain that they have known (and thus believed) the correct answers for a long
time, even though they may never have explicitly considered those questions. By contrast,
most people who can correctly answer “Is 97 a prime number?” or “Are the full names of
Abraham Lincoln’s and John Kennedy’s assassins equal in length?” will do so only after
some deliberate reflection, and the longer they take to answer, the less likely they are to
claim that they knew the answer all along. Rather, they will say that they worked it out,
and now know it.

The idealized form of belief described by the possible worlds model has come to be
known as “implicit belief” (terminology introduced by Levesque [20]), since it describes
what is implicit in what an agent believes. This is in contrast to “explicit belief”, which
describes what an agent actively holds to be true. Much of the past work on explicit belief
has involved refinements to the possible worlds model that weaken the logic of belief in
various ways, eliminating some entailments that are inappropriate for explicit belief. But
such models are still far from capturing the ordinary, non-technical meaning of the word
“believes”. If a person believes that Fido is a terrier, and that terriers are dogs, then clearly
he also believes that Fido is a dog. In eliminating logical omniscience, many logics of
explicit belief also lose the ability to predict this inference.

The notion of belief we wish to capture involves the question of what inferences a
believer makes automatically, with no conscious effort. It is not surprising that this notion
isn’t captured by logics in which belief is characterized via semantic constraints on the
sentences or propositions that are believed. The inferences a believer makes easily and
automatically are determined by the mechanism he uses for maintaining his beliefs. This
mechanism may be very complex indeed, and there is no reason to think that its effects
could be described by a simple set of semantic constraints.

In this paper, we describe a model of belief that includes an explicitly computational
model of information storage and retrieval. In the model, each believer has abelief
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machine, which is a computational mechanism capable of checking current beliefs and
accepting new ones. The machine’s behavior is described by two recursive functions,ASK
andTELL. Each is a function of two arguments, the first being a state of the machine, and
the second a sentence of a logic. The value ofASK(S,ϕ) is eitheryesor no, indicating
whether an agent whose belief machine is in stateS believes the sentenceϕ or not.TELL
is the machine’s state transition function: upon receiving a new factϕ, a machine in state
S will move to stateTELL(S,ϕ). It may or may not believeϕ in this new state, i.e., it may
or may not accept the proffered fact.

Obviously, we do not intend to give in this paper a thorough functional description of
the mechanisms humans use to maintain their beliefs. Rather, we define a class of logics
such that, given an arbitrary computational mechanism for storage and retrieval, there is
a logic for reasoning about the beliefs of agents who use that mechanism. Unlike many
previous authors, who have imposed a particular inference mechanism and then explored
the consequences of that choice, we prove that our logic has certain desirable properties
no matter what mechanism is used, as long as it satisfies a particular set of formal (and
intuitively natural and rather easily verifiable) constraints.

In order to study simulative reasoning, we make the assumption that all agents’ belief
machines are functionally identical, i.e., that if two agents have different beliefs, it is
only because they have learned different things, not because they have different inherent
abilities. This would be accurate for identically constructed artificial agents, but also
seems to us a reasonable first approximation about human reasoners. The requirement of
functional identity is not as strong as it might first appear. The fact that two agents have the
same belief machine does not necessarily mean that they use the same inference methods.
What goes on in the belief machine in response to a series of input formulas could be any
sort of computation, including the learning of new inference rules.

The paper is organized as follows. In Section 2, we define a logic whose semantics
incorporates the computational model of belief. In Section 3.1, we describe simulative
reasoning as an inference rule in this logic, and show that the rule is sound under certain
constraints on the functionsASK and TELL. In Section 3.3, we present some more
inference rules, and show conditions on the belief machine under which they are sound.
Then, in Section 4, we treat the issue of completeness. We show that for some choices of
belief machine, no complete set of inference rules can exist; however, we also show that
the set of rules presented in this paper is refutation complete for a syntactically restricted
subset of the logic (roughly stated, sentences that don’t use universal quantifying-in), given
any belief machine for which the rules are sound.

The axioms of the classical modal logicsT, S4, S5, etc., and other axioms such as the
Barcan formula, describe various properties of belief that hold in certain models. These
axioms serve as standard criteria for evaluating and comparing modal logics. In Section 5,
we discuss several of the classical axioms, and characterize the kind of computation the
belief machine must perform in order for each them to be valid.

In Section 6, we compare our computational model of belief with other models. We
mention various semantic characterizations of belief, but the greater part of the section
is devoted to Konolige’s deduction model [17], which is like our model in that it
acknowledges that inference is a crucial component of belief, and in that it licenses a
form of simulative reasoning. We point out the differences between our model and that
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of Konolige, and examine how these differences affect the relative expressiveness and
appropriateness of the two models.

2. Syntax and semantics

Our model of belief is built around the concept of thebelief machine, which is an
abstraction of a computational inference mechanism. In the model, each agent has a belief
machine that it uses for storing and retrieving information. The agent enters facts it has
learned into its belief machine, and then poses queries to it. Input and queries to the
machine are expressed as logical sentences, but the model does not constrain the form
in which the machine stores and manipulates the information internally. For example, the
machine might use diagrammatic or algorithmic encodings of information. The machine
may perform some inference in answering queries, but it must be guaranteed to give an
answer in a finite amount of time. An agent believes a sentenceϕ if its belief machine is in
a state such that the queryϕ is answered affirmatively.

A belief machine is characterized by two functions,TELL andASK. TELL describes
how the state of the machine changes when a new sentence is stored: ifS is the current
state of the belief machine, andϕ is a sentence, then the value ofTELL(S,ϕ) is the new
state the belief machine will enter afterϕ is asserted to it. The value ofASK(S,ϕ) is either
yesor no, indicating the response of a machine in stateS to the queryϕ.

This model of belief is used to interpret sentences of a logic, which consists of ordinary
first-order logic (FOL) plus a modal belief operatorB. Whereα is a term andϕ is a
formula, B(α,ϕ) is a formula whose intended meaning is thatα believesϕ. Let the
languageL be the set of formulas formed in the usual way from the logical constants¬,
=, ∧, ∨, ⊃, ∀, and∃, the modal operatorB, and a set of individual constants, predicate
constants, function constants, and variables (infinitely many of each).⊥ is notation for an
arbitrary contradictionϕ ∧¬ϕ. Lc is the set of sentences (closed formulas) ofL.

Formally, a belief machine is a structure〈Γ,S0,TELL,ASK〉, where
• Γ is a (possibly infinite) set of states,
• S0 ∈ Γ is the initial state,
• TELL:Γ ×Lc→ Γ is the state transition function,
• ASK:Γ ×Lc→{yes,no} is the query function.
Formulas ofL have a truth value relative to a model, which is composed of a domain of

individuals and an interpretation function, as in a model for ordinary FOL, and a functionγ

that assigns a belief state to each individual (for simplicity, we do not distinguish between
individuals that are believers and ones that aren’t). A single belief machine is chosen
ahead of time to describe the reasoning abilities of all agents—the belief machine does
not vary from model to model. Therefore, concepts such as entailment, soundness, and
completeness are only meaningful relative to a particular choice of belief machine. To be
explicit about this, we will sometimes refer to an “m-model”, wherem is a belief machine.
Formally, given a belief machinem = 〈Γ,S0,TELL,ASK〉, an m-model is a structure
〈D,I, γ 〉, where
• D is the domain of individuals,
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• I is an interpretation function that maps variables and individual, predicate, and
function constants to set-theoretic extensions, as in ordinary FOL,
• γ :D→ Γ is a function that assigns each individual a belief state.
We will use the notation|τ |M to mean the denotation of termτ under modelM. Note

that the domain of the interpretation function includes the variables, so that a model assigns
denotations to all terms, even those containing free variables. The denotations of functional
terms are determined recursively in the usual way.

The truth values of ordinary (non-belief) atomic formulas, and of complex formulas, are
determined in the usual way. In particular, a universally quantified formula∀νϕ is true in
a modelM if the open formulaϕ is true in every modelM ′ that differs fromM by at most
its interpretation of the variableν; and similarly for existential formulas.

A variable substitutionis a mapping from variables to ground terms. A variable
substitutionσ is extension-preservingunder modelM if, for every variableν, the
denotation ofν and the denotation ofσ(ν) are the same inM. We write ϕσ to mean
the formula that results from replacing every free variable occurrence inϕ with the ground
term to whichσ maps that variable.

Wherem= 〈Γ,S0,TELL,ASK〉 is a belief machine, andM = 〈D,I, γ 〉 is anm-model,
a belief atomB(α,ϕ) is true inM iff there exists some variable substitutionσ which is
extension-preserving underM such thatASK(γ (|α|M),ϕσ ) = yes. This gives a variable
that occurs in a belief context, but is not bound in that context, a reading of implicit
existential quantification over term names. For example,B(a,P (x)) is true in modelM
if there is some termτ , which denotes the same thing asx in M, for whichB(a,P (τ)) is
true.

We will useTELL(S,ϕ1, . . . , ϕn) as an abbreviation for

TELL(. . .TELL(TELL(S,ϕ1), ϕ2), . . . , ϕn),

i.e., the state that results from successivelyTELLing each element of the sequence,
beginning in stateS.

The notationB · S means the belief set of a machine in stateS, i.e.,

B · S = {ϕ | ASK(S,ϕ)= yes
}
.

A sentenceϕ is acceptablein stateS if TELLing the machineϕ while it is in stateS
causes it to believeϕ, i.e., if

ϕ ∈ B · TELL(S,ϕ).

A sentenceϕ is monotonically acceptablein stateS if it is acceptable inS andTELLing
the machineϕ while it is in stateS does not cause it to retract any beliefs, i.e., if

B · S ∪ {ϕ} ⊆ B · TELL(S,ϕ).

A sequence of sentencesϕ1, . . . , ϕn is (monotonically) acceptable in stateS if each element
ϕi of the sequence is (monotonically) acceptable in the stateTELL(S,ϕ1, . . . , ϕi−1).
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3. Inference rules

Some inference rules from ordinary FOL are also sound in our logic. Others are sound
for some choices of belief machine, but not for others. In this section, we present a set of
natural deduction-style inference rules for the logic, and show that given certain constraints
on the belief machine, they are all sound.

3.1. The simulative inference rule

Simulative reasoning is reasoning of the following form: “α believesϕ1, . . . , ϕn; if I
believed those things, then I would also believeψ ; therefore,α believesψ”. This form of
reasoning is expressed by the following inference rule, where the formulas above the line
are the premises, the formula below the line is the conclusion, and the rule applies only
when the condition written below it holds:

B(α,ϕ1), . . . ,B(α,ϕn)

B(α,ψ)

if ASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes.

While most of our inference rules will apply to all formulas, this rule applies only
to sentences, because to apply the rule one must use the sentences inTELL and ASK
computations (recall thatTELL andASKare defined only for sentences).

This rule may or may not be sound, depending on the choice of belief machine. We will
show as Theorem 1 that it is sound when the belief machine satisfies the constraints listed
below. Though the inference rule only explicitly requires that

ASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes

for one ordering of theϕi , the constraints entail that if theϕi can all be believed
simultaneously, then the order in which they areTELLed is not significant.

The simulative inference rule is sound under the following three constraints:

C1 (closure). For any belief stateS and sentenceϕ, if

ASK(S,ϕ)= yes

then

B · TELL(S,ϕ)= B · S.
The closure constraint says thatTELLing the machine something it already believed does

not change its belief set (though the beliefstatemay change).

C2 (finite basis). For any belief stateS, there exists a monotonically acceptable sequence
of sentencesϕ1, . . . , ϕn such that

B · TELL(S0, ϕ1, . . . , ϕn)= B · S.
The finite basis constraint says that for each belief state, a state with the same belief

set can be reached from the initial state byTELLing the machine a finite, monotonically
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acceptable sequence of sentences. It requires that even if the belief machine reached its
current state via a sequence ofTELLs that was not monotonically acceptable, the same
beliefs can be induced via some monotonically acceptable sequence.

Keep in mind that the belief machine need not describe an agent’s entire reasoning
capability. It is intended to describe only the kinds of inference the agent makes easily
and automatically. IfTELLing ϕ to an agent’s belief machine would cause its belief set
to change, the closure constraint does not preclude the possibility that the agent might
discover thatϕ follows from its beliefs. It only requires that thebelief machinecan’t make
this discovery, i.e., that the agent doesn’t currently believeϕ. The agent may have reasoning
facilities external to the belief machine that it can use to discoverϕ. If it did so, it would
presumably update its belief machine with the new information, consequently entering a
new belief state. In that case, we would say that the agent’s beliefs changed as a result of
reflection.

C3 (commutativity ). For any belief stateS and monotonically acceptable sequence of
sentencesϕ1, . . . , ϕn, and for any permutationρ of the integers1 . . .n, the sequence
ϕρ(1), . . . , ϕρ(n) is also monotonically acceptable, and

B · TELL(S,ϕ1, . . . , ϕn)= B · TELL(S,ϕρ(1), . . . , ϕρ(n)).

The commutativity constraint says that if a sequence of sentences is monotonically
acceptable, then it is monotonically acceptable in any order, and the belief set of the
resulting state does not depend on the order. Note that this constraint does permit the belief
machine to take order into account when deciding how to handle contradictory (i.e., non-
monotonically-acceptable) inputs.

Theorem 1 states that the simulative inference rule is sound given any belief machine
that satisfies the above three constraints.

Theorem 1 (Soundness of simulative inference).For belief machine

m= 〈Γ,S0,TELL,ASK〉
satisfying constraints(C1)–(C3), m-modelM = 〈D,I, γ 〉, and sentencesϕ1, . . . , ϕn and
ψ , if M |=⋃i{B(α,ϕi)}, and ASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes, thenM |= B(α,ψ).

Proof. Assume that

M |= B(α,ϕi) (1)

for all 16 i 6 n, and assume that

ASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes. (2)

LetS = γ (|α|M), i.e., the belief state of the agent denoted byα. From (1) and the semantics
of the operatorB, it follows that for eachϕi , there is an extension-preserving variable
substitutionσi such that

ASK(S,ϕσii )= yes. (3)
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Furthermore, since the rule only applies when theϕi have no free variables,ϕσi is the same
asϕi for anyσ . Therefore (3) is equivalent to

ASK(S,ϕi)= yes, 16 i 6 n. (4)

According to the finite basis constraint (C2), there is some sequence of sentences
χ1, . . . , χm which is monotonically acceptable forS0, such that

B · TELL(S0, χ1, . . . , χm)= B · S. (5)

From (4) and (5), it follows that

ASK(TELL(S0, χ1, . . . , χm),ϕi)= yes, 16 i 6 n. (6)

From (6) andn successive applications of the closure constraint (C1), it follows that

B · TELL(S0, χ1, . . . , χm,ϕ1, . . . , ϕn)= B · TELL(S0, χ1, . . . , χm), (7)

and that the sequenceχ1, . . . , χm,ϕ1, . . . , ϕn is monotonically acceptable forS0. By
the commutativity constraint, the sequenceϕ1, . . . , ϕn,χ1, . . . , χm is also monotonically
acceptable forS0, and

B · TELL(S0, ϕ1, . . . , ϕn,χ1, . . . , χm)

= B · TELL(S0, χ1, . . . , χm,ϕ1, . . . , ϕn)

= B · TELL(S0, χ1, . . . , χm) (see (7))

= B · S (see (5)). (8)

Since the sequenceϕ1, . . . , ϕn,χ1, . . . , χm is monotonically acceptable forS0, by the
definition of ‘monotonically acceptable’ it is also true that the sequenceχ1, . . . , χm is
monotonically acceptable forTELL(S0, ϕ1, . . . , ϕn), and hence

B · TELL(S0, ϕ1, . . . , ϕn)⊆ B · TELL(S0, ϕ1, . . . , ϕn,χ1, . . . , χm). (9)

Eq. (2) says that

ψ ∈ B · TELL(S0, ϕ1, . . . , ϕn) (10)

From (8), (9), and (10), it follows that

ψ ∈ B · S (11)

or, equivalently,

ASK(S,ψ)= yes. (12)

Sinceψ was assumed to have no free variables,ψσ is the same asψ for any variable
substitutionσ . By the semantics ofB and our choice ofS = γ (|α|M), the desired
conclusion follows:

M |= B(α,ψ). 2 (13)
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3.2. An example belief machine

The constraints under which we have proved the soundness of simulative inference are
not so restrictive as to exclude interesting kinds of computation. We will now illustrate this
with one example. Our example machine does limited deductive reasoning by checking
for clause subsumption, and it is able to revise its beliefs when given information that
contradicts earlier inputs.

The machine’s state consists of a list of believed clauses, maintained in the order in
which they were learned. TheASK function works as follows. First, if its sentential
argument contains any quantifying-in, it simply answersno. Otherwise, it converts the
sentence to clause form, both at the top level and in belief contexts, distributingB over
conjuncts. For example, the sentence

¬B(a,P (c)∧ P(d))
becomes

¬[B(a,P (c))∧B(a,P (d))]
which is further converted to

¬B(a,P (c))∨¬B(a,P (d)).
Note that, since quantifying-in is prohibited, a free variable occurring in a belief context in
a clause can unambiguously be read as being bound by an implicit quantifier lying within
the narrowest containing belief context. That is, the clauseB(a,B(b,P (x))) is equivalent
to B(a,B(b,∀xP(x))), not B(a,∀xB(b,P (x))) or ∀xB(a,B(b,P (x))). Once the input
sentence has been converted to a set of clauses, each clause is compared against the list of
stored clauses that comprises the machine’s state. If every clause of the query is subsumed
by some stored clause, the function answersyes; otherwise, it answersno.

TheTELL function, when given a sentence, first checks whether the sentence contains
any quantified-in belief atoms or any positively embedded existential quantifiers. If so, it
does nothing—that is, having rejected the input, the machine remains in the same state.
If not, it next runs theASK function on the sentence. If the answer isyes, then it does
nothing—the sentence is already believed, so the machine remains in the same state. If the
answer isno, it then runs theASK function on the negation of the input sentence, to see if
the input contradicts what is currently believed. If the answer to that query isno, then the
machine enters a new state by adding the clause form of the original sentence to the list
of believed clauses. If the answer isyes, indicating a contradiction, then the contradiction
is resolved by removing some clauses, chosen as follows, from the list. Each clause in
the negation of the input is subsumed by one or more clauses in the list. The clause from
the negated input whose most recently learned subsuming clause is the earliest is the one
chosen to be rejected. All clauses on the list that subsume that clause are discarded, so that
the negation of the input is no longer believed. Then the input is added as above.

Note first of all that theASK andTELL algorithms halt on all inputs (as long as the
list of believed clauses is finite, and the list must be finite if there have been only finitely
many precedingTELLs), and therefore they do define a belief machine. Furthermore, the
machine satisfies constraints (C1)–(C3), as we will now show, and therefore simulative
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inference using this machine is sound. The closure constraint is satisfied because before
changing the belief state,TELL first calls ASK, and it remains in the same state if the
proffered sentence is already believed. The finite basis constraint is satisfied because a
belief state is simply a list of clauses, and that list of clauses itself, translated back into
sentential form, is a monotonically acceptable sequence of sentences that could beTELLed
to a machine, starting from the initial state, to induce the same belief set. The order of
TELLed sentences is taken into account when revising beliefs, but this does not violate the
commutativity constraint. This last constraint is satisfied because if a sequence of sentences
is monotonically acceptable inS0, then in the state resulting fromTELLing that sequence,
the list of believed clauses is simply the list of input sentences converted to clause form;
and theASKfunction pays no attention to the order of the clause list, so the belief set is the
same regardless of the order of the inputs.

3.3. Other rules

We now give the remainder of the set of inference rules that will be proved complete in
Section 4.

3.3.1. Negative simulative inference
For completeness, we will also need another form of simulative inference, one that

allows us to detect by simulation that a set of sentences is not simultaneously believable.
As in the former rule, theϕi in this rule must be sentences, not open formulas;α may be
any term.

B(α,ϕ1), . . . ,B(α,ϕn)

⊥
if ASK(TELL(S0, ϕ1, . . . , ϕn),ϕi)= no for somei,16 i 6 n.

This rule says that ifTELLing the belief machine a set of sentences doesn’t cause it to
believe all of those sentences, then no agent can believe all of them simultaneously. It is
sound for any belief machine that satisfies constraints (C1)–(C3).

Theorem 2 (Soundness of negative simulative inference).Given a belief machine that
satisfies constraints(C1)–(C3), if

ASK(TELL(S0, ϕ1, . . . , ϕn),ϕi)= no

for some16 i 6 n, then{B(α,ϕ1), . . . ,B(α,ϕn)} is unsatisfiable.

Proof. We will prove the contrapositive of the above statement. Assume that{
B(α,ϕ1), . . . ,B(α,ϕn)

}
is satisfiable, i.e., that there exists some stateS such thatASK(S,ϕi)= yesfor all 16 i 6 n.
By the finite basis constraint, there is some sequence of sentencesψ1, . . . ,ψm that is
monotonically acceptable forS0, such that

B · TELL(S0,ψ1, . . . ,ψm)= B · S.
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This means that

ASK(TELL(S0,ψ1, . . . ,ψm),ϕi)= yes, 16 i 6 n.
By the closure constraint, if we take a machine in stateTELL(S0,ψ1, . . . ,ψm) andTELL
it each of theϕi in turn, the resulting states will all have the same belief set, which means
that the entire sequence

ψ1, . . . ,ψm,ϕ1, . . . , ϕn

is monotonically acceptable forS0. Therefore, the commutativity constraint applies; it says
that the sequence

ϕ1, . . . , ϕn,ψ1, . . . ,ψm

is monotonically acceptable forS0, which by the definition of monotonic acceptability
means that the initial subsequenceϕ1, . . . , ϕn is monotonically acceptable forS0.
Therefore, all of theϕi are elements ofB · TELL(S0, ϕ1, . . . , ϕn). 2
3.3.2. Rules of propositional logic

The remainder of the inference rules apply to all formulas, not just closed ones.
We adopt a complete set of standard inference rules for propositional logic. It will

be convenient later on, in the completeness proof, to consider a formula of the form
ϕ ⊃ ψ as an abbreviation for¬ϕ ∨ ψ , so we will not bother with inference rules for the
connective⊃. 2

• Commutativity rules

ϕ ∨ψ
ψ ∨ ϕ

ϕ ∧ψ
ψ ∧ ϕ

• ∧-introduction, elimination

ϕ ψ

ϕ ∧ψ
ϕ ∧ψ
ϕ

• ∨-introduction
ϕ

ϕ ∨ψ
• DeMorgan’s rules

¬(ϕ ∧ψ)
¬ϕ ∨¬ψ

¬ϕ ∨¬ψ
¬(ϕ ∧ψ)

¬(ϕ ∨ψ)
¬ϕ ∧¬ψ

¬ϕ ∧¬ψ
¬(ϕ ∨ψ)

• Reductio ad absurdum

¬ϕ
...

⊥
ϕ

2 Other inference rules, such as double negation and disjunction elimination, can be derived from these rules.
The particular set of rules presented here was chosen simply because it facilitates the completeness proof.
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All but the last rule are trivially sound by the semantics of the connectives. Thereductio
rule, which justifies the conclusionϕ when assuming¬ϕ leads to a contradiction, can be
proved sound by induction on the length of the assumed proof.

3.3.3. Rules for handling equality
In ordinary FOL, substitution of one term for another is permitted if the two terms are

known to denote the same thing. In our logic, such substitutions are only allowable outside
of belief contexts. The restricted rule of substitution is:

α = β ϕ

ϕ′
whereϕ′ is ϕ with the termβ substituted for one or more occurrences ofα that are
not in belief contexts, such that none of the occurrences ofα being replaced contain
variables bound inϕ, and such that the substitution does not cause any free variable
of β to become bound inϕ′.

Since it applies only in extensional (non-belief) contexts, this rule is trivially sound by
the semantics of equality.

There is one situation in which substitution of a coextensive term is sound in belief
contexts, which we cover with a separate rule, the rule of substitution in negative belief
contexts:

¬B(α,ϕ) ν = τ
¬B(α,ϕτ/ν)

whereν is a free variable ofϕ, and substitutingτ for ν in ϕ does not cause any free
variable ofτ to become bound.

Theorem 3 (Soundness of substitution in negative belief contexts).For modelM, formula
B(α,ϕ), variable ν, and termτ such that the substitution ofτ for ν in ϕ would not
cause any free variable ofτ to become bound, ifM |= ¬B(α,ϕ) andM |= ν = τ then
M |= ¬B(α,ϕτ/ν).

Proof. Assume thatM |= ¬B(α,ϕ), meaning that there is no variable substitutionσ which
is extension-preserving underM such thatM |= B(α,ϕσ ). If M 6|= ¬B(α,ϕτ/ν), then there
would have to be an extension-preserving substitutionσ ′ such thatM |= B(α, (ϕτ/ν)σ ′).
If that were the case, we could construct another substitutionσ which was identical toσ ′
except thatσ(ν) wasτσ

′
. With this newσ ,M |= B(α,ϕσ ), contrary to our assumption.2

We also need an identity axiom and a rule of commutativity:

τ = τ, τ1= τ2
τ2= τ1 .

3.3.4. Restricted∀-instantiation
The instantiation of a universally-quantified variable with an arbitrary term is sound

when it takes place in extensional contexts, just as in ordinary FOL, but is not always
sound in belief contexts: it is possible for∀xB(a,P (x)) to be true yetB(a,P (c1)) false,
for example ifc2 denotes the same thing asc1 andB(a,P (c2)) is true.
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∀-instantiation is only unsound when the variable being instantiated occurs in a
positively embedded belief context. To make the definition of a positive embedding precise,
we treat∃νψ as an abbreviation for¬∀ν¬ψ , andψ ⊃ χ as an abbreviation for¬ψ ∨ χ .
With these definitions, an occurrence of a formulaψ within a formulaϕ is negatively
embedded inϕ if it lies in the scope of an odd number of of negations, and is positively
embedded otherwise.

The rule is as follows, whereϕτ/ν is the result of substituting termτ for all free
occurrences of variableν in ϕ:

∀νϕ
ϕτ/ν

if the substitution ofτ for ν in ϕ does not cause any free variable ofτ to become
bound, and no occurrence ofν that is free inϕ is within a belief context that is
positively embedded inϕ.

In proving the soundness of this inference rule, we will use the following lemma:

Lemma 4. Let ϕ be any formula,ν a variable that occurs free inϕ, τ a term whose
substitution forν in ϕ doesn’t cause any free variable ofτ to become bound, and
M1 = 〈D,I1, γ 〉 a model. LetM2 be a model〈D,I2, γ 〉, whereD and γ are the same
as inM1, andI2 is the same asI1 except thatI2(ν) is |τ |M1. Then

(a) if no free occurrence ofν in ϕ is in a negatively embedded belief context, and
M1 |= ϕτ/ν , thenM2 |= ϕ;

(b) if no free occurrence ofν in ϕ is in a positively embedded belief context, and
M2 |= ϕ, thenM1 |= ϕτ/ν .

Note that the lemma entails that if no free occurrence ofν is in any belief context at all,
thenM2 |= ϕ if and only ifM1 |= ϕτ/ν .

Proof. The proof is by induction on the complexity ofϕ. The bases of the induction
are the atomic formulas. The lemma clearly holds for ordinary (non-belief) atoms, and
for belief atoms in whichν does not occur free in the second argument, because these
are extensional contexts. For the case of a belief atom containing a free occurrence
of ν in the belief context, assume thatM1 |= B(ατ/ν ,ψτ/ν). This means that there
is some variable substitutionσ , which is extension-preserving underM1, such that
ASK(γ (|ατ/ν |M1), (ψτ/ν)

σ ) = yes. Construct a new variable substitutionσ ′ identical to
σ except thatσ ′(ν) is τσ . Thenσ ′ is extension-preserving underM2: it agrees withσ on
every variable other thanν, therefore preserving the extension of those variables underM2
(as well asM1); and as forν,

|σ ′(ν)|M2 = |τσ |M2 by the construction ofσ ′

= |τσ |M1 becauseM1 andM2 agree on the interpretation of
all ground terms

= |τ |M1 sinceσ is extension-preserving underM1

= I2(ν) by the construction ofI2.
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Thenψσ
′

is (ψτ/ν)σ (by the construction ofσ ′), and|α|M2 is the same as|ατ/ν |M1 (by
the construction ofM2), so ASK(γ (|α|M2),ψσ

′
) = yes, soM2 |= B(α,ψ). This proves

that part (a) of the lemma holds for atomic formulas; part (b) holds trivially, because if an
occurrence ofν in an atomic formula is not in a positively embedded belief context, then
it is in no belief context at all.

For the induction step, we must show that if the lemma holds for two formulasψ and
χ , then it also holds for any formula that can be constructed usingψ and/orχ and one
connective. Since all of the connectives can be defined in terms of¬, ∧, and∀, it will be
sufficient to show it for¬ψ , ψ ∧ χ , and∀µψ . It is clearly true forϕ ∧ψ ; we will prove it
for ¬ψ and∀µψ .

For¬ψ : if ν occurs free in both positively and negatively embedded belief contexts in
¬ψ , then the induction hypothesis is preserved trivially, because neither of the antecedents
of (a) or (b) holds. Otherwise, assume first thatν does not occur in any positively embedded
belief context in¬ψ , which means that it does not occur in any negatively embedded belief
context inψ . If M2 |= ¬ψ , thenM2 6|= ψ . By the induction hypothesis, it follows that
M1 6|= ψτ/ν , and thereforeM1 |= ¬ψτ/ν , preserving the hypothesis. A similar argument
applies in the opposite direction ifν occurs in no negatively embedded belief context
in ¬ψ .

For ∀µψ : assume for case (a) thatM1 |= ∀µψτ/ν . That means that for any modelM ′1
that differs fromM1 at most in its interpretation ofµ,M ′1 |=ψτ/ν . For each suchM ′1 there

is anM ′2 identical toM2 except that|µ|M ′2 = |µ|M ′1. µ does not occur inτ (otherwise
substitutingτ for ν would cause the free occurrences ofµ in τ to become bound) and is
not the same asν (otherwiseν would not occur free in∀µψ), so |ν|M ′2 is |τ |M ′1 (because
|ν|M2 is |τ |M1). The induction hypothesis therefore applies, entailing thatM ′2 |= ψ for all
of theM ′2 under consideration, soM2 |= ∀µψ by the semantics of∀. Again, a similar
argument applies in the other direction.2

We can now prove the soundness of the inference rule.

Theorem 5 (Soundness of restricted∀-instantiation).For modelM, formulaϕ, variable
ν, and termτ such that the substitution ofτ for ν in ϕ would not cause any free variable
of τ to become bound, and such that no occurrence ofν that is free inϕ is within a belief
context that is positively embedded inϕ, if M |= ∀νϕ thenM |= ϕτ/ν .

Proof. AssumeM |= ∀νϕ. ThenM ′ |= ϕ for everyM ′ that differs fromM only in its
interpretation ofν. In particular, this holds for theM ′ that is identical toM except that
|ν|M ′ is |τ |M . For that choice ofM ′, we haveM ′ |= ϕ, and we have restricted the rule
so that no occurrence ofν is in a positively embedded belief context, so by Lemma 4 it
follows thatM |= ϕτ/ν . 2
3.3.5. ∃-elimination and Skolemization

In the completeness proof, we will find it convenient to treat an existential quantifier
as notation for a negated universal quantifier, so we formulate the rule of∃-elimination in
those terms:
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∆ ¬∀νϕ

∆,¬ϕµ/ν
...

ψ

ψ

whereµ andν are both variables, andµ doesn’t occur free in∆, ϕ, orψ .

In words, this rule says that ifψ can be proved from the premises∆ ∪ {¬ϕµ/ν}, where
µ doesn’t occur in∆, ϕ, or ψ , then it is also a valid conclusion from the premises
∆∪ {¬∀νϕ}.

The∃-elimination rule involves replacing an existentially quantified variable with a free
variable. This is similar to Skolemization, in which an existentially quantified variable is
replaced with ground term. An∃-elimination rule that used ground Skolem terms instead
of free variables would be sound in FOL; but when applied to a formula in which the
existentially quantified variable occurs in a negatively embedded belief context, such a
rule wouldnot be sound. Consider a belief machine that always answersyesto the query
P(τ)∨¬P(τ) for any termτ . For this machine, the sentence∃x¬B(a, [P(x)∨¬P(x)])
is consistent (and satisfiable, namely by models in which some individual is not denoted by
any ground term), but no Skolemized version of the sentence is consistent, because the rule
of simulative inference can be used to proveB(a,P (τ)∨¬P(τ)) for any ground termτ .

Since our version of∃-elimination uses free variables instead of ground Skolem
terms, it avoids drawing unjustified conclusions. However, if this were the only form of
∃-elimination available, the logic would be weaker than necessary, because using Skolem
terms inpositivelyembedded belief contexts can lead to sound conclusions that could not
be reached otherwise. For example, consider a belief machine that always applies a rule of
∃-introduction, so that if an agent believesP(τ) for any termτ , then it must also believe
∃x[P(x)]. For such a machine,∃x[B(a,P (x))] entailsB(a,∃x[P(x)]), but that conclusion
cannot be derived using only the inference rules we have introduced so far. The proof
would require an application of the rule of simulative inference, but the belief arguments
of the premises of that rule must be sentences, andP(x) is not a sentence. Therefore, we
introduce a rule of belief Skolemization:

∆ B(α,ϕ)

∆,B(α,ϕκ/ν), κ = ν
...

ψ

ψ

whereν is a free variable ofϕ, andκ is some “ordinary” individual constant that
does not occur in∆, α, ϕ, orψ (the definition of an ordinary constant will be given
below).

For the completeness proof, it will be useful to note the following: this rule ensures that if
{∆,B(α,ϕκ/ν), κ = ν} is inconsistent for some constantκ that doesn’t occur in∆, α, orϕ,
then{∆,B(α,ϕ)} is also inconsistent. This is seen by lettingψ in the inference rule be⊥.

This rule is not sound for all belief machines. Consider a belief machine that treats
the individual constantc differently from all other terms: in some states the machine will
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answeryesto the queryP(c), but no matter what it has beenTELLed, it always answersno
to P(τ) for any termτ other thanc. For this belief machine, the sentence∃xB(a,P (x))
is satisfiable, but Skolemizing with an arbitrary constantd will result in the unsatisfiable
sentenceB(a,P (d)).

Consider another belief machine that can believeP(τ) for any constantτ , but only
for one such constant in any given belief state. For this machine, each ofB(a,P (b)) and
B(a,P (c)) is satisfiable on its own, but their conjunction is not. The theory{

B(a,P (b)),∃xB(a,P (x))}
is satisfiable, but the theory{

B(a,P (b)),∃xB(a,P (x)),B(a,P (c))},
which is the result of Skolemizing the original theory with the Skolem constantc, is
unsatisfiable.

We can allow belief machines to have constants that receive special treatment, but such
constants are not appropriate for use as Skolem constants. As long as there is also an
infinite supply of “ordinary” constants, i.e., ones about which the belief machine has
no a priori disposition, belief Skolemization is still possible. The following constraint
formalizes this requirement; we will then prove that for machines that satisfy the finite
basis constraint (C2) and the new constraint, the belief Skolemization rule is sound.

C4 (monotonicity under substitution). There must be infinitely many individual constants
κ such that for any ground termτ and sentencesϕ1, . . . , ϕn,

(1) if

ASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes

andϕ1τ/κ , . . . , ϕnτ/κ is monotonically acceptable forS0, then

ASK(TELL(S0, ϕ1τ/κ , . . . , ϕnτ/κ ),ψτ/κ )= yes,

(2) if

ASK(TELL(S0, ϕ1, . . . ϕn), ϕi)= no

for some16 i 6 n, then

ASK(TELL(S0, ϕ1τ/κ , . . . , ϕnτ/κ ), ϕj τ/κ )= no

for some16 j 6 n.

The intuition behind this constraint is that if one set of sentences contains no less
information than another, then the belief machine should draw no fewer conclusions
from the first set than from the second. An assertion about a term that has already been
used in other assertions, or about a functional term containing function and/or individual
constants that have been used in other assertions, conveys more information than the same
assertion about a previously unseen constant (such as a Skolem constant). For example,
if we know P(c) but know nothing aboutd , then the assertionQ(c) conveys more
information thanQ(d), because it makes a connection to other knowledge. The first half of
the constraint says that if the belief machine draws the conclusionψ after beingTELLed
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something about a Skolem constantκ , then it must draw the corresponding conclusion
ψτ/κ if it is TELLed the same thing about any termτ , unlessψτ/κ is inconsistent with
its previous beliefs. The second half of the constraint says that if a sequence of assertions
about a Skolem constant is not acceptable, then the sequence must still not be acceptable
if the Skolem constant is replaced by any other term.

The constraint of monotonicity under substitution does allow for the possibility that
certain constants have special computational significance to a belief machine. For example,
a machine might have hard-coded beliefs about numbers, expressed using the constants
0,1,2, . . . . For such a machine, the assertionweight-of(a)= 15 conveys information that
is not contained inweight-of(a) = c, for example, assuming the machine has not seen
the constantc before. The constant 15 might not satisfy the constraint of monotonicity
under substitution for this machine. If not, then it would of course be inappropriate to use
15 as a Skolem constant, even if the machine had not previously beenTELLed anything
involving 15 (i.e., if all of its beliefs involving 15 were intrinsic to its mechanism). This is
permitted by the constraint, as long as infinitely many non-special constants are available
for Skolemization.

We now prove the soundness of proofs that use any of the above inference rules,
including∃-elimination and belief Skolemization.

Theorem 6 (Soundness of proofs).Given a belief machinem satisfying constraints(C1)–
(C4), anm-modelM, set of formulasΓ , and formulaψ , if M |= Γ andΓ ` ψ using the
inference rules listed above, thenM |=ψ .

Proof. The proof is by induction on the length of the derivationΓ ` ψ . For current
purposes, we define the length of a proof to include the lengths of any subproofs used
in reductioand∃-elimination steps. The basis of the induction is proofs of length zero:
if ψ ∈ Γ , then trivially M |= ψ . Assume that every proof of length6 n is sound. A
proof of ψ from Γ of lengthn + 1 is composed of a proof of length6 n, followed by
a final proof step whose premises are inΓ or were conclusions of earlier steps, and whose
conclusion isψ . If that final step is an application of anything other than∃-elimination or
belief Skolemization, then the entire proof is sound, because we have already shown that
those other rules are sound. We now consider the two remaining rules in turn.

If the final step is an application of∃-elimination, let∆ and¬∀νϕ be its premises, and let
∆,¬ϕ[µ/ν] ` ψ be the required subproof. By the induction hypothesis,M |=∆∪{¬∀νϕ},
since the premises of this proof step were all proved in6 n steps from the original
premisesΓ . By the semantics of¬ and∀ (i.e., the semantics of∃), there is a modelM ′,
which differs fromM by at most its interpretation ofν, for which M ′ 6|= ϕ, so that
M ′ |= ¬ϕ. Construct another modelM ′′ identical toM except that|µ|M ′′ = |ν|M ′ . Then
M ′′ |= ¬ϕµ/ν . Sinceµ doesn’t occur free in∆, it is also the case thatM ′′ |=∆. Since all
the premises of the subproof are true inM ′′, and the subproof is sound by the induction
hypothesis, it follows thatM ′′ |= ψ . SinceM ′′ andM differ only in their interpretation of
µ, which does not occur free inψ , it also follows thatM |=ψ .

If the final step is an application of belief Skolemization, let∆ andB(α,ϕ) be its
premises, and let∆,B(α,ϕκ/ν), κ = ν ` ψ be the required subproof of length6 n.
M |=∆ ∪ {B(α,ϕ)} by the induction hypothesis, because these premises were derived at
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earlier steps in the proof. SinceM |= B(α,ϕ), there is some variable substitutionσ that is
extension-preserving underM for whichM |= B(α,ϕσ ). Letτ beσ(ν). From the subproof
∆,B(α,ϕκ/ν), κ = ν ` ψ , we can construct another proof of the same length by replacing
each occurrence ofκ with τ . We must show that the resulting sequence is itself a valid
proof, by showing that each step is licensed by one of the inference rules. This can be done
case-by-case for each of the inference rules that might be used in the proof. It is clear for all
of the rules other than those of positive and negative simulative inference: none of the other
rules is ever sensitive to the form of a ground term. In other words, given a valid application
of one of these rules, if one term is uniformly replaced with another in the premises and
the conclusion, then the result is still a valid application of the rule. If one of these rules
licenses the conclusionψ from the premisesϕ1, . . . , ϕn, then it also licenses the conclusion
ψτ/κ from the premisesϕ1τ/κ , . . . , ϕnτ/κ . This is not always the case for the rules of
positive and negative simulative inference. These two rules depend on the behavior of
the belief machine, whichmaybe sensitive to the form of a term (for example, some belief
machines may have hard-coded beliefs about the special constant 0 that they do not have
about other ground terms). However, the first part of the constraint of monotonicity under
substitution (C4) restricts sensitivity to the form of terms in such a way that if simulative
inference licenses the conclusionB(α,ψ) from the premisesB(α,ϕ1), . . . ,B(α,ϕn), and
those premises are simultaneously satisfiable, then simulative inference also licenses
the conclusionB(α,ψτ/κ ) from the premisesB(α,ϕ1τ/κ), . . . ,B(α,ϕnτ/κ ). The second
part of the constraint ensures that if the rule of negative simulative inference licenses
the conclusion⊥ from the premisesB(α,ϕ1), . . . ,B(α,ϕn), then it also licenses the
conclusion⊥ fromB(α,ϕ1τ/κ ) . . .B(α,ϕnτ/κ).

Sinceκ was chosen so that it doesn’t occur in∆,α,ϕ, or ψ , the premises∆τ/κ are the
same as∆, and the conclusionψτ/κ is the same asψ . Sinceτ is σ(ν), andσ is extension-
preserving underM,M |= τ = ν; and since(ϕτ/ν)σ is the same asϕσ ,M |= B(α, (ϕτ/ν)σ ),
soM |= B(α,ϕτ/ν).

We have constructed a proof∆,B(α,ϕτ/ν), τ = ν ` ψ of length6 n, and we have
shown the premises of that proof are true inM. By the induction hypothesis, the proof is
sound, so its conclusionψ must be true inM as well. 2
4. Completeness

Depending on the choice of the belief machinem, the inference rules given here may or
may not be complete, and in fact there are some belief machines for which no complete
proof system can exist. However, for a restricted subset of the language, the set of inference
rules introduced above is refutation complete for every belief machine.

Konolige [17] presents a logic of belief that is similar to ours, but for which a gen-
eral completeness proof does exist. Section 6.1.3 points out an unrealistic assumption that
weakens the notion of entailment in Konolige’s model, making the completeness proof
possible.

4.1. General incompleteness

Consider a very simple belief machine which performs no inference at all. It keeps a list
of the sentences it has beenTELLed, and saysyesto exactly those sentences andno to all
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others. This machine meets all the criteria for the soundness of our inference rules. Using
such a machine, the sentence∀xB(a,P (x)) has only finite models: for this sentence to be
true in an infinite model,B(a,P (τ)) would have to be true for infinitely many termsτ ,
which is impossible since the belief machine can have beenTELLed only finitely many
sentences.

Let ∆ be a theory that has only infinite models. For instance,∆ could be this
axiomatization of the “greater-than” relation:

∀x∃y(y > x)
∀x∀y∀z(x > y)∧ (y > z)⊃ (x > z)
∀x∀y(x > y)⊃¬(y > x).

Let∆′ be the theory

∆∪ {∀xB(a,P (x))}.
Since ∆ has only infinite models, and∀xB(a,P (x)) has only finite models,∆′ is
unsatisfiable. However, intuition about the inference rules we have introduced says that
∆′ is consistent (has no disproof). If that is so, then the logic is incomplete. A more formal
proof will use the following lemma:

Lemma 7. It is undecidable in general whether a given finite theory of first-order logic
has a finite model.

Proof. If there were a decision procedure for this problem, it could be used to construct a
decision procedure for the halting problem. To decide if a given Turing machine halts on a
given input, encode the (finite) initial state of the machine and its tape, and a description of
how the finite state machine operates, as a finite theory of FOL. This can be done in such a
way that any model of the theory will include one individual for each of the finitely many
states of the machine, one for each of the finitely many symbols in the tape alphabet, one
for each of the spaces on the tape used in the computation, and one for each unit of time
at which the machine changes state, moves its tape head, or writes a symbol on the tape. If
the machine halts at some time, the theory will have a finite model; if it runs forever, the
theory will have only infinite models.2
Theorem 8. For a belief machine that answers affirmatively to those sentences it has
explicitly been TELLed, and no others, the logic is incomplete.

Proof. If there were a complete proof system for our logic, then it could be used to decide
whether an arbitrary theory∆ has a finite model, contrary to Lemma 7. If∆ had no finite
model, then

∆′ =∆∪ {∀xB(a,P (x))}
would be unsatisfiable, and given a complete proof system we could eventually prove this.
If ∆ did have a finite model, then one could eventually be found simply by picking an
arbitrary domain of cardinalityn for eachn= 1,2, . . . , each time enumerating and testing
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all possible models (for the subset ofL built only from vocabulary occurring in∆′) with
that domain. 2
4.2. Restricted completeness

We have shown that for some belief machines, no set of inference rules is complete.
However, we will now show that the set of rules introduced above is complete for a
restricted subset of the language, given any belief machine for which the rules are sound.
Loosely stated, the restriction is that universal quantification into a positively embedded
belief context is not allowed.

As mentioned in Section 3.3.4, to make the definition of a positive embedding precise,
we treat∃νψ as an abbreviation for¬∀ν¬ψ , andψ ⊃ χ as an abbreviation for¬ψ ∨ χ .
Another complication is that universal quantification can be “disguised” as existential
quantification by nesting an existential formula inside the scope of a universal quantifier:
∀x∃y[x = y ∧B(a,P (y))] is logically equivalent to∀xB(a,P (x)). For the completeness
theorem, we defineL1 to be a language constructed likeL, but with the restriction that
when all existential quantifiers are rewritten as universal quantifiers with negation, no
free variable of the belief argument of a positively embedded belief atom is bound by
a positively embedded (universal) quantifier, nor by a negatively embedded (universal)
quantifier that is inside the scope of a positively embedded one.

Theorem 9 (Restricted refutation completeness).If formula ϕ ∈ L1 is unsatisfiable, then
ϕ `⊥.

Proof. The proof is an adaptation of the completeness proof for standard FOPC found
in [9]. There are two main steps: first, it is shown that any consistent formulaϕ ∈ L1 can
be extended to a Hintikka set∆Sk=∞ in which only finitely many formulas are asserted to be
beliefs of each agent; and second, that every such set has a model. Any model for∆Sk=∞ is
a model forϕ (sinceϕ ∈∆Sk=∞ ), and therefore every consistent formula has a model. This
is the contrapositive of the refutation completeness theorem, so the theorem itself follows.

To begin, choose an orderingψ0,ψ1,ψ2, . . . of the formulas ofL1 such that every
formula occurs infinitely often in the list; and choose some orderingτ0, τ1, τ2, . . . of all
the terms inL1 so that every term in the language has a finite index.

To extend an arbitrary formulaϕ ∈ L1 to a Hintikka set of formulas inL1, we define
theories∆0,∆1, . . . by induction.∆0 is the set{ϕ}. For i > 0, every formula in∆i is in
∆i+1; in addition, if the formulaψi (from the ordering chosen above) is an element of∆i ,
then certain new formulas are elements of∆i+1, depending on the form ofψi :

(1) if ψi is of the form¬¬χ , thenχ ∈∆i+1.
(2) if ψi is of the form¬(χ ∧ω), then¬χ ∨¬ω ∈∆i+1.
(3) if ψi is of the form¬(χ ∨ω), then¬χ ∧¬ω ∈∆i+1.
(4) if ψi is of the formχ ∧ω, then bothχ,ω ∈∆i+1.
(5) if ψi is of the formχ ∨ ω, then eitherχ or ω is in∆i+1. The choice is made such

that∆i+1 is consistent.
(6) if ψi is of the form¬∀νχ , and there is no variableµ for which¬χµ/ν is already in

∆i , then¬χµ/ν is in∆i+1 for some new variableµ that doesn’t occur in∆i .
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(7) if ψi is of the form∀νχ , thenχτj /ν is in∆i+1 for the first termτj from the ordering
chosen above for whichχτj /ν isn’t already in∆i and for which the substitution
doesn’t cause any free variable ofτj to become bound.

We need to prove that at each step, if∆i is consistent, then there exists a∆i+1, as described
in the appropriate one of the above cases, which is also consistent. It is immediately clear
that no inconsistency will be introduced by cases (1), (2), (3), or (4), because the new
formulas they introduce correspond to inferences licensed by the rule of double negation,
DeMorgan’s rules for∧ and∨, and∧-elimination, respectively. Since the new formulas
were derivable from the formulas in∆i , and∆i is consistent, the new formulas must be
consistent with∆i . The new formula¬χµ/ν introduced in case (6) is not licensed as a
sound inference, but if∆i ∪ {¬χµ/ν} ` ⊥, then∆i `⊥ by the rule of∃-elimination.

Case (5) is not as simple, because it involves making a choice. Eitherχ or ω, but not
necessarily both, is added to∆i+1. But one of the two choices must result in a consistent
∆i+1. If not, i.e., if there were proofs∆i,χ ` ⊥ and∆i,ω ` ⊥, then there would also
be reductio proofs∆i ` ¬χ and∆i ` ¬ω. From there, one could construct a proof
∆i ` ¬(χ ∨ ω) using∧-introduction and DeMorgan’s rule. Sinceχ ∨ ω ∈∆i , that would
mean that∆i was inconsistent, contrary to assumption.

Case (7) corresponds to the the rule of∀-instantiation. For that rule to be applicable, the
variableν must not occur in a positively embedded belief context. This restriction is met
if the formulaψ is in L1; and indeed it must be, because we assumed thatϕ is in L1, and
none of the cases (1)–(7) introduces any new quantifiers, nor changes the polarity of the
embedding of any quantifier.

We have shown that each∆i exists and is consistent. Let∆∞ be the union of all the∆i .
For∆∞ to be inconsistent would mean that there was a proof of⊥ from some subset of it.
Since proofs are finite by definition, that subset would have to be finite. Any finite subset of
∆∞ is contained in∆i for some finitei, so if∆∞ were inconsistent then some∆i would
have to be inconsistent. Therefore,∆∞ exists and is consistent.

Next we will show that, while there may be infinitely many belief atoms that are
elements of∆∞, only finitely many formulas occur as the belief arguments of such belief
atoms. Cases (1)–(7) break down complex formulas into their component subformulas.
When a new formula is introduced into some set∆i , wherei > 1, it is always because
of the presence of some other formula in∆i−1, and each atom occurrence in the new
formula corresponds to one atom occurrence in the old one. Therefore, the ancestry of
each atom occurrence in∆∞ can be traced back to one atom occurrence inϕ. We begin
by showing that if two belief atoms are themselves elements of∆∞ (as opposed to
subformulas of elements of∆∞) and have the sameϕ-ancestor, then they have identical
belief arguments. In cases (1)–(6), each atom occurrence in the chosenψi is given at most
one immediate descendant. In other words, the ancestry tree only branches in case (7).
Since every∆i is a subset ofL1, if ψi is a universally quantified formula, then there is no
quantification (neither existential nor universal) into positively embedded belief contexts in
ψi . Therefore, all descendants of positively embedded belief atom occurrences inψi have
identical belief arguments (since the only cases in which a child is not identical to its parent
are those involving quantification). The ancestry tree rooted at a given positively embedded
belief atom occurrence inϕ is linear up to the first application of case (7), and after that
point all descendants have the same belief argument, so it follows that all unembedded
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belief atoms that are elements of∆∞ and descendants of the sameϕ-ancestor have the
same belief argument.

Sinceϕ is a finite formula, it contains only finitely many belief atom occurrences,
and, in particular, only finitely many positively embedded ones. We have shown that all
descendants of each such occurrence that are (unembedded) elements of∆∞ have identical
belief arguments. Therefore, only finitely many formulas occur as belief arguments in
belief atoms that are elements of∆∞.

We now construct another theory,∆Sk∞, which contains all of the formulas in∆∞, plus
Skolemized versions of any top-level positive belief literals whose belief arguments have
free variables. The terms that occur in∆∞ can be partitioned into equivalence classes such
that termsτ1 andτn are in the same class iff there is a sequenceτ1, . . . , τn such that the
equationsτ1 = τ2, τ2 = τ3, . . . , τn−1 = τn are all elements of∆∞ (treating the order of
an equation as unimportant, so that an equationτ2 = τ1 is just as good asτ2 = τ1). Let
Π1,Π2, . . . be all the equivalence classes of terms that occur in∆∞, and letτi,1, τi,2, . . .
be all the terms in equivalence classΠi . For each equivalence classΠi , there is a set of
formulas{

ψ | B(τi,j ,ψ) ∈∆∞ for somej
}
.

We have shown that there are only finitely many of these formulas; call themψi,1, . . . ,ψi,ni .
For each formulaψi,j , letψ ′i,j be a Skolemized version, in which all of the free variables
νi,j,1, . . . , νi,j,m are replaced by previously unused Skolem constantsκi,j,1, . . . , κi,j,m, re-
spectively. To form∆Sk∞, we add to∆∞ the formulasB(τi,1,ψ ′i,1), . . . ,B(τi,1,ψ ′i,ni ) (τi,1 is
an arbitrarily chosen member of the equivalence classΠi ) and the equationsνi,j,k = κi,j,k .
Since the number ofψi,j for each equivalence classΠi was finite, and we add only oneψ ′i,j
for eachψi,j , the number of formulas that occur as belief arguments of each equivalence
class is still finite.

We now show that∆Sk∞ must be consistent: for each formulaB(τi,1,ψ ′i,j ) in ∆Sk∞−∆∞,
the un-Skolemized versionB(τi,1,ψi,j ) can be derived from∆∞ by the rule of substitution
of equal terms. This is becauseB(τi,k,ψi,j ) is in ∆∞ for somek, andτi,1 andτi,k are in
the same equivalence class.ψ ′i,j is ψi,j with free variables replaced by Skolem constants,
and an equation between each free variable and its respective Skolem constant is also in
∆Sk∞. Therefore, if there were a proof of⊥ from premises in∆Sk∞, then there would also
be a proof of⊥ from∆∞ alone, using the rule of belief Skolemization. We have already
shown that∆∞ is consistent, so∆Sk∞ must be as well.

Finally, we construct another theory∆Sk=∞ , which is the closure of∆Sk∞ under the
application of the rule of substitution of equals; that is, if∆Sk∞ contains an equationα = β
and a formulaϕ, then any formulaϕ′ that can be constructed by replacing one or more
instances ofα that are outside of belief contexts withβ is in ∆Sk=∞ , provided that none
of the occurrences ofα being replaced contain variables bound inϕ, and such that the
substitution doesn’t cause any free variable ofβ to become bound inϕ′. While this may
introduce new equations (whenever the formulaϕ is itself an equation), it does not merge
any two equivalence classes from∆∞. Each equivalence class in∆Sk=∞ is an equivalence
class from∆∞ with the addition of some Skolem constants. Also, since the substitution
of one term for another does not apply within belief contexts, there are still only finitely
many formulas that occur as belief arguments of each equivalence class.∆Sk=∞ must be
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consistent, because∆Sk∞ was consistent, and∆Sk=∞ is simply the closure of∆Sk∞ under one
of the inference rules.

Having shown how to extend a given formulaϕ to a Hintikka set∆Sk=∞ in which only
finitely many belief sentences are associated with each equivalence class of agent terms,
we will now show that any such set has a model. Given an arbitrary belief machinem =
〈Γ,S0,TELL,ASK〉, we construct anm-modelM = 〈D,I, γ 〉 that satisfies all formulas in
∆Sk=∞ , includingϕ itself. The domainD is the set{Π1,Π2, . . .} of equivalence classes of
terms that occur in∆Sk=∞ . The interpretation functionI maps each individual constant and
free variable to the equivalence class of which it is a member; it maps eachn-ary predicate
constantπ to the set of all tuples of equivalence classes〈Π1,Π2, . . . ,Πn〉 such that a
formulaπ(α1, α2, . . . , αn) ∈ ∆Sk=∞ , where eachαi ∈Πi ; and it maps eachn-ary function
constantθ to a function from a sequence ofn equivalence classes to another equivalence
class, such thatI (θ)(Πi1, . . . ,Πin) is the equivalence class of the termθ(κi1, . . . , κin ),
where eachκij is any member ofΠij .

For each equivalence classΠi ∈ D, we have shown that only finitely many sentences
ψ ′i,1, . . . ,ψ ′i,ni occur as the second argument of a belief atom that is an element of∆Sk=∞
whose first argument is inΠi . We define the functionγ , which maps each agent to its
belief state, so that

γ (Πi)= TELL
(
S0,ψ

′
i,1,ψ

′
i,2, . . . ,ψ

′
i,ni

)
.

Now that we have defined the modelM, it remains to be shown that all of the formulas in
∆Sk=∞ , includingϕ, are true inM. This is done by induction on the complexity of formulas.
For present purposes, we define the complexity of a formula to be the number of occur-
rences of∀,∧, and∨ in the formula, not counting those inside belief atoms. We continue
to consider∃ and⊃ as defined in terms of the other operators, and we do not count occur-
rences of¬ in the complexity because we handle negation at each step of the induction.

As the base case, we need to show that for any atomic formulaχ , if χ preceded by
an even number of negations, orχ itself, is an element of∆Sk=∞ , thenM |= χ , and if χ
preceded by an odd number of negations is an element of∆Sk=∞ thenM 6|= χ . Case (1)
ensures that ifχ with an even number of negations is in∆Sk=∞ thenχ itself is, and ifχ
with an odd number of negations is in∆Sk=∞ then¬χ is. Therefore, it suffices (for the base
case) to show that the atomic elements of∆Sk=∞ are true, and that atoms whose negations
are elements of∆Sk=∞ are not true. This is clearly the case for ordinary (non-belief) atoms,
by the way we constructed the interpretationI (the argument is the same as in the proof
for FOL), so we will prove it only for belief atoms.

For the case of top-level positive belief literals, note that all of the sentences
ψ ′i,1, . . . ,ψ ′i,ni that weTELLed to theith agent’s belief machine must be believed in the
resulting state. If they were not, i.e., if

ASK(TELL
(
S0,ψ

′
i,1, . . . ,ψ

′
i,ni
),ψ ′i,j

)= no

for some 16 j 6 ni , then∆Sk=∞ would have been inconsistent: the rule of negative simula-
tive inference would license the conclusion⊥ from the premisesB(α,ψ ′i,1), . . . ,B(α,ψ ′i,ni )
for anyα in equivalence classΠi . Sinceψ ′i,1, . . . ,ψ ′i,ni are all believed in the belief state

thatM assigns to agentΠi ,M satisfies all of the positive, top-level belief literals in∆Sk=∞
whose belief arguments are closed, namelyB(α,ψ ′i,j ) for all i, j , andα such thatα is in the
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equivalence classΠi . Furthermore, for any top-level positive belief literalB(α,ω) ∈∆Sk=∞
whose belief argumentω has free variablesν1, . . . , νn, the step that constructed∆Sk=∞
from ∆∞ resulted in the introduction of a Skolemized formB(α,ωκ1/ν1,...,κn/νn) and the
equalitiesκ1 = ν1, . . . , κn = νn into ∆Sk=∞ as well. A variable substitutionσ that maps
eachνi to the correspondingκi is extension-preserving underM, andM |= B(α,ωσ ), so
M |= B(α,ω).

The remaining part of the base case is the top-level negative belief literals. Consider a
literal ¬B(α,ω) ∈∆Sk=∞ . If M 6|= ¬B(α,ω), thenM |= B(α,ω), so there is some variable
substitutionσ that is extension-preserving underM for whichM |= B(α,ωσ ). WhereΠi
is the equivalence class of termα, this means that

ASK(TELL
(
S0,ψ

′
i,1, . . . ,ψ

′
i,ni
),ωσ

)= yes.

Then the rule of simulative inference licenses the conclusionB(α,ωσ ) from ∆Sk=∞ . Let
ν1, . . . , νm be all of the free variables ofω. For σ to be extension-preserving under the
constructed model, the equationsσ(ν1)= ν1, . . . , σ (νm)= νm must be elements of∆Sk=∞ .
But thenm applications of the rule of substitution in negative belief contexts to the literal
¬B(α,ω) would license the conclusion¬B(α,ωσ ), so∆Sk=∞ would be inconsistent, which
it is not.

The induction step is to show that if every element of∆Sk=∞ of complexity at mosti is
true inM, then the same holds for those elements of∆Sk=∞ of complexityi+1. Once again,
case (1) of the construction makes it only necessary to prove this for formulas with zero
or one top-level negation. For a non-negated element of∆Sk=∞ whose complexity isi + 1
and whose outermost operator is∧, case (4) ensures that each of the conjuncts is also an
element of∆Sk=∞ . Since each of them is of complexity6 i, the induction hypothesis says
that each of them is true inM and therefore the conjunction is also true. Similarly, if the
outermost operator is∨, case (5) ensures that at least one of the disjuncts is in∆Sk=∞ , and
therefore true inM, so that the whole disjunction is true. If the formula is of the form∀νω,
then case (7) ensures thatωτ/ν ∈∆Sk=∞ for every termτ . All of theseωτ/ν are of complexity
i, so by the induction hypothesis they are all true inM. The terms of the language cover
all of the individuals ofM, so the universal formula∀νω is also true inM.

We are now left with the negated formulas of complexityi + 1. Cases (2) and (3)
distribute negation over conjunction and disjunction, so the proofs for negated conjunctions
and disjunctions are reduced to those for non-negated disjunctions and conjunctions,
respectively. For each negated, universally quantified formula¬∀νω ∈ ∆Sk=∞ , case (6)
ensures that there is a termτ for which ¬ωτ/ν ∈ ∆Sk=∞ . Since this latter formula is of
complexityi, the induction hypothesis says that it is true inM, and consequently so is the
negated universal formula.2

5. Some properties of the logic

We now examine some of the properties that the belief relation has in other logics of
belief, and discuss the kind of computation the belief machine must perform in order for
these properties to hold in our model.



A.N. Kaplan, L.K. Schubert / Artificial Intelligence 120 (2000) 119–160 143

The classical modal logics (see [10] for example) are characterized by various
combinations of a rule of inference and five axioms:

N. If ` ϕ, concludeB(α,ϕ).

K . B(α,ϕ ⊃ψ)⊃ (B(α,ϕ)⊃ B(α,ψ)).
T. B(α,ϕ)⊃ ϕ.

D. ¬B(α,ϕ ∧¬ϕ).
4. B(α,ϕ)⊃ B(α,B(α,ϕ)).
5.¬B(α,ϕ)⊃ B(α,¬B(α,ϕ)).

The classical modal logics are all built around the idealization that agents are logically
omniscient. This condition is obtained by the inclusion ofN andK in all of the traditional
axiomatizations. Our computational model of belief was designed explicitly to avoid
logical omniscience, and therefore there is no belief machine for which any of the
traditional axiomatic bases is valid. However, some of the axioms are interesting in their
own right, and are by themselves valid for certain belief machines.

N: Rule N is the rule of epistemic necessitation. It says that agents believe all theorems
(sentences derivable from just the logical axioms). Since our logic is an extension of first-
order logic, it is undecidable in general whether a given sentence is a theorem. Therefore,
while there are machines for which this rule is sound (for example, the machine that always
answersyesto everything), none of them implement reasonable inference techniques.

K: Axiom K , also known as the distribution axiom, is valid for belief machines for which

if ASK(S,ϕ)= yesandASK(S,ϕ ⊃ψ)= yesthenASK(S,ψ)= yes.

There are machines that satisfy this constraint; they are all limited in some other way,
because no machine can be complete for first-order logic. For example, since provability
in propositional logic is decidable, there can be machines that satisfy this constraint but
don’t accept sentences containing quantifiers.

T: Axiom T says that everything an agent believes (or, more commonly, knows) is true.
This axiom is usually taken to be the one that differentiates between knowledge and belief,
the difference being that one can have false beliefs, but not false knowledge. Our model is
a model of belief, not knowledge; the only belief machines for which axiomT is valid are
those that answeryesonly to tautologies, no matter what state they are in.

Axiom T can be thought of as describing the way an agent uses its belief machine, as
well as describing the belief machine itself. If an agent onlyTELLs its belief machine
sentences that are true, and the machine only makes sound inferences, then axiomT holds.

D: Axiom D is sometimes proposed as an alternative toT for describing belief instead of
knowledge. It says that no agent can believe a contradiction. In the classical logics, belief
sets are closed under logical consequence, so any inconsistent belief set must contain an
explicit contradiction. However, axiomD by itself only prohibits belief sets that contain an
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explicit contradiction, so there do exist belief machines for whichD (but not bothN andK )
is valid. These are machines for which

ASK(S,ϕ ∧¬ϕ)= no (14)

for every belief stateS and sentenceϕ. It is a simple matter for a machine to satisfy
this constraint, by performing a syntactic check on all queries to see if they are of the
form ϕ ∧ ¬ϕ for any ϕ, and if so answeringno. However, it is less obvious that there
are machines that satisfy this constraint and are also reasonably competent at handling
conjunctions. For example, for a machine to satisfy both (14) and the constraint

ASK(S,ϕ ∧ψ)= yes iff ASK(S,ϕ)= ASK(S,ψ)= yes

requires more involved computation.
There are in fact machines that satisfy (14) and also reason competently about the

Boolean connectives: consider a machine whoseASK function is implemented by another
functionDECIDE, which is similar toASK but has three possible values instead of two.
Let those values be 1,1/2, and 0, meaning true, unknown, and false, respectively.DECIDE
could be a recursive function defined as follows:

DECIDE(S,¬ϕ)= 1−DECIDE(S,ϕ),

DECIDE(S,ϕ ∧ψ)=min(DECIDE(S,ϕ),DECIDE(S,ψ)),

DECIDE(S,ϕ ∨ψ)=max(DECIDE(S,ϕ),DECIDE(S,ψ)),

DECIDE(S,ϕ ⊃ψ)=max(1−DECIDE(S,ϕ),DECIDE(S,ψ)).

If ASK is defined as

ASK(S,ϕ)=
{

yes if DECIDE(S,ϕ)= 1,

no otherwise,

then (14) is clearly satisfied, and the machine is a complete propositional reasoner.

4 and 5 (Introspection): Axiom 4 is the positive introspection axiom. It says that if an
agent believes a sentenceϕ, then it believes that it believesϕ. Our model of belief seems
essentially compatible with introspection, since one could build an introspective belief
machine as follows: when queried about the sentenceB(α,ϕ), whereα is a term the agent
uses to refer to itself, the machine could simply query itself about the sentenceϕ, and
answeryesif the answer to the sub-query isyes. Unfortunately, this intuition cannot be
realized using the semantics we have introduced in this paper. The problem is that in
order to perform introspection, an agent’s belief machine must be able to distinguish terms
that refer to that agent from terms that don’t. Since a belief machine simply manipulates
syntactic objects, and has no information about their denotation, this is not possible.

A belief machine could be designed to treat one constant, say the constantme, differently
from all others. When queried about a sentenceB(me, ϕ), it would perform an introspective
self-query, but when queried about a sentenceB(α,ϕ) for anyα other thanme, it would
simply use its ordinary query-answering methods. This scheme would require some
additional semantic apparatus beyond what we have introduced in this paper, because the
denotation of the special constantmemust not be allowed to vary from model to model.
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It should be an indexical constant that, when it occurs outside of belief contexts, denotes
the reasoner that is using it. Its denotation must also depend on context: inB(a,P (me)),
it should have the same denotation asa, but inB(a,B(b,P (me))) it should have the same
denotation asb. This is so thatB(a,B(b,P (me))) entails∃x[x = b∧B(a,B(b,P (x)))]. 3

Given the indexical constantme, one can express the positive introspection axiom as

B(α,ϕ)⊃ B(α,B(me, ϕ)).

The axiom is valid for all machines for which

if ASK(S,ϕ)= yes thenASK(S,B(me, ϕ))= yes.

There are non-trivial machines that satisfy the positive introspection constraint as well as
constraints (C1)–(C4). For a simple example, consider a machine that answers a query
affirmatively if and only if it can prove the query from the premises on a list of previously
TELLed sentences by applying the rule of conjunction splitting and DeMorgan’s rules. This
machine satisfies (C1)–(C4), and still does so if it is modified so that it makes self-queries
to prove sentences of the formB(me, ϕ).

The converse of the positive introspection axiom,

B(α,B(me, ϕ))⊃ B(α,ϕ),
is also known as the positive faithfulness axiom. It is valid under the converse constraint,

if ASK(S,B(me, ϕ))= yes thenASK(S,ϕ)= yes.

The example machine could also be made to satisfy this constraint: whenTELLed a new
sentenceB(me, ϕ), it couldTELL itself ϕ as well.

Axiom 5 is the negative introspection axiom. Using the special constantme, it can be
written as

¬B(α,ϕ)⊃ B(α,¬B(me, ϕ)).

This axiom is made valid by the semantic constraint

if ASK(S,ϕ)= no thenASK(S,¬B(me, ϕ))= yes.

It is simple to build a machine that satisfies this constraint, using a similar construction
to the one used for positive introspection. When queried about a sentence¬B(me, ϕ), the
machine could query itself about the sentenceϕ, and answeryesif the answer to the sub-
query wasno. However, unlike for the positive introspection constraint, only machines
whose introspection is trivial can satisfy both this constraint and the finite basis constraint.
It is a consequence of the finite basis constraint that any belief held in stateS0 must also

3 Rapaport, Shapiro, and Wiebe [21] argue against the use of such a constant, because it complicates the
semantics, and because it invalidates the axiom commonly used to define knowledge as true belief: the schema
K(α,ϕ)⊃ B(α,ϕ)∧ϕ is not reasonable in a logic with an indexical term because, for example, from the premise
K(Fred,Rich(me)), meaning “Fred knows he is rich”, it licenses the conclusionRich(me), meaning “I am rich”.
We acknowledge these facts, but find the complication of the semantics a reasonable price to pay for the elegant
way of handling introspection, and simulative inference about introspection, that an indexical constant allows;
and the axiom of veridicality can be made acceptable simply by stipulating thatmemust not occur at the top level
in ϕ (i.e., it occurs only inside an embedded belief context, if at all).
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be held in every other state. If there is some sentenceϕ that is not believed in stateS0, an
introspective machine must believe¬B(me, ϕ) in S0. But then the finite basis constraint
requires that¬B(me, ϕ) be believed ineverystate, even ones in whichϕ is also believed.

Since a machine with non-trivial negative introspection must violate the finite basis
constraint, the soundness proof we gave for the rule of simulative inference does not apply;
and, in fact, negative introspection can make simulative inference unsound. Letm be a
simple machine that answersyesto sentences it has explicitly beenTELLed andno to all
others, unless the query is of the form¬B(me, ϕ), in which case it performs a self-query
on the sentenceϕ. For this machine,

ASK(TELL(S0,P (c)),Q(d))= no,

so from the premiseB(a,P (c)), the rule of simulative inference licenses the conclusion
B(a,¬B(me,Q(d))). Let S = TELL(S0,P (c),Q(d)). Then

ASK(S,P (c))= yes,

and

ASK(S,¬B(me,Q(d)))= no.

LetM be anm-model such that the agent|a|M is assignedS as its belief state. Then the
premiseB(a,P (c)) is true inM, but the conclusionB(a,¬B(me,Q(d))) is not.

Negative faithfulness, the converse of negative introspection, is characterized by the
axiom

B(α,¬B(me, ϕ))⊃¬B(α,ϕ),
which is valid for machines satisfying the constraint

if ASK(S,¬B(me, ϕ))= yesthenASK(S,ϕ)= no.

In [13], we show that, unlike the simulative inference rule, the rule of negative simulative
inferenceis sound for some machines with negative introspection. Furthermore, we show
that if the machine has both negative introspection and negative faithfulness (the converse
of negative introspection), then the combination of the negative simulative inference rule
and a negative introspection rule (¬B(α,ϕ)

B(α,¬B(me,ϕ)) ) can be used to derive positive conclusions
of the kind yielded by the original simulative inference rule.

Note that negative introspective agents cannot exist in the deduction model, since there
is no way to write a deduction rule whose premise is theabsenceof a belief. Konolige’s
chapter on introspection [17, Chapter 5] is about machines that can query themselves, but
canotherwisebe modeled as deduction structures. His use of the negative introspection
axiom to describe a class of machines [17, Theorem 5.4, p. 78] is therefore misleading. In
presenting this axiom, he is using the notation of his logic of belief to describe an agent
that cannot, in fact, exist in that logic.

Quantifier Raising and Lowering: The Barcan formula,

(∀νB(α,ϕ))⊃ B(α,∀νϕ)
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is valid only for trivial belief machines that answeryesto every query of the form∀νϕ.
The constraint

if ASK(S,ϕτ/ν)= yesfor every termτ,

thenASK(S,∀νϕ)= yesfor any variableν

describes belief machines that perform universal generalization, but does not ensure the
validity of the Barcan formula because of the possibility that∀νB(α,ϕ) might be true “by
accident”: ifα believesϕτ/ν individually for each termτ in some set, and that set happens
to cover the entire domain, then∀νB(α,ϕ) is true, even if there are many other termsτ for
whichα doesnot believeϕτ/ν .

However, it is worth noting that certain assumptions aboutASK andTELL can render
the Barcan formula true in all sufficiently large models (and thus in all infinite models). In
particular, suppose that we make the following assumptions.

1. ASKanswers the queryϕτ/ν , wheneverτ is a ground term that has not appeared in
its TELL-history, by
(a) checking if it has seen at leastn constants in itsTELL-history (say for some fixed

n like n = 10) that it believes to be distinct (by gettingyeswhen itASKs itself
¬(τ = τ ′)), and if not, answeringno;

(b) otherwise,ASKing itself ϕτ ′/ν for every ground termτ ′ it has seen in itsTELL-
history, and if all answers areyes, answeringyesto ϕτ/ν , elseno.

2. ASKanswers∀νϕ by ASKing itself ϕκ/ν for some constantκ that has not appeared
in its TELL-history, and answeringyesif the answer toϕκ/ν is yes, and answeringno
otherwise.

In effect, such a machine would make inductive generalizations based on some number of
instances that it believes to be distinct. Of course, it may be mistaken about the distinctness
beliefs. But it’s reasonable to suppose that agents are connected to the world, e.g., through
perception, in such a way that they are not too likely to be wrong about distinctness. The
inductive generalization may still be incorrect even if the distinctness beliefs are correct,
but that is an unavoidable risk.4 Now observe that if∀νB(α,ϕ) holds and the domain of
individuals is larger than the number of ground terms that have appeared in the agent’s
TELL-inputs, thenASK(S,ϕτ/ν)must beyesfor some ground termτ that has not appeared
among theTELL-inputs (where S is the state ofα’s belief machine), and hence by (1b)
ASK(S,ϕτ ′/ν) = yes for all ground termsτ ′, and so by (2)ASK(S,∀νϕ) = yesas well,
verifying the Barcan formula.

The converse Barcan formula,

B(α,∀νϕ)⊃ ∀νB(α,ϕ)
is a theorem of the extension of modal systemT to predicate logic. It is valid only for trivial
belief machines that answerno to every sentence of the form∀νϕ. A sentence of the form
∀νB(α,ϕ), whereν occurs inϕ, is satisfied in a model if for each individual in the domain,
there is some termτ denoting that individual for whichα believes the sentenceϕτ/ν . If
B(α,∀νϕ) is satisfied by some modelM, then it is also satisfied by a model identical to

4 That is not to say (1a) couldn’t be improved to reflect a more subtle theory of induction.
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M except that its domain contains one extra individual which is not denoted by any term.
Such a model does not satisfy∀νB(α,ϕ).

The constraint

if ASK(S,∀νϕ)= yesfor some variableν

thenASK(S,ϕτ/ν)= yesfor any termτ,

is satisfied by machines that do∀-elimination, and imposes a condition similar to the
converse Barcan formula, but with an exception allowed for individuals that are not denoted
by any term.

Instances of the schema

∃νB(α,ϕ)⊃ B(α,∃νϕ)
are also theorems of the extension ofT to predicate logic. The schema is valid for machines
that satisfy the constraint

if there is a termτ for whichASK(S,ϕτ/ν)= yes, thenASK(S,∃νϕ)= yes

i.e., machines that perform∃-introduction.

6. Related work

We introduced the computational model of belief and simulative inference in [16]. The
soundness theorem for simulative inference proved in the current paper is stronger than
the one in [16], since it uses a weaker set of constraints (the combination of the robustness
and commutativity constraints used in [16] has been replaced by a different commutativity
constraint).

In an earlier version of this paper [15], the negative simulative inference rule was proved
sound only for belief machines that satisfy a particular constraint; here, we have shown
that that constraint follows from constraints (C1)–(C3). In [15] we also gave a proof of
incompleteness for a broad class of belief machines. That proof is flawed, and the theorem
is false.

There have been many proposals for modeling belief as limited reasoning, as a more
realistic alternative to the possible worlds model’s logical omniscience. Many of these
proposals, e.g., the logic of Levesque [20], subsequently refined by Lakemeyer [19] and
by Delgrande [5], and the logic of Fagin, Halpern, and Vardi [6], can be seen as making
believers perfect reasoners in a weak logic in which entailment is decidable, rather than
in full first-order logic. Our model is essentially compatible with this approach, but
more general. Rather than choosing a single entailment or derivability relation to define
believers’ reasoning ability, we leave the reasoning method as a parameter of the model.
The main results we have reached depend on the reasoning method being constrained in
certain ways, but these constraints are weak enough that the results apply to an interesting
range of different mechanisms.

Halpern, Moses, and Vardi [8] describe a model of “algorithmic knowledge” that is
similar to our model in that an agent’s beliefs are taken to be the sentences that the agent’s
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reasoning algorithm can verify given the information encoded in the agent’s knowledge
state. The agent’s reasoning algorithm is analogous to ourASK function, but their model
contains nothing analogous to ourTELL function, i.e., there is no discussion of how an
agent comes to be in a particular state, or how learning a particular new sentence would
cause its state to change. The technique of simulative reasoning has not been discussed in
the framework of algorithmic knowledge.

The mode of reasoning described by Haas [7] is also simulative reasoning, but of a
different kind. It can be summarized as follows: ifα believesϕ and has begun trying
to decide whetherψ is true, and in a simulation ofα’s reasoning we are able to prove
ψ from ϕ, thenα believesψ . This technique is sound for a broader class of reasoning
mechanisms than ours: the closure constraint is not required for its soundness. The tradeoff
is that for Haas’ technique to be applicable, more information is required, namely the
knowledge thatα has wondered aboutψ .

Our contribution has been a more precise understanding of the circumstances in which
simulative reasoning is sound. There are many situations in which it is not sound, but
is still desirable to use as a defeasible rule of thumb—for example, when the reasoning
mechanisms of the believer and the observer are only similar, not identical. In such cases,
the technique described by Chalupsky and Shapiro [2], treating simulative reasoning as a
default inference rule, is applicable.

Ballim and Wilks [1] contend that there can be no satisfactory logical semantics of
belief. Their point of view seems to be that any logicist theory of belief must try to
characterize belief sets using only semantic properties. They rightly hold that this can only
lead to idealized, unrealistic models, because it ignores the computational mechanism that
generates the belief sets. Our work incorporates computational mechanisms into reasoning
about belief, without abandoning the logicist paradigm.

The work described here has been aimed at establishing the soundness of simulative
reasoning given an arbitrary belief mechanism. In a related project, we are working on
adding simulative reasoning to a particular mechanism, namely the EPILOG system [11,
22]. We are using the theoretical results described here to identify features of the reasoning
mechanism that can cause simulative reasoning to yield incorrect conclusions. Also, while
in this paper we have shown that internal details of the belief mechanism need not be
considered when establishing thesoundnessof simulative reasoning, in our implementation
work we have found that certain features of the mechanism’s internal representations are
critical to the potentialefficiencyof simulative reasoning. A preliminary report on these
problems can be found in [12]; a more detailed account will be included in [14].

6.1. Konolige’s deduction model

Our model of belief is similar to Konolige’s deduction model [17]. In the deduction
model, a believer is represented by adeduction structure, which is composed of a set of
sentences (the base beliefs) and a set of inference rules. An agent’s belief set is the set
of all sentences that can be derived from the base beliefs by exhaustive application of the
inference rules. Agents that are not logically omniscient can exist in the deduction model,
because the set of inference rules is not required to be complete.
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The fundamental difference between the deduction model and ours is the contrast
between deduction structures and belief machines, and we will focus primarily on the
consequences of this difference. However, at the end of this section we will briefly mention
some other differences.

6.1.1. Expressiveness
Neither model is strictly more expressive than the other. That is, each model is capable of

describing certain agents that can’t exist in the other. But, as we will now show, the agents
that exist only in the deduction model are merely mathematical constructions that have no
implementation as actual programs, while among those that exist only in the computational
model are some that reason in interesting and tractable ways.

One thing that distinguishes the computational model from the deduction model is that
it describes not only agents’ beliefs in a single state, but how their beliefs change when
they learn new information. In the deduction model, learning something new can only be
modeled as adding a new sentence to the base beliefs. This is sufficient when the new
information is consistent with the agent’s previous beliefs, but when it isn’t, it means
that the agent must believe a contradiction. Naturally, to restore consistency the agent
should retract some of its previous beliefs, but a deduction structure cannot describe how
an agent chooses which beliefs to retract. A belief machine, in contrast, can encode this
kind of information. The functionTELL describes how the belief machine’s state changes
in response to any sentence, not only ones that are consistent with what has preceded them.

Because our model of belief can describe reasoners whose beliefs change in interesting
ways, we anticipate that it will prove more fruitful to extend to a temporal logic than the
deduction model would. But even if we consider only the static logic presented here, the
possibility of belief revision distinguishes the computational model from the deduction
model. If a belief machine can reject beliefs when it discovers a contradiction, then there
may be certain sets of sentences that an agent can never believe simultaneously. For
example, it is possible that, upon beingTELLed the sentence¬P(c), a machine might
cease to believeP(c), even if it had previously beenTELLedP(c). For such a machine,
the sentenceB(a,P (c))∧B(a,¬P(c)) is unsatisfiable (and also inconsistent, thanks to the
negative simulative inference rule). In Konolige’s logic, regardless of the set of inference
rules used by the agent’s deduction structure, the analogous sentence is satisfiable—in the
deduction model any base belief set is possible, even an explicitly self-contradictory one.

While the belief machine abstraction allows agents that reason nonmonotonically,
simulative inference is not sound for some of them. Whether a machine satisfies constraints
(C1)–(C3) depends on the circumstances in which it retracts beliefs. A machine that
chooses one or moreTELLed sentences to discard when it discovers that its inputs are
contradictory can still satisfy the constraints, as demonstrated by the example machine
in Section 3.2. In contrast, a machine that draws unsound conclusions from what it has
beenTELLed, and later retracts those conclusions if newTELLed sentences contradict
them, cannot simultaneously satisfy the finite basis constraint (C2) and the commutativity
constraint (C3). For this kind of machine, the form of simulative reasoning presented in
this paper is not sound. However, in [13] we present another form that is sound under a
weaker set of constraints, a set that does permit belief machines that reason defeasibly.
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For the purpose of further comparison, let us set aside agents that sometimes reject
what they areTELLed, and explore how the remaining agents in the computational model
compare with agents in the deduction model. Formally, let us add a new constraint, the
“credulity constraint”, which requires that every sentence is monotonically acceptable in
every state, i.e.,

B · S ∪ {ϕ} ⊆ B · TELL(S,ϕ)

for every stateS and sentenceϕ. Belief machines satisfying this constraint never reject
information or revise their beliefs—they always believe everything they have beenTELLed,
even if it is contradictory. With this constraint, the analogy between the two models
becomes much closer. For a machine satisfying the closure, commutativity, and credulity
constraints, the order of a sequence is never significant (the commutativity constraint
applies to all sequences, since since the credulity constraint says that every sequence is
monotonically acceptable), nor is repetition of elements in the sequence, so to determine
an agent’s belief set it is sufficient to know thesetof sentences it hasTELLed to its belief
machine, regardless of the sequence in which they were presented. The set ofTELLed
sentences therefore becomes analogous to the base belief set of a deduction structure. The
one difference is that the sequence ofTELLed sentences must be finite in length, while the
base belief set of a deduction structure may be infinite. Any expressiveness gained from
this difference is ill-gotten, because no agent that has existed for only a finite amount of
time can have explicitly stored infinitely many facts. We will henceforth consider only
finite base belief sets.

Under these three constraints, a believer in the computational model can be thought of as
a function from finite base belief sets to (possibly infinite) belief sets, as can a believer in
the deduction model. But neither model admits all such functions, so we can now compare
the two by comparing the set of such functions that each allows.

One readily apparent difference is that in the computational model, belief sets are
always computable, while in the deduction model they need not be. For example, if a
deduction structure includes a logically complete set of inference rules, then it generates
uncomputable belief sets, since the question of logical consequence is only semidecidable.
Of course, it is by explicit stipulation that we requireASK and TELL to be recursive
functions, since the possibility of an uncomputable belief set conflicts with our intuitions
about what it means to believe.

Further comparison requires that we look more closely at the specification of what sorts
of inference rules may be used in a deduction structure. Konolige gives the following two
requirements [17, p. 21]:

Provinciality: The number of input sentences (premises) of the rule is fixed and finite.

Effectiveness:The rule is an effectively computable function of its premises.

As we will show presently, these restrictions are stronger than is actually necessary for
Konolige’s purposes; but first let us consider how the two models compare if the restrictions
are taken literally. Note first of all that the requirement of provinciality, as stated, would
seem to imply that rule sets must be finite, since infinite rule sets would allow this constraint
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to be circumvented: a single rule with a variable number of premises could be replaced by
an infinite set of rules, each with a fixed number of premises. Theorem 10 shows that there
is a belief machine satisfying all of the constraints we have accumulated so far for which no
equivalent deduction structure exists, if the requirements of provinciality and effectiveness
are taken at face value.

Theorem 10. There exists a belief machinem, satisfying constraints(C1)–(C4)and the
credulity constraint, for which there is no finite set of provincial, effective inference rules
R such thatm andR always yield the same belief set when given the same base beliefs.

Proof. The construction for this proof can be summarized as follows: given a mapping
between finite sets of sentences and Turing machines, we construct a belief machine whose
belief set is finite exactly when the set of sentences it has beenTELLed corresponds (via
the given mapping) to a Turing machine that never halts on input 0. This belief machine
cannot be modeled by a finite set of deduction rules, because if it could, then the set of
Turing machines that never halt on input 0 would be recursively enumerable: a Turing
machine would run forever only if the closure of the corresponding set of sentences under
the assumed inference rules were finite, and that condition can be effectively detected.

We construct a belief machine so that when it isTELLed a sentence, it simply adds the
sentence to a set, which we will henceforth call the machine’sdatabase. The database is
empty in the initial stateS0. The treatment of the sentences as a set will be guaranteed by
the definition ofASK, which will be order-independent. We can thus think of a database
like {ϕ1, . . . , ϕn} as a name for the belief state of the belief machine. Different sets may
turn out to name the same state.

For the definition ofASK, we will fix two recursive, non-repetitive enumerations of
sentences. First,P0,P1, . . . is an enumeration of some infinite set of tautologies in which
variables are the only terms. We will refer to these as the “chosen tautologies”. Second,
w0,w1, . . . is an enumeration of all the remaining sentences of L, exclusive ofP0,P1, . . . .
Given a sentencewi among thew0,w1, . . . , we will refer to i as the “rank” or “index”
of the sentence. Actually, for theP0,P1, . . . we could have chosen any infinite recursive
set of sentences that still leave infinitely many other sentences, but tautologies are a “tidy”
choice, ensuring that a believer does not make inconsistent extrapolations from a consistent
database. The beliefs of the belief machine we are constructing will consist of the database,
possibly (depending on the state of the machine) augmented by infinitely many of the
chosen tautologies, namelyPj ,Pj+1, . . . for somej > 0. The chosen tautologies are
defined to have no terms other than variables as a simple way of satisfying the constraint
of monotonicity under substitution (C4).

We define the output ofASK for database{ϕ1, . . . , ϕn} (n > 0) and queryψ , i.e.,
ASK({ϕ1, . . . , ϕn},ψ), as follows:
• If ψ ∈ {ϕ1, . . . , ϕn}, returnyes.
• If n > 0 andψ = Pj for somej (i.e., it is a chosen tautology), then if for somewi in
{ϕ1, . . . , ϕn} (i.e., for some sentence in the database that is not a chosen tautology),
theith Turing machine with input 0 halts withinj steps, returnyes.
• If neither of the above conditions applies, returnno.
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Note that we are using the queryψ , in case it is a chosen tautology, to supply a computation
boundj (via its rank) on a a set of Turing machine computations. If those computations
never halt, we will returnyesonly for formulas explicitly in the database, i.e., the belief set
will be finite. If one of the computations does halt withinj steps, then we will returnyes
for all tautologies from thej th-ranked onward, and so the belief set will be infinite.

We now show that this belief machine satisfies constraints (C1)–(C4). The closure
constraint (C1) says thatTELLing the machine a sentence it already believes leaves it
unaffected. This is clearly true if the sentence is in the database. The only other sentences
the machine can believe are the chosen tautologies, from thej th-ranked (for somej )
onward. If weTELL it such a tautology, no new beliefs are induced since the chosen
tautologies occurring within the database are not used for Turing machine computations.

For the finite basis constraint (C2), it is clear from the definition ofTELL and ASK
that the database of a belief machine provides a set of formulas that are monotonically
acceptable (in any order) by the machine in the initial state (named by the empty database).
Further,TELLing the machine these formulas, starting in the initial state, obviously brings
it into the state named by the database.

The commutativity constraint (C3) is obviously satisfied, since allTELLed sentences are
accepted (in any order), and the resultant state is independent of order of presentation.

The constraint of monotonicity under substitution (C4) is satisfied since the belief set
of the belief machine contains only sentences that were explicitlyTELLed, plus possibly
some chosen tautologies, which contain no ground terms to be renamed.

It remains to show that no finite set of recursive inference rules can model this
belief machine, in the sense of allowing the same simulative inferences (or “attachment”
inferences, as Konolige terms them). This follows from the fact that if there were such a
set of inference rules, we could recursively enumerate the Turing machines that do not halt
on input 0, which is impossible.

In particular, given recursive inference rulesR1, . . . ,Rm, where these derive the same
belief set from a given database asASK, we would proceed as follows to enumerate
these Turing machines. We dovetail a set of computations corresponding to singleton
premise sets{w0}, {w1}, . . . , where for each such premise set{wi} we systematically
generate all conclusions that can be obtained with rulesR1, . . . ,Rm, starting with{wi}.
In other words, we initiate a deductive closure computation for{wi}. For each such closure
computation, we continually check whether we have reached closure yet. Note that if a
closure computation generates only a finite set of sentences, then we will eventually detect
this; viz., at some point we will find that every rule inR1, . . . ,Rm generates a conclusion (if
any) that has already been generated, no matter how we apply the rule to the conclusions
already generated. (There are only finitely many ways of applying an inference rule to
a finite set of possible premises, and since the rules are computable functions of their
premises, they terminate after some time with a conclusion, or, possibly, with a signal that
no conclusion follows for the given premises.)

Whenever we detect closure for the closure computation of some{wi}, we addi to the
list of indices of the Turing machines that do not halt with input 0. Note that this identifi-
cation of a non-halting Turing machine is correct, sinceASKobtains a finite set of beliefs
from {wi} only if i is the index of a Turing machine which does not halt for input 0. (If the
Turing machine halts,ASK will say yesfor infinitely many chosen tautologies.) Further,
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since simulative inference with premise set{wi} usingASKwill clearly generateall beliefs
corresponding to database{wi}, the rulesR1, . . . ,Rm should also generate all of these be-
liefs. So clearly the above procedure should effectively enumerate all Turing machines that
do not halt with input 0, which is impossible. HenceR1, . . . ,Rm must not exist. 2

However, the requirements of provinciality and effectiveness, as stated by Konolige,
are stronger than what is really required, and relaxing them in either of two ways can
lead to the equivalence of the two models (with the computational model still subject to
the constraints of commutativity, closure, and credulity). One potential weakening is to
drop the provinciality constraint, with its implicit assumption that the rule set is finite.
Konolige’s intent in introducing that restriction appears to have been simply to prohibit
default rules, which draw conclusions from the entire knowledge base rather than some
subset of a particular size. But the essential feature of default rules that makes them
unsuitable is not the variable size of their premise sets, but their defeasibility. As long
as the inference rules are monotonic, it would seem that all of Konolige’s results still hold,
even if infinite rule sets or rules with varying number of premises are allowed.

If we allow deduction structures to contain infinitely many inference rules, then given
any belief machine meeting the closure, commutativity, and credulity constraints, one can
straightforwardly construct an equivalent set of inference rules: for every possible set
of base beliefs and every conclusion the belief machine draws from those beliefs, the
set contains an ad hoc rule that licenses that conclusion given those base beliefs. This
construction is described more concretely in the proof of the following theorem.

Theorem 11. If a belief machine satisfies the closure, commutativity, and credulity
constraints, then there is an infinite set of inference rules that always yields the same belief
set when given the same base beliefs.

Proof. Given belief machinem = 〈Γ,S0,TELL,ASK〉, we construct the set of inference
rulesR = {r1, r2, . . .}, whereri is defined as follows: to applyri to a set of premises
ϕ1, . . . , ϕn:

(1) Decode rule indexi as a pair of integers〈j, k〉, where the encoding is based on a
1–1 recursive function fromN×N ontoN (whereN is the set of natural numbers).

(2) Decodej as a finite setS of sentences inL, i.e., interpretj as the Gödel number
of S, based on a Gödel numbering of all finite sets of sentences inL.

(3) Decodek as a sentenceψ in L, based on a Gödel numbering of all sentences inL.
(4) If S = {ϕ1, . . . , ϕn} andASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes, return conclusionψ .

(Use some fixed method of ordering theϕi , e.g., lexicographic ordering.)
(5) If no conclusion was generated in step (4), signal that the rule is inapplicable to the

premises.
Consider an arbitrary base belief set{ϕ1, . . . , ϕn}. For conciseness, define

BR = {ψ | ϕ1, . . . , ϕn `R ψ}
and

Bm =
{
ψ | ASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes

}
.
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In the definition ofBm, the order of the sequenceϕ1, . . . , ϕn is not significant:m satisfies
the commutativity constraint, which says that order is not significant for any monotonically
acceptable sequence, and the credulity constraint, which says that every sequence is
monotonically acceptable.

Every sentenceχ ∈ Bm is also inBR , becauseR is constructed to contain the rule
ϕ1,...,ϕn

χ
. In the other direction, we need to show that for every sentenceχ for which there

exists a proofϕ1, . . . , ϕn ` χ , that sentence is inBm. We will show this by induction on
the length of the proof ofχ . If the length of the proof is zero, i.e.,χ ∈ {ϕ1, . . . , ϕn}, then
χ ∈ Bm because the credulity constraint says thatχ became a belief when it wasTELLed
to the machine, and that no succeedingTELLcould cause that belief to be revised. Assume
that every sentence provable with the rulesR in at mostl steps fromϕ1, . . . , ϕn is in Bm,
and that the proof ofχ fromϕ1, . . . , ϕn hasl+1 steps. All of the premises used in the last,
l + 1st step in the proof ofχ were themselves proved fromϕ1, . . . , ϕn in at mostl steps,
and are therefore inBm by the induction hypothesis. The rule applied in thatl+ 1st step is
the ruleψ1,...,ψm

χ
, for someψ1, . . . ,ψm, such thatASK(TELL(S0,ψ1, . . . ,ψm),χ) = yes.

The credulity constraint says that every sequence is monotonically acceptable, so if
ASK(TELL(S0,ψ1, . . . ,ψm),χ)= yesthenASK(TELL(S0,ψ1, . . . ,ψm,ϕ1, . . . , ϕn),χ)=
yes. By the commutativity constraint,ASK(TELL(S0, ϕ1, . . . , ϕn,ψ1, . . . ,ψm),χ) = yes.
Since eachψi ∈ B · TELL(S0, ϕ1, . . . , ϕn), by the closure constraintB · TELL(S0, ϕ1, . . . ,

ϕn,ψ1, . . . ,ψm)= B ·TELL(S0, ϕ1, . . . , ϕn). Therefore,χ ∈ B ·TELL(S0, ϕ1, . . . , ϕn), i.e.,
χ ∈ Bm. 2

In addition to dropping the provinciality restriction in favor of a prohibition against
defeasibility, one could also weaken the effectiveness restriction: instead of requiring
the (unique) conclusion to be derivable from the premises by an effectively computable
function, we could require only that there be an effectively computable function that
decides, given a set of premises and a conclusion, whether the premises justify the
conclusion. In that case, given any belief machine satisfying the closure, commutativity,
and credulity constraints, there is (trivially) a single inference rule that generates the same
belief sets, namely

ϕ1, . . . , ϕn

ψ

whenASK(TELL(S0, ϕ1, . . . , ϕn),ψ)= yes.

While this is clearly not the kind of inference rule Konolige had in mind, the weakened
restrictions are arguably still reasonable, and none of Konolige’s technical results are
affected by the change.

To summarize the expressiveness comparison between the two models:
• Agents in the deduction model, but not in the computational model, can have

uncomputable belief sets. This is no advantage, since such agents obviously can’t
exist in practice.
• There are agents in the computational model, but not in the deduction model, for

which simulative inference is not sound. In the next section, we argue that this is an
advantage for the computational model, since it provides a vocabulary for describing
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many kinds of inference mechanism, and for expressing constraints that distinguish
ones for which simulative inference is sound.
• Agents in the computational model, but not in the deduction model, can choose to

reject some of their input sentences, for instance in the case of contradictory inputs.
Therefore, for some belief machines a sentence such asB(a,P (c) ∧ ¬P(c)) is not
satisfiable, while there is no deduction structure for which the analogous sentence is
unsatisfiable.
• If we limit consideration to belief machines that satisfy the constraints under which

we’ve shown that that simulative inference is sound, and we add the further restriction
that the machine may not reject input sentences even if contradictory, then any
remaining belief machine describes an agent that can also exist in the deduction model
(but only if we relax Konolige’s definition of a deduction structure in a non-trivial
way).

6.1.2. Practical applicability
Our aim in developing a model of belief has been to understand exactly when it

is appropriate to add simulative reasoning to a reasoning system, that is, a computer
program that manipulates logical formulas. In some cases, Konolige’s model can serve
that purpose. If the program in question actually works by exhaustively applying a set
of deductive inference rules to its inputs, or by performing an exhaustive search for a
proof of a query sentence from the input sentences, then the deduction model applies
quite straightforwardly. Of course, few reasoning programs work this way. Some systems
represent information in forms other than logical formulas, for example using graphical
representations that lend themselves to efficient reasoning in particular domains (such as
maps for spatial reasoning, graph structures for reasoning about partial temporal ordering,
etc.). Even in systems that reason by applying inference rules to logical formulas, the
inference rules are typically not applied exhaustively; rather, there is a control mechanism
that decides which rule to apply when, and when to give up. For such programs, the
deduction model may still apply, but not as straightforwardly. Even if such a program
has an equivalent deduction structure, the set of inference rules in that deduction structure
is not the same set of rules used by the program itself, since the program doesn’t apply
those rules exhaustively. If the system can be modeled by a deduction structure at all,
then it is one with a relatively complex set of inference rules that incorporate both the
system’s inference rules and its control structure. The belief machine abstraction is a more
straightforward way of describing a program that performs inference.

It’s true that to use the deduction model to justify simulative reasoning in a particular
program, it is not necessary to list the inference rules of a deduction structure that describes
the program’s behavior. It is only necessary to show that such a deduction structure exists.
But there are programs that are not described by any deduction structure, and Konolige
does not discuss how one can distinguish such programs. The belief machine abstraction
provides a vocabulary for expressing this question, and the technical results reached in this
paper can be used to answer it.

Konolige hints at a technique of augmenting the language of belief to accommodate in
the deduction model reasoning methods that violate the closure constraint [17, p. 24]. His
example is to model a reasoner that only discovers conclusions that can be reached from
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its base beliefs in at mostn applications ofmodus ponens, for some fixedn. The technique
is to add a “depth predicate”D to the language, and give the agent the following deduction
rule:

D(k)∧ ϕ, D(l)∧ (ϕ ⊃ψ)
D(k + l + 1)∧ψ for k + l + 16 n.

This proposal is simply not consistent with the semantics of Konolige’s logic. Deduction
structures are supposed to use only sound inference rules, but the above rule is clearly not
sound, unless we take the agent being modeled to be using a non-standard semantics, one
that restricts the interpretation of the predicateD, which is different from the semantics by
which our own beliefs are interpreted. This is, in fact, left implicitly as a possibility [17,
p. 32], but it is a distasteful one—if the sentences we attribute as the beliefs of others are
interpreted with a different semantics than the sentences of our own beliefs, then how are
we to understand what beliefs we are attributing? Furthermore, once the predicateD has
been introduced into the language of belief, sentences such asB(a,D(5)∧ P(b)∧D(8))
andB(a,D(5)) are syntactically well-formed, even though they have no meaning in the
proposed scheme.

6.1.3. Completeness in the deduction model
In Section 4.1, we showed that our logic is incomplete, i.e., given certain belief

machines, there are formulas that are unsatisfiable yet cannot be disproved. In contrast,
Konolige proves a general completeness theorem, which holds given an arbitrary choice of
inference rules, for his deduction model. Since the concepts of the belief machine and the
deduction structure are quite similar, it is natural to ask why there are belief machines for
which our logic is incomplete, but there are no corresponding sets of inference rules for
which Konolige’s is incomplete. The answer, as we will now show, is that completeness
in Konolige’s model depends on the fact that the base belief set may be infinite (the
attachment lemma [17, Lemma 3.3] depends on this), while our model requires that there
be only finitely many base beliefs. At a given time, a real agent can only have explicitly
learned finitely many facts, so it is unrealistic to allow the base belief set to be infinite.

We noted in Section 4.1 that our proof theory is incomplete given a belief machine that
answersyesonly to those sentences it has already beenTELLed, because given such a
machine, the sentence∀xB(a,P (x)) has only finite models. In Konolige’s model, there
is a set of inference rules, namely the empty set, that makes the same deductions as our
example belief machine; but given that set of inference rules, the sentence∀xB(a,P (x))
has both finite and infinite Konolige-style models. In the infinite models, the agent denoted
by a simply has infinitely many base beliefs.

This shows that the difference in completeness between our logic and Konolige’s is not
very significant. The difference is simply that in Konolige’s logic, certain theories that
intuitively should be unsatisfiable are satisfiable and consistent, whereas in our logic those
theories are unsatisfiable but still consistent.

6.1.4. Other differences
In addition to modeling inference in a different way, we have made some other choices

in the design of our representation that differ from Konolige’s. These other differences are
orthogonal to the more fundamental choice of how to model inference.
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ID constants: Konolige requires that for each agent, there be a naming map that maps
each individual in the domain to a uniqueid constant. In other words, while an agent
may use several different terms to refer to the same individual, one of those terms is
always distinguished as the canonical name. ID constants are used in the semantics of
quantifying-in: an open belief formula∃xB(a,P (x)) (translating Konolige’s notation into
ours) is true iff there is some id constantκ for whichB(a,P (κ)) is true. We have chosen not
to require that individuals have canonical names, and we have defined the semantics so that
a quantified-in formula∃xB(a,P (x)) is true if there is any termτ for whichB(a,P (τ))
is true.

Quantification over believers: In Konolige’s logic, there is a different belief operator
for each agent, rather than a single operator that takes a believer argument. Therefore,
quantification over believers is impossible in Konolige’s logic—there is no equivalent of
the formula∀xB(x,P (c)) of our logic.

Equality: Our logic includes an equality operator, while Konolige’s does not. This is one
of the things that makes the (restricted) completeness proof for our logic more complex.

7. Conclusion

The entailments regarding belief in Kripke-style possible worlds models are too strong:
an agent in such models must believe all of the consequences of its beliefs, no matter how
much reasoning it would take to discover those consequences. This is an idealization that
no real reasoner can satisfy. On the other hand, models of belief that use a more fine-grained
theory of propositions, such as that of Cresswell [4] or Delgrande [5], license little in the
way of reasoning about belief. In such models, for instance, it does not follow from the
fact that someone believesϕ ∧ψ that he also believesϕ. There have been many proposals
attempting to find a middle ground, where belief in a proposition entails belief in some of
its obvious consequences, but not all of its consequences. Most such proposals essentially
give a syntactic or semantic characterization of the consequences that follow obviously
from a set of premises. Our approach is more general. We acknowledge that obviousness
is not simply a property of sentences or propositions, but is related to the mechanism by
which the believer accesses its beliefs. Therefore, our model of belief includes a model of
the believer’s storage and retrieval mechanism.

Simulative reasoning, an intuitive and potentially efficient technique for reasoning about
the beliefs of other agents, is quite naturally expressed as an inference rule in our logic.
Depending on the algorithm chosen to describe believers’ reasoning abilities, the inference
rule may or may not be sound. We have demonstrated that if the algorithm satisfies three
relatively natural constraints, then the rule is sound. Given certain reasoning algorithms,
no complete set of inference rules can exist for the logic, but we have given a set of rules
that is complete for a syntactically restricted subset.

The approach taken in Konolige’s deduction model [17] is similar, but in that model,
believers are limited to a particular kind of reasoning, namely the exhaustive application of
deductive inference rules. Our underlying model is fundamentally more general: it allows
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reasoning to be the execution of an arbitrary algorithm. Simulative reasoning is not sound
for every choice of algorithm, but we have shown that it is sound if the algorithm satisfies
certain constraints. Even if we limit consideration to machines that satisfy these constraints,
there are reasoners in the computational model that have no counterparts in the deduction
model. These are reasoners that can choose to discard some of what they have learned if
they discover that what they have learned is inconsistent. In the other direction, there are
deduction structures that have no counterparts in the computational model, but they are
purely abstract entities: they depend on an agent being able either to learn infinitely many
facts explicitly, or to compute the uncomputable closure of a set of inference rules.

Expressiveness is not the only criterion for comparing the two models. If one wants
to use a formal model of belief to justify the use of simulative reasoning in an actual
system, then one needs to demonstrate that that particular system can be described using
the vocabulary of the model. To apply the deduction model, one must be able to describe
the reasoning performed by the system as the exhaustive application of a set of deductive
inference rules. Unless the system happens to be implemented in that way, this may
be difficult. It is more straightforward, in general, to show that a system’s input/output
behavior can be described using the belief machine abstraction, and then to show that the
belief machine satisfies constraints (C1)–(C3).
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