
A Dialogue Model for Interaction with Planners, Schedulers and
Executives

Nate Blaylock∗

Dept. of Computer Science
University of Rochester

Rochester, New York, USA
blaylock@cs.rochester.edu

John Dowding
RIACS

NASA Ames Research Center
Moffett Field, California, USA

jdowding@riacs.edu

James Allen
Dept. of Computer Science
University of Rochester

Rochester, New York, USA
james@cs.rochester.edu

Abstract

We present a collaborative problem-solving model for
interaction between humans and automated systems.
Because the model is based on problem solving (i.e.,
planning and acting), it provides a natural interface
between a preexisting dialogue system and preexisting
planners, schedulers, and/or executives. We also de-
scribe an abstract architecture for building a dialogue
system interface to planners/schedulers/executives in
a highly domain-independent and portable way.

Introduction

Many planners, schedulers, and executives (henceforth
plan systems) are built to function without human in-
tervention. Most planners, for example, take a goal (or
set of goals) as input, work on the problem and then
output a plan. Most schedulers and executives work in
much the same way: once the task has been specified,
they go do it and only come back when they are done.

These “stand-alone” systems are desirable in some
domains. The Remote Agent system (Muscettola et al.
1998), for example, was designed to pilot an unmanned
deep space probe: an environment in which no humans
are around to interact with at all! However, in domains
where humans are actually present, it is not clear that
it is always desirable to treat plan systems as “stand-
alone” systems.

Tor example, it is probably desirable to have some
outside control of the system for executives. Science
fiction is filled with stories of automated systems gone
awry. More practically, things such as plan failure or ex-
ogenous events may change the situation substantially
enough that the user should be notified and high-level
goals reevaluated.

Human interaction can also be helpful to planners.
Humans are adept at looking at the overall situation
and noticing heuristics or constraints that can help sig-
nificantly narrow the search space for a solution. Such
gestalt heuristics are not always obvious to planners.
In addition, interaction can allow the user to lead the
system to preferred solutions.

∗Also affiliated with RIACS

User: “What is the schedule for satellite 1
tomorrow?”

System: “Satellite 1 is scheduled to observe
sector 5 from 10:00 to 13:00 and will
otherwise be idle.”

User: “Schedule it to observe sector 22 from
14:00 to 18:00.”

System: “OK.”

Figure 1: Sample Dialogue of Scheduling Earth Observ-
ing Satellites (EOSs)

There are a wide range of ways to interact with plan
systems, which we call collaboration paradigms. On one
end of the spectrum is the master-slave paradigm (Pol-
lack 1986), where one of the agents is completely passive
and simply responds to requests from the other agent.
The other end of the spectrum is mixed-initiative in-
teraction, where both agents actively participate in the
interaction.

Obviously, paradigms on the mixed-initiative end of
the scale require a large amount of system autonomy.
Also, different paradigms are probably better suited
to certain domains or desirable for different applica-
tions. We do not advocate any particular paradigm
here. Rather, we present a general framework in which
any of these paradigms can be used for interaction with
plan systems. Before we actually go on to describe
this framework, we give several example dialogues (Fig-
ures 1–3) which show several types of possible interac-
tion.

Figure 1 shows a sample dialogue of interacting with
a scheduler for Earth Observing Satellites (EOSs). This
shows a very basic level of interaction where the user
can query about the future schedule and make adjust-
ments.

Figure 2 shows a slightly more complex interaction
level, here with an executive in a Mars Rover robot.
The queries are about the plan as well as the current
state of execution. The user also has the ability to con-
trol the robot’s execution to avert any undesired situ-
ations — in this case to keep the robot from going off
into a dust storm.



User: “What will you be doing at 16:00?”
System: “I will be going to the west rock

formation to collect samples.”
User: “What are you doing now?”
System: “I am going to sector 7 to take

readings.”
User: “Come back to the ship. There is a

dust storm in that sector.”
System: “OK, I’m coming back.”

Figure 2: Sample Dialogue of Interaction with a Mars
Rover Executive

User: “We need to get some rock samples
from sectors 1 through 5 today.”

System: “Rovers 1, 3 and 5 are already
scheduled for today, but Rovers 2
and 4 are free.”

User: “How many samples can each rover
carry?”

System: “Two.”
User: “Let’s send Rover 2 to get samples

from sectors 1 and 2.”
System: “Actually, Rover 4 is closer to that

area, should we send it instead?”
User: “Yes, let’s do that.”

Figure 3: Sample Dialogue of Mixed-Initiative Planning
with a Mars Rover Planner

Figure 3 shows a mixed-initiative exchange between a
user and a central planner for several Mars Rovers. Here
both the user and the system actively make suggestions
and evaluate each other’s suggestions. The system sug-
gests a change in the user’s recipe because it knows that
Rover 4 is closer to the desired destination than Rover
2. This kind of interaction allows both parties to use
their complementary skills and knowledge to construct
a plan that alone, neither would be able to construct
(cf. (Ferguson, Allen, & Miller 1996)).

In the remaining sections, we present a flexible frame-
work in which to combine dialogue systems and preex-
isting planners, schedulers, and/or executives. The first
part of this framework is a model of interaction which
can handle the range of collaboration paradigms dis-
cussed above. The model is used to motivate a domain-
independent communication language between the dis-
parate components.

The second part of the framework is an abstract ar-
chitecture with an interface component that connects
the dialogue system to the planning component.

Although this framework does not provide the
specifics of building a dialogue interface for any par-
ticular system, it does provide a uniform way to build
such systems, and the interaction model provides an
interface for more easily porting to new domains and
components.

Figure 4: Collaborative Problem-Solving Model
(adapted from (Allen, Blaylock, & Ferguson 2002))

Collaborative Problem-Solving Model

As shown by the examples above, spoken interaction
with a planner, scheduler, or executive can involve
much more than just adding or removing goals and con-
straints. It is true that this is a part of the interaction,
and in a way, it is one of the ends of the interaction.
However, a lot of other activities take place along the
way.

We model human-computer interaction as collabora-
tive problem solving (CPS) between agents, where the
agents work together to accomplish their goals.1 The
central objects of this model are goals and plans (which,
in order to avoid terminology conflicts, we call objec-
tives and recipes, respectively). Problem solving can
be divided into three activities:

1. Deciding on objectives (goals)

2. Deciding on recipes (plans) to accomplish the objec-
tives

3. Using recipes to act

Each of these activities typically involves a lot of in-
teraction. Activities can also be interleaved, as agents
may be working simultaneously on several objectives,
or acting (executing a recipe) in order to aid planning
decisions for higher-level objectives. Agents may also
revisit and change past decisions, change recipes for an
objective, or even drop certain objectives and adopt
others.

As an example of problem solving at a collaborative
level (i.e., with more than one participant), consider
again the dialogue in Figure 3. Here, the user’s first
utterance is used to identify and adopt an objective

1Space constraints allow us only to give a brief descrip-
tion of this model. For more details please see (Blaylock
2002; Allen, Blaylock, & Ferguson 2002; Blaylock, Allen, &
Ferguson 2002).



to work on (getting the rock samples). The system
then (implicitly) accepts that objective and identifies
some resources (the free rovers) which can be used in
achieving it. After some information about the situa-
tion is identified (i.e., rover capacity), the user suggests
adopting a partial recipe (using Rover 2 to get certain
samples). The system suggests changing the resource
used in the recipe (Rover 4 instead) and the user agrees.
At this point the conversation continues, as they have
more objectives to accomplish (i.e., getting the other
samples).

In collaborative problem solving, we view actions by
individual agents as attempts to make changes in the
joint collaborative problem-solving (CPS) state, or the
joint commitments of the agents towards objectives,
recipes, and so forth.

As shown in Figure 4, the CPS model defines a set of
abstract objects of commitment which are specialized
by domain-specific task models. It also defines a set
of operators on those objects at both the single-agent
problem solving and collaborative problem-solving lev-
els. Execution of these operators causes changes in the
problem solving state (either single-agent or collabora-
tive).

The interaction level is needed because of the asym-
metry between the single-agent and collaborative prob-
lem solving. Collaborating agents cannot individually
change the CPS state. Doing so would imply forcing di-
rect changes in another agent’s mental state. Instead,
individual agents execute interaction acts, which are
actions used to negotiate changes in the CPS state.

Interaction acts can be used directly as an artifi-
cial agent communication language. If the modality
of the interaction is natural language, however, inter-
action acts are realized linguistically as communicative
acts.

In the remainder of this section, we describe
task models, then the problem-solving, collaborative
problem-solving and interaction levels. We then show
an example dialogue and discuss the coverage of the
model.

Task Models

Problem-solving (PS) objects are abstract objects
which are instantiated by a domain-specific task model.
This allows the model to interface with specific do-
mains. The following are the PS objects:

Objectives: Assertions that are considered goals in
the domain.

Recipes: Plans for achieving objectives.

Atomic Actions: Domain actions that are directly
executable by the agent.

Resources: Objects which may be used in a plan.

Situations: The state of the world (or a possible
world).

These abstractions allow the rest of the model to
operate on the domain-independent concepts of objec-
tives, recipes, etc. Acts at both the single-agent and
collaborative levels take PS objects as arguments.

Collaborative Problem-Solving Acts

At the heart of the interaction model are collabora-
tive problem-solving (CPS) acts, which are multi-agent
actions that change the CPS state. In order to see
how agents collaborate to solve problems, it is instruc-
tive to first look at an abstract model of how a single-
agent solves problems, which can then be extended to
the multi-agent level. We first describe at an abstract
single-agent problem-solving model and then generalize
it to a collaborative problem-solving model.

Single-Agent Problem Solving

The problem-solving (PS) level describes problem solv-
ing for a single agent. With this model, we are not
trying to compete with formal models of agent behav-
ior (e.g., (Cohen & Levesque 1990; Rao & Georgeff
1991)), which use agent intentions, beliefs and so forth
to predict agent action and changes in the agent’s state.
Our PS model describes possible changes in the agent’s
problem-solving state at the granularity at which col-
laboration occurs.

As discussed above, an agent’s problem solving is di-
vided into three activities which may be freely inter-
leaved:

1. Deciding on objectives

2. Deciding on recipes to accomplish the objectives

3. Using recipes to act

In our model, problem-solving (PS) acts are the oper-
ators which an agent uses to affect its problem-solving
state. These can be classified into two groups: acts
relating to commitment and acts related to reasoning.

Acts Relating to Commitment These acts change
the agent’s commitment to the various PS objects. The
acts are listed here.2

• Adopt : Commits the agent to the PS object, i.e., the
agent intends to do/use/pursue the object.

• Select : Moves an adopted object into the small set
which is currently influencing the agent’s behavior
(i.e., in acting).

• Defer : Tables a selected object. The agent is still
committed to the object, but it is no longer influenc-
ing the agent’s current behavior.

• Abandon: Removes an agent’s commitment to an ob-
ject which has not yet fulfilled its purpose.

• Release: Removes an agent’s commitment to an ob-
ject which has fulfilled its purpose.

2We do not claim that this is a complete list. We do,
however, believe that the final list will be short.



These are better understood in context with the PS
objects to which they are applied. We describe the
effect of these PS acts when applied to each of the PS
objects. (Note that not all PS acts are applicable to all
PS objects.)

Objectives: An agent can adopt an objective, which
commits the agent to pursuing it. An agent may have
any number of adopted objectives, but there is only
a small subset which is active, controlling the agent’s
current activity. Selecting an objective makes it ac-
tive, meaning that the agent is currently actively pur-
suing it (by executing some recipe). An agent can
demote an active objective back to the adopted state
by deferring it. An agent can also, at any time,
abandon an objective, dropping its commitment to
it. Finally, when an agent believes that an adopted
objective has been attained, it may release it. Note
that an objective is not automatically released when
it is attained. An agent must believe that it has been
attained and then consciously release it.

Recipes: These do not quite fit the same model as ob-
jectives, since it does not make sense for an agent to
be committed to more than one recipe for a single
objective. An agent commits to a recipe for an ob-
jective by adopting it. An agent can also release
or abandon an adopted recipe, similar to objectives.
Select and defer do not play a role with recipes.

Atomic Actions: These are similar to objectives.
Adopting an action means that an agent is commit-
ted to performing it. A selected action is something
that is being executed at the current time, which can
be deferred (to suspend execution3), abandoned,
or released.

Resources: These are objects that are somehow used
in a recipe. They fit the same model as recipes in
that only one resource is committed to for a certain
slot in a recipe. Agents can adopt a resource, com-
mitting to use it in a recipe. They can also abandon
or release a resource. Select and defer are not ap-
plicable to resources.

Situations: These are somewhat similar to recipes and
resources. What is commitment to a situation? We
believe this is used to explain “what if” type, pos-
sible worlds simulations. When an agent adopts a
situation, it is committing to do reasoning according
to that situation. Abandoning a situation reverts
all reasoning to the actual situation. It is unclear
what releasing a situation would mean. Select and
defer also do not play a role with situations.

Figure 5 gives a synopsis of applicability of commit-
ment PS acts. An x shows that a PS act is applicable
to the object and a blank indicates non-applicability.

Acts Relating to Reasoning An agent must do rea-
soning to decide which commitments to adopt, aban-

3When the action is suspendable

Adopt Select Defer Abandon Release

Objective X X X X X
Recipe X X X
Action X X X X X
Resource X X X
Situation X X

Figure 5: Application of Commitment PS Acts to PS
Objects

don, and so forth. This is accomplished with the fol-
lowing reasoning PS acts.4

Identify : Brings an object into focus. Used to deter-
mine which options are available.

Evaluate: Determines the goodness of an object in
relations to its purpose.

Modify : Changes an object in some way.

We discuss these in the context of each PS object.

Objectives: When an agent is considering choosing,
releasing, abandoning, etc. an objective, it must
identify one or more objectives that are possibili-
ties. It can then evaluate an objective to determine
if it’s a good idea to adopt it (or abandon it, etc.)
The agent can alsomodify the objective in a certain
way (make it more specific, change a parameter, etc.)

Recipes: These are treated very similarly to objec-
tives. An agent can identify or evaluate possible
recipes for a specific objective. Modifying a recipe
is essentially planning and allows for novel recipes to
be formulated by the agent as necessity arises.

Atomic Actions: The effect of reasoning PS acts on
atomic actions are dependent on the context of
whether the agent is planning (modifying a recipe) or
acting. Identifying an action for planning identifies
a possible action to be used in the recipe. In exe-
cution, it means that the agent queries the adopted
recipe to identify the next step for execution. Eval-
uating an action in a planning context determines
whether or not it is a good candidate for use in the
recipe. In an execution context, an agent may choose
to evaluate an action identified from the recipe before
committing to actually perform the action (there is
no constraint that an adopted recipe actually lead to
attaining the objective). An action may bemodified
in either execution or planning.

Resources: These can be identified as candidates for
use in a recipe. An agent can then evaluate the
goodness of a resource in relation to a recipe. It is
not clear what it would mean to modify a resource.

Situations: In all but the most trivial domains, an
agent will not know the entire situation. Identifying

4Again, we do not claim this to be a comprehensive list,
although we believe the final list will be small.



Identify Evaluate Modify

Objective X X X
Recipe X X X
Action X X X
Resource X X
Situation X X X

Figure 6: Application of Reasoning PS Acts to PS Ob-
jects

a situation gives the agent more information about
what the state of that world is. An agent evaluates a
situation in order to decide if it is a desirable situation
to be in (this may also be helpful for an agent to
decide whether or not an objective can be released).
Hypothetical situations can be modified as well.

Figure 6 gives a summary of the applicability of rea-
soning PS acts to PS objects. Similar to figure 5, an x

shows the applicability of acts to objects.

The Collaborative Level Collaborative problem
solving is an extension of single-agent problem solv-
ing. The granularity of acts that we discussed above is
the granularity at which collaboration occurs between
agents. In fact, these acts are more overt in collabo-
rative problem solving since agents must communicate
and coordinate their reasoning and commitments.

At the CPS level we have CPS acts which apply to
PS objects, paralleling the single-agent PS model. In
order to distinguish acts at the two levels, we append a
c- before CPS acts, creating c-adopt, c-select, c-modify,
and so forth. CPS acts have similar intuitive meaning
to those at the PS level and we will not redefine them
here.5

Interaction Acts

An individual agent cannot perform a CPS act alone, as
doing such would imply directly changing the internal
state of another agent. Rather, CPS acts are generated
by the individual interaction acts of each agent. An
interaction act is a single-agent action and takes a CPS
act as an argument. The interaction acts are initiate,
continue, complete and reject. These are defined by
their effects and are similar to the grounding model
proposed in (Traum 1994).

An agent beginning a new proposal performs an ini-
tiate. In the case of successful generation of the CPS
act, the proposal is possibly passed back and forth be-
tween the agents, being revised with continues, until
both agents finally agree on it, which is signified by the
final agent in the chain not adding any new information
to the proposal but simply accepting it with a complete;
this generates the proposed CPS act. Of course, at any
point in this exchange, either agent can perform a re-
ject, which causes the proposed CPS act to fail. This

5Joint objects also entail slightly different individual in-
tentions as described in (Grosz & Kraus 1996).

ability of either agent to negotiate and/or reject propos-
als allows our model to handle not just the master-slave
collaboration paradigm, but the whole range of collabo-
ration paradigms (including mixed-initiative) which we
discussed above.

Example

To illustrate the model, we apply it to the sample dia-
logue given in Figure 3. It is reprinted and annotated
with its corresponding interaction acts in Figure 7.

The first utterance is initiating an adopt of an objec-
tive6, or suggesting that the objective be taken on. In
the second utterance, the system (implicitly) completes
this CPS act. This generates the CPS act c-adopt ob-
jective which causes a change in the CPS state. In
addition, the second utterance also initiates identifying
resources which can be used in attaining the objective.

The user completes this act and does an identify sit-
uation to find out more about the state of the world.
The system response adds information to the CPS act
(namely the answer), so it is a continue of it, which the
user subsequently completes (or accepts).

In the rest of the dialogue, the user suggests a recipe
to use and a resource (the rover) for the recipe. The sys-
tem rejects that resource and suggests another, which
the user accepts.

Coverage of the Model

This model is intended to describe most possible
human-computer interaction, modeling it as collabo-
rative problem solving. More narrowly, we believe it
can be used to described most interactions between a
human user and a planner, scheduler, and/or execu-
tive. The true test of coverage will likely need to be
pragmatic, as we are not aware of another taxonomy of
collaborative problem-solving interaction against which
coverage could be measured. As we discuss in the future
work section, we are currently implementing systems in
several diverse domains as well as annotating corpora
in even more domains as an attempt to judge the ad-
equacy of the model as well as expand it where neces-
sary. We briefly describe here some phenomena which
can be handled by the model as well as some that are
not presently handled.

Some phenomena which the model covers include:
goal selection (with adopt objective), (interleaved) plan-
ning and execution, plan queries and summary (with
identify recipe, action, etc.), plan and goal evaluations,
negotiation and mixed-initiative interaction (with in-
teraction acts), and possible worlds reasoning and plan-
ning (with situations). Again, we do not claim to have
the actual reasoning components which would produce
these activities, rather we have a model which can de-
scribe the interaction involving them.

6Because of space limitations we have omitted several
acts in this example. For example, this first utterance is
also an (initiate (c-identify objective)).



User: “We need to get some rock samples from sectors 1 through 5 today.”
(initiate (c-adopt objective))

System: “Rovers 1, 3 and 5 are already scheduled for today, but Rovers 2 and 4 are free.”
(complete (c-adopt objective)) — (initiate (c-identify resource))

User: “How many samples can each rover carry?”
(complete (c-identify resource)) — (initiate (c-identify situation))

System: “Two.”
(continue (c-identify situation))

User: “Let’s send Rover 2 to get samples from sectors 1 and 2.”
(complete (c-identify situation)) — (initiate (c-adopt recipe)) — (initiate (c-adopt resource))

System: “Actually, Rover 4 is closer to that area, should we plan on sending it instead?”
(complete (c-adopt recipe)) — (reject (c-adopt resource)) — (initiate (c-adopt resource))

User: “Yes, let’s do that.”
(complete (c-adopt resource))

Figure 7: Sample Dialogue with Corresponding Interaction Acts

Figure 8: Architecture for System Integration

Phenomena not yet directly included in the model
include: team formation — where agents come to-
gether and negotiate to start the collaboration (cf.
(Wooldridge & Jennings 1999)) and global constraint
and preference setting — such as “Always prefer the
fastest solution” (cf. (Lemon et al. 2002)).

System Architecture

The CPS model gives us a sufficiently descriptive model
to allow a variety of potential interactions with agents
of varying abilities. The model is important in that it
gives a non-linguistic, domain-independent description
of collaboration which we can utilize for communication
between the dialogue front end and the system with
which we are interfacing.

We have still not discussed, however, how one would
go about actually building a dialogue interface to a
planner/scheduler/executive. In this section, we de-
scribe a generic architecture for building a dialogue sys-
tem for a preexisting planning component by introduc-

ing a new agent into the architecture: the domain agent.

Figure 8 shows the abstract architecture. The top
portion of the figure shows a simplified view of a tradi-
tional dialogue front end. An utterance from the user is
sent to speech recognition after which it is interpreted to
give some sort of semantic form. The dialogue manager
further interprets the utterance in the context of the di-
alogue. It then decides what action to take based on the
utterance, invokes back-end agents and then formulates
a response, which is sent to generation and ultimately
text-to-speech.

In most dialogue systems, the dialogue manager has
to be specifically designed to interact with particular
back-end components with which it communicates in an
ad-hoc fashion. One of the purposes of our CPS model
is to motivate a principled, communication language
for the dialogue manager and back-end components. In
this way, the dialogue manager can remain independent
of the back-end components and back-end components
are insulated from the linguistic features and only need
to be able to understand collaborative problem solv-
ing. This is useful, since having to redesign dialogue
managers for new domains is a serious issue in system
portability.

Of course, most preexisting planners, schedulers, and
executives were not designed to interface directly using
interaction acts. The architecture uses an intermediary
agent, known as the domain agent, to provide an inter-
face that translates interaction acts into commands to
be sent to the preexisting back-end components. The
domain agent can be as simple as a wrapper for the
component or as complex as an autonomous agent that
gives mixed-initiative behavior to the system and does
complex plan reasoning. This is where the system de-
signer can decide what type of collaboration paradigm
is desired for the application and what types of inter-
action should be supported.

While the idea of a “domain agent” is not new
(cf. (Allen, Ferguson, & Stent 2001; Allen & Fergu-



son 2002))7, there are several benefits from combining
this with the CPS model. First, using interaction acts
to motivate a communication language allows the dia-
logue manager to be independent of back-end compo-
nents. It only needs to translate linguistic forms into
interaction acts (for interpretation) and interaction acts
to linguistic forms (for generation).

Perhaps more importantly is that, since the CPS
model is based on joint plans and execution between
the user and system, it provides a natural interface to
actual planners, schedulers and executives, making it
much simpler to build domain agents for preexisting
systems.

Currently, we are working on integrating a pre-
existing dialogue system with a preexisting plan-
ner/scheduler and executive (Dowding et al. 2002)
based on this architecture.

Related Work

Most dialogue systems (e.g., (Lamel et al. 1998;
Rudnicky et al. 1999)) do dialogue management by
recognizing arguments that fill in values in predefined
frames. These are more apt for domains where the plan
is already constructed and the user is only choosing pa-
rameters for that plan (such as travel reservations). It
is unclear how such architectures could be applied to
the more complex task of interacting with plan systems
to create and execute plans. Although several dialogue
systems (Ramshaw 1991; Chu-Carroll & Carberry 2000)
do reason directly about planning, they do not handle
both planning and execution.

While much work has been done on formalizing joint
plans and activity (Searle 1990; Levesque, Cohen, &
Nunes 1990; Grosz & Kraus 1996), relatively little has
looked at the collaboration that takes place between
agents that are jointly planning and/or acting.

One line of research that models collaboration is the
SharedPlan formalism (Grosz & Kraus 1996) (and the
derivative COLLAGEN project (Rich, Sidner, & Lesh
2001)) in which agents collaborate together to form a
joint plan using four operators: Select Rec — an indi-
vidual agent selects a recipe to be used to attain a given
subgoal; Elaborate Individual — an individual agent de-
composes a recipe into (eventually) completely speci-
fied atomic actions; Select Rec GR — intuitively, the
same as Select Rec, only at the multi-agent level,8 i.e.,
a group of agents select a recipe for a subgoal; and
Elaborate Group — the multi-agent equivalent of Elab-
orate Individual, i.e., a group of agents decompose a
recipe.

The main focus of the SharedPlan model has been

7In terms of architecture in the TRIPS dialogue sys-
tem, the domain agent encompasses roughly the Behavioral
Agent and the back-end interaction of the Task Manager.

8Individual and group operators entail different con-
straints on individual intentions and beliefs. However, this
is not important for understanding the formalism as a model
of collaborative planning.

to formalize agent intentions and beliefs in forming and
sharing joint plans, something which is still weak in our
model. However, for our purposes, building an interface
to plan systems, there are several shortcomings in this
model.

First, SharedPlans only models collaboration for joint
planning between agents. It does not model the collab-
oration that occurs when agents are trying to execute
a joint plan (although it does specify the needed in-
tentions and beliefs for agents executing joint plans).
In the domains we are working in, the user and sys-
tem may collaborate in both planning and acting. This
sometimes happens in a serial fashion (the agents for-
mulate a joint plan and then execute it), or it can be
interleaved (the agents begin to execute a partial plan
and plan “as they go”). We need to be able to model
collaboration involving (possibly interleaved) planning
and acting.

Second, the SharedPlans formalism models the for-
mulation of joint plans with the four operators previ-
ously discussed: Select Rec, Elaborate Individual, Se-
lect Rec GR, and Elaborate Group. Although these op-
erators were sufficient to allow the formalization of
group intentions and beliefs about joint plans, they do
not provide enough detail for us to model collaboration
at an utterance-by-utterance level (which is needed to
represent communicative intentions). As an example,
consider the Elaborate Group operator, which has the
function of decomposing a recipe, instantiating the pa-
rameters (including which agent or subgroup will per-
form which action at what time and which resources
will be used), and making sure the rest of the group
has similar intentions and beliefs about the plan. An
Elaborate Group can and often does consist of many
individual utterances. In order to build a dialogue sys-
tem, we need to be able to model the communicative
intentions behind a single utterance.

We believe that our model may be compatible with
SharedPlans and can be seen as specifying the details
of the SharedPlan operators at an utterance level.

Future Work

We are developing several systems which utilize the
CPS model in several domains including medication
scheduling (Ferguson et al. 2002), emergency and res-
cue operations (Allen et al. 2000), and an interface to
the Personal Satellite Assistant (PSA), a robot under
development to be deployed on the International Space
Station (Dowding et al. 2002). We are also annotat-
ing dialogues in a range of domains (both planning and
scheduling and others) to ensure that the CPS model
covers a wide range of interaction and to ensure that it
is truly domain independent.

Also, as mentioned above, we are currently expanding
the PSA system described in (Dowding et al. 2002)
to interface to a planner and executive based on the
dialogue architecture discussed above. We also plan
to extend the system to perform more plan and task



reasoning to support more mixed-initiative interaction
with the user.

Conclusion

We have presented a domain-independent interaction
model for planners, schedulers and executives based
on collaborative problem solving. This model supports
a wide range of collaboration paradigms and allows a
system designer flexibility in implementing the desired
type of collaboration.

In addition, this interaction model is used to mo-
tivate a domain-independent communication language
between a dialogue front end and planning back-end.
We presented a generic architecture which allows pre-
existing plan systems to be more easily integrated with
a dialogue system.

Acknowledgments

We would like to thank Jeremy Frank, Susana Early,
and the anonymous reviewers for many helpful com-
ments on this paper.

This material is based upon work supported (in
part) by Department of Education (GAANN) grant
no. P200A000306; ONR research grant no. N00014-01-
1-1015; DARPA research grant no. F30602-98-2-0133;
NSF grant no. EIA-0080124; a grant from the W. M.
Keck Foundation; and support from RIACS.

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the
above-mentioned organizations.

References

Allen, J., and Ferguson, G. 2002. Human-machine col-
laborative planning. In Proceedings of the 3rd Inter-
national NASA Workshop on Planning and Scheduling
for Space.

Allen, J.; Byron, D.; Dzikovska, M.; Ferguson, G.;
Galescu, L.; and Stent, A. 2000. An architecture for
a generic dialogue shell. Journal of Natural Language
Engineering special issue on Best Practices in Spoken
Language Dialogue Systems Engineering 6(3):1–16.

Allen, J.; Blaylock, N.; and Ferguson, G. 2002. A
problem-solving model for collaborative agents. In
First International Joint Conference on Autonomous
Agents and Multiagent Systems.

Allen, J.; Ferguson, G.; and Stent, A. 2001. An archi-
tecture for more realistic conversational systems. In
Proceedings of Intelligent User Interfaces 2001 (IUI-
01), 1–8.

Blaylock, N.; Allen, J.; and Ferguson, G. 2002. Manag-
ing communicative intentions with collaborative prob-
lem solving. In Smith, R., and van Kuppevelt, J.,
eds., Current and New Directions in Discourse and
Dialogue. Kluwer. To appear.

Blaylock, N. 2002. Managing communicative inten-
tions in dialogue using a collaborative problem-solving

model. Technical Report 774, University of Rochester,
Department of Computer Science.

Chu-Carroll, J., and Carberry, S. 2000. Conflict res-
olution in collaborative planning dialogues. Interna-
tional Journal of Human-Computer Studies 53(6):969–
1015.

Cohen, P. R., and Levesque, H. J. 1990. Inten-
tion is choice with commitment. Artificial Intelligence
42:213–261.

Dowding, J.; Frank, J.; Hockey, B. A.; Jónsson, A.;
Aist, G.; and Hieronymus, J. 2002. A spoken dialogue
interface to the EUROPA planner. In Proceedings of
the 3rd International NASA Workshop on Planning
and Scheduling for Space.

Ferguson, G.; Allen, J.; and Miller, B. 1996. TRAINS-
95: Towards a mixed-initiative planning assistant. In
Drabble, B., ed., The Third International Conference
on Artificial Intelligence Planning Systems, 70–77. Ed-
inburgh, Scotland: AAAI Press.

Ferguson, G.; Allen, J.; Blaylock, N.; Byron, D.;
Chambers, N.; Dzikovska, M.; Galescu, L.; Shen, X.;
Swier, R.; and Swift, M. 2002. The Medication Advi-
sor project: Preliminary report. Technical Report 776,
University of Rochester, Department of Computer Sci-
ence.

Grosz, B. J., and Kraus, S. 1996. Collaborative
plans for complex group action. Artificial Intelligence
86(2):269–357.

Lamel, L.; Rosset, S.; Gauvain, J. L.; Bennacef, S.;
Garnier-Rizet, M.; and Prouts, B. 1998. The LIMSI
ARISE system. In Proceedings of the 4th IEEE Work-
shop on Interactive Voice Technology for Telecommu-
nications Applications, 209–214.

Lemon, O.; Gruenstein, A.; Hiatt, L.; Gullett, R.;
Bratt, E.; and Peters, S. 2002. A multi-threaded dia-
logue system for task planning and execution. In Bos,
J.; Foster, M. E.; and Matheson, C., eds., Proceedings
of the Sixth Workshop on the Semantics and Pragmat-
ics of Dialogue.

Levesque, H.; Cohen, P.; and Nunes, J. 1990. On
acting together. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 94–99. Boston:
AAAI.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,
B. C. 1998. Remote Agent: To boldly go where no AI
has gone before. Artificial Intelligence 103(1–2):5–48.

Pollack, M. 1986. Inferring domain plans in question-
answering. Technical Report MS-CIS-86-40 LINC
LAB 14, University of Pennsylvania. PhD thesis.

Ramshaw, L. A. 1991. A three-level model for plan
exploration. In Proceedings of the 29th ACL, 39–46.

Rao, A. S., and Georgeff, M. P. 1991. Modeling
rational agents within a BDI-architecture. In Allen,
J.; Fikes, R.; and Sandewall, E., eds., Principles of
Knowledge Representation and Reasoning, 473–484.
Cambridge, Massachusetts: Morgan Kaufmann.



Rich, C.; Sidner, C. L.; and Lesh, N. 2001. COL-
LAGEN: Applying collaborative discourse theory to
human-computer interaction. AI Magazine 22(4):15–
25. Also available as MERL Tech Report TR-2000-38.

Rudnicky, A. I.; Thayer, E.; Constantinides, P.;
Tchou, C.; Shern, R.; Lenzo, K.; Xu, W.; and Oh,
A. 1999. Creating natural dialogs in the Carnegie
Mellon Communicator system. In Proceedings of the
6th European Conference on Speech Communication
and Technology (Eurospeech-99), 1531–1534.

Searle, J. R. 1990. Collective intentions and actions.
In Cohen, P. R.; Morgan, J.; and Pollack, M., eds.,
Intentions in Communication. Cambridge, MA: MIT
Press. 401–415.

Traum, D. R. 1994. A computational theory of
grounding in natural language conversation. Techni-
cal Report 545, University of Rochester, Department
of Computer Science. PhD Thesis.

Wooldridge, M., and Jennings, N. R. 1999. The coop-
erative problem-solving process. Journal of Logic and
Computation 9(4):563–592.


