
Integrating linguistic and domain knowledge for spoken dialogue systems in
multiple domains

Myroslava O. Dzikovska, James F. Allen, Mary D. Swift
Computer Science Department

University of Rochester
Rochester, NY, USA, 14627

{myros, james, swift}@cs.rochester.edu

Abstract

One challenge for developing spoken dialogue sys-
tems in multiple domains is facilitating system
component communication using a shared domain
ontology. Since each domain comes with its own
set of concepts and actions relevant to the appli-
cation, adapting a system to a new domain requires
customizing components to use the ontological rep-
resentations required for that domain. Our research
in multiple domain development has highlighted
differences in the ontological needs of a general-
purpose language interface and a task-specific rea-
soning application. Although different domain ap-
plications have their own ontologies, many aspects
of spoken dialogue interaction are common across
domains. In this paper, we present a new method
of customizing a broad-coverage parser to different
domains by maintaining two ontologies, one that
is generalized for language representation, and an-
other that is customized to the domain, and defining
mappings between them. In this way we preserve
the broad-coverage language components across
domains as well as produce semantic representa-
tions that are optimally suited to the domain rea-
soners.

1 Introduction
One of the challenges in developing spoken dialogue sys-
tems for multiple domains is making the system components
communicate with each other using a specific domain on-
tology. Each domain comes with its own set of concepts
and actions that are relevant to the application, so adapting
a system to a new domain means that all components must
be able to interface with the ontological representations re-
quired for that domain. Researchers working with multi-
component systems typically require all components to use
a shared ontology (e.g., [Goddeau et al., 1994]), or they de-
velop methods to map between the internal representations
and a communication language which uses a shared ontol-
ogy (e.g., [Gurevych et al., 2003]). Our research in multiple
domain development has highlighted differences in the on-
tological needs of a general-purpose language interface and
a task-specific reasoning application. While each domain

comes with its own ontology, many aspects of spoken dia-
logue interaction are common across domains. This obser-
vation has led us to develop a new method that customizes a
broad-coverage, domain-independent parser to new domains
that allows us to preserve the language information that is
common across domains, while addressing specialization is-
sues unique to each domain as much as possible and at the
same time keeping the development for custom domain adap-
tation to a minimum.

Traditionally, the most common way to adapt a dialogue
system to a new domain is to map the words in the system
lexicon directly to the concepts in the domain model, and
write a grammar customized for the domain (see for example
[Seneff, 1992]). This process yields a parser that can quickly
and accurately obtain semantic representations of in-domain
utterances in the form needed by the system reasoning com-
ponents. However, the performance gains in accuracy and
efficiency are offset by the lack of portability of the language
interpretation components, which often require large portions
of the grammar and lexicon to be rewritten to adapt them to
new domains.

A system that has a method of preserving syntactic in-
formation is AUTOSEM [Rosé, 2000], which uses the syn-
tactic lexicon COMLEX [Macleod et al., 1994] as a source
of reusable syntactic information, and manually links sub-
categorization frames in the lexicon to the domain-specific
knowledge representation. The linking is performed directly
from syntactic arguments (e.g., subject, object ...) to the slots
in a frame-like domain representation output by the parser
and used by the reasoners. Rosé’s approach speeds up the
development process for developing tutoring systems in mul-
tiple domains, but does not provide a mechanism for preserv-
ing general semantic representations across domains.

Our approach introduces an intermediate layer of abstrac-
tion, a generic language ontology for the parser that is linked
to the lexicon and allows us to preserve general syntactic and
semantic information across domains. Thus we maintain two
ontologies: domain-independent for the parser, and domain-
specific for the knowledge representation. The parser uses the
generic language ontology to create meaning representations
of the input speech which can then be converted into the re-
quired domain representation. To integrate the linguistic and
domain knowledge, we define a set of mappings between the
general semantic representations produced by the parser and

the domain-specific knowledge sources localized in the back-
end application. We also use the mappings to specialize the
lexicon to the domain, resulting in substantial improvement
in parsing speed and accuracy.

The customization method described here was developed
in the process of adapting the TRIPS dialogue system [Allen
et al., 2001] to multiple domains, including a transportation
routing system [Allen et al., 1996] and a medication schedul-
ing adviser [Ferguson et al., 2002]. We assume a generic di-
alogue system architecture [Allen et al., 2000] that includes
a speech module, a parser (responsible for syntactic parsing
and initial logical form generation), an interpretation manager
(responsible for contextual processing and dialogue manage-
ment), and a back-end application that is responsible for the
general problem-solving behavior of the system.

The paper is organized as follows. First we contrast the
needs of linguistic ontologies and domain ontologies, in sec-
tion 2. Next, we describe the organization of our domain-
independent lexicon and ontology and how the parser uses
it to generate a semantic representation of the language in-
put that is then converted to representations that can be used
by the domain-specific reasoners,in section 3. In section 4,
we describe how the domain-independent representations are
linked with the domain-specific KR ontology via a set of
transforms. In section 5, we specify how the transforms are
used to specialize the generic lexicon, which improves speed
and accuracy for the parsing of in-domain utterances. Finally,
in section 6 we discuss issues involved in using this method
to port to new domains.

2 Linguistic ontology versus a domain model
In the process of developing our dialogue system in multiple
domains, it has become clear that the language and domain-
specific knowledge representation have differing needs. As
an example of a domain-specific ontology, consider our Paci-
fica transportation domain. In this domain, the user is given
the task to evacuate people and possibly other cargo before an
approaching storm. A fragment of an ontology for physical
objects used by the planner for this domain is shown in Fig-
ure 1. The top-level distinction is made between fixed objects
such as geographical-locations, and movable objects such as
vehicles and commodities, which are suitable for transporta-
tion. People are classified as a kind of commodity because
they are transported as cargo in the Pacifica scenario.

The planner knows 3 main actions: MOVE, TRANS-
PORT and LOAD. MOVE is the action when a vehicle is
moved between 2 points, without any loading actions in-
volved. TRANSPORT is the action of transporting a cargo
between the two points. If the vehicle is not specified explic-
itly, a suitable vehicle needs to be chosen, and actions neces-
sary to load it planned; LOAD is the action of putting a cargo
into a vehicle. Pragmatically, TRANSPORT is further subdi-
vided into a JUST-TRANSPORT action, when there’s already
a vehicle at a place where the cargo is located, and MOVE-
THEN-TRANSPORT, where a vehicle needs to be moved to
that location first. Ontology definitions representing those ac-
tions is shown in Figure 2.

Although this ontology is optimally suited for planning and

Physobj

Movable-obj

Vehicle Commodity

Person Equipment

Fixed-obj

Geo-obj City

Figure 1: Ontology fragment for physical objects in TRIPS
Pacifica domain.

reasoning in the Pacifica domain, it is not the best choice for
the language ontology, especially in a multi-domain system.
In the ontology for physical objects, making the difference
between MOVABLE-OBJ and FIXED-OBJ a top-level dis-
tinction is counterintuitive in our medication adviser domain.
Having a COMMODITY category is also not a good choice
for a general ontology. In a medication adviser domain, this
category is not relevant to the task, and people should be clas-
sified as living beings. Arguably, this could be solved by in-
troducing multiple inheritance and making PERSON a child
of both COMMODITY and LIVING-BEING. However, this
does not solve the problem completely, because it is difficult
to classify many physical objects consistently as cargos. For
example, whether a door is a subtype of COMMODITY may
be dependent on a specific application.

Similarly, the action ontology has a set of associated prob-
lems. We need to have the type restrictions to limit the parser
search space and improve disambiguation accuracy. Yet the
type restrictions tailored for the Pacifica domain are not well
suited to other domains. For example, the sentence I moved
to a different place clearly does not fall within the Pacifica
representations of either MOVE or TRANSPORT. We could
add a new class to the ontology to represent these actions,
but this would mean adding another sense to the word move,
increasing the ambiguity in the lexicon and making main-
tenance more difficult. The very specific categories, JUST-
TRANSPORT and MOVE-THEN-TRANSPORT, cannot be
distinguished in the lexicon at all, and they just add confu-
sion to trying to determine which are the correct ontological
categories for different words in the lexicon.

From a parsing perspective, a good classification for move-
ment verbs would have a general MOTION type which covers
all instances of objects being moved, whether they are cargo
or vehicles, with a subtype for transportation covering the
verbs where transportation of cargo is clearly implied, e.g.,
transport, ship. For physical object classification, we still
want to retain the information on whether some objects (such
as mountains) are inherently fixed or not, but it should not be
included as the topmost division in the hierarchy.

Another point of tension between the needs of parsing and
reasoning components is the argument structure. From the
point of view of planner, it would be most convenient to have

ACTION
(Actor PERSON)

LOAD
(Vehicle VEHICLE)

(Cargo COMMODITY)

MOVE
(Vehicle VEHICLE)

TRANSPORT
(Vehicle VEHICLE)

(Cargo COMMODITY)

JUST-TRANSPORT MOVE-THEN-TRANSPORT

Figure 2: Action ontology fragment in TRIPS Pacifica domain.

the definition of MOVE and TRANSPORT which have a sin-
gle :PATH slot, where the :PATH slot has a complex value
with :SOURCE, :DESTINATION and :VIA slots. This was
the original implementation in the TRAINS-95 system, but it
was abandoned because its divergence from linguistic struc-
ture made it difficult to implement in practice. For exam-
ple, the values filling :PATH slots can come from a variety
of adverbial modifiers, e.g., to, toward for :DESTINATION,
through, via, by for :VIA, and occasionally from a direct ob-
ject, such as leave Avon for Bath at 5pm. It proved difficult
to handle this kind of variation in the grammar without in-
troducing domain-specific rules which were not suitable in
other domains. A representation more suitable for a parser
is a MOVE type with TO-LOC and FROM-LOC arguments
which can be filled either by the subcategorized complements
or by PP-modifiers as they are encountered.

Given these issues, we decided to separate the ontology
used in parsing (the LF ontology) from the ontology used in
reasoning (the KR ontology). The design considerations for
the LF and KR ontologies are summarized in Table 1.

The LF ontology is designed to be as general as possi-
ble and cover a wide range of concepts that are needed to
generate semantic representations of the language input for
use in a variety of practical domains. Accordingly, the LF
ontology has a relatively flat structure and makes only lin-
guistically motivated sense distinctions. For example, the LF
ontology distinguishes between LF CONSUMPTION and
LF REMOVING senses of take, since these two senses can be
distinguished with different syntactic and semantic patterns.
The LF CONSUMPTION sense of take requires a consum-
able substance as an object and often occurs with a temporal
modifier on the take event, as in I take an aspirin at bedtime,
while the LF REMOVING sense of take requires a moveable
entity as object and often occurs with a path modifier on the
event, as in The truck took the cargo to the station. The se-
mantic representations we generate from the LF ontology are
as close to the original linguistic structure as possible, so there
is straightforward mapping between lexical entries and their
ontological representation.

The KR ontology, on the other hand, is designed specifi-

cally for a given domain, so the concepts in the ontology are
organized in ways that are best suited for domain-specific rea-
soning. The KR ontology makes fine-grained distinctions be-
tween concepts as relevant to the domain, so its hierarchical
structure is deeper than that of the LF ontology. And because
the KR concepts are organized to facilitate reasoning in the
task domain, their representation may be inconsistent with
how concepts are expressed linguistically, as is the case with
the MOVE and TRANSPORT concepts described above.

In the remainder of the paper, we describe our method of
integrating the information in the domain-independent lin-
guistic ontology with domain-specific KR ontologies to max-
imize both system portability and efficient parsing.

3 From language to general semantic
representation

The LF ontology is close in structure to linguistic form, so it
can be easily mapped to natural language and used in mul-
tiple domains. It classifies entities (i.e., objects, events or
properties) primarily in terms of argument structure. Every
LF type declares a set of linguistically motivated thematic ar-
guments, a structure inspired by FRAMENET [Johnson and
Fillmore, 2000], but which covers a number of areas where
FRAMENET is incomplete, such as words related to plan-
ning and problem solving. We use the LF ontology in con-
junction with a generic grammar covering a wide range of
syntactic structures and requiring minimal changes between
domains. For example, adapting the parser from the trans-
portation to the medical domain required adding LF types for
medical terms (our generic hierarchy was incomplete in this
area) and corresponding vocabulary entries, but we did not
need to change the grammar or existing lexical entries, and
we continue to use the same lexicon in both domains.

The LF types in the LF ontology are organized in a single-
inheritance hierarchy. We implement multiple inheritance via
semantic feature vectors associated with each LF type. Each
LF type has an associated feature set type, which classifies
entities as physical objects, abstract objects, propositions, sit-
uations or times. The feature type is associated with a set
of features that encode basic meaning components used in

LF Ontology KR Ontology
As general as possible, broad coverage of concepts Domain-specific concepts and organization
Relatively flat structure and linguistically motivated
sense distinctions

Deeper structure, with fine-grained distinctions between
concepts as relevant to domain

Simple representations that are close to linguistic form
(argument structure)

Roles organized for efficient reasoning w/o regard for lin-
guistic structure

Table 1: Design considerations for LF and KR ontologies.

semantic restrictions, such as form, origin and function for
physical objects. For example, Figure 3 contains LF type def-
initions used for various types of vehicles (LF Vehicle), food
items (LF Food) and people (LF Person). The feature vector
for LF Vehicle, denoted by :sem, encodes the fact that it is a
physical entity, which has the form of an object (as opposed
to a formless substance), is man-made (origin artifact), func-
tions as a vehicle (object-function vehicle), and is a mobile
object (mobility movable).

(define-type LF Vehicle
:parent LF Manufactured-object
:sem (phys-obj (form object) (origin artifact)

(object-function vehicle)
(mobility movable)))

(define-type LF Food
:parent LF Physical-object
:sem (phys-obj (origin natural) (object-function comestible)

(mobility movable)))

(define-type LF Person
:parent LF Physical-object
:sem (phys-obj (origin human) (intentional +)

(form object) (mobility movable)))

Figure 3: LF type definitions for some objects in the LF on-
tology.

While the distinctions we encode with feature vectors can
be represented in a multiple inheritance hierarchy, a feature-
based representation makes it easy to implement an effi-
cient type-matching algorithm based on [Miller and Schubert,
1988]. More importantly, using feature vectors allows us to
easily modify the semantic information associated with a lexi-
cal entry, a property utilized during the customization process
described below. More detailed description of our feature set
can be found in [Dzikovska et al., to appear].

The semantic features encode basic meaning components
that we use in selectional restrictions on verb arguments. To
illustrate, consider Figure 4, which shows definitions for a
certain class of words that specify filling events that involve
containers. Intuitively, LF Filling defines a motion event in
which an intentional being (AGENT) loads a movable ob-
ject (THEME) into another physical object that can serve as
a container (GOAL). The restriction on the agent argument
specifies that the entity filling this role must be an intentional
being.

In the LF ontology, many similar words can be mapped to

the same LF type, because, as noted in section 2, we only
make the distinctions in the LF ontology that are linguisti-
cally motivated and as independent of any given domain as
possible. For example, cram, fill, pack and load are all linked
to LF Filling. It is difficult to further subdivide them in a
way that will be consistent across domains, therefore the LF
ontology does not make any further distinctions.1 In the Paci-
fica domain, it is in fact sufficient to interpret all of them as
instances of a LOAD action. However, these words obvi-
ously differ in meaning, and in a different domain we may
need to make more specific distinctions between them. To
retain those distinctions, word senses are treated as leaves of
the semantic hierarchy. The complete LF type of a word is
written as as LF-parent*LF-form, where the LF-parent is the
type defined in the LF ontology (for example, LF Filling for
load), and the LF-form is the canonical form associated with
the word (for example, LF Filling*load for all morphological
variations of a verb load).

For every word sense in the lexicon, we specify syntactic
features (such as agreement, morphology, etc.), LF type, and
the subcategorization frame and syntax-semantics mappings.

To illustrate, consider the verb load in the sense to fill the
container. The lexicon entry for load linked to LF Filling
is shown in Figure 5. It contains two possible mappings be-
tween the syntax and the LF: one in which the THEME is
realized as direct object, corresponding to Load the oranges
into the truck, and another in which the THEME is realized as
prepositional complement, corresponding to Load the truck
with oranges. In this figure, SUBJ denotes the restriction
on the subject of the verb, DOBJ the restriction on the di-
rect object, and COMP3 the restriction on the prepositional
complement. SEM denotes the selectional restrictions prop-
agated from the definition in Figure 4 based on role corre-
spondences. These restrictions are used as follows: Given
the restriction on the THEME argument in Figure 4, only ob-
jects marked as (mobility movable) are accepted as a direct
object or prepositional with complement of load. Finally, the
SUBJ-MAP, DOBJ-MAP and COMP3-MAP denote the se-
mantic arguments into which these syntactic arguments will
be mapped.

The parser produces a flattened and unscoped logical form
using reified events [Davidson, 1967]. A simplified repre-
sentation showing the semantic content of Load the oranges
into the truck is shown in Figure 6. The representation has
the form:

(〈QUANTIFIER〉 〈VARIABLE〉 〈TYPE〉 〈RESTRICTION〉)

1This is consistent with the FrameNet interpretation, where all of
these words are instances of the Filling frame.

(a)
(LF LF Filling*load)
(SUBJ (NP (SEM (phys-obj (intentional +)))))

(SUBJ-MAP AGENT)
(DOBJ (NP (SEM (phys-obj (mobility movable)))))

(DOBJ-MAP THEME)
(COMP3 (PP (ptype into) (SEM (phys-obj (container +))))))

(COMP3-MAP GOAL)
(b)
(LF LF Filling*load)
(SUBJ (NP (sem (phys-obj (intentional +)))))

(SUBJ-MAP AGENT)
(DOBJ (NP (SEM (phys-obj (container +)))))

(DOBJ-MAP GOAL)
(COMP3 (PP (ptype with) (SEM (phys-obj (mobility movable))))))

(COMP3-MAP THEME)

Figure 5: Lexicon definitions for the verb load used in (a) load the oranges into the truck (b) load the truck with oranges.

(define-type LF Motion
:sem (situation (aspect dynamic))
:arguments

(THEME (phys-obj (mobility movable)))
(SOURCE (phys-obj))
(GOAL (phys-obj))

(define-type LF Filling
:parent LF Motion
:sem (situation (cause agentive))
:arguments

(AGENT (phys-obj (intentional +)))
(GOAL (phys-obj (container +))))

Figure 4: LF type definitions for LF Motion and LF Filling.
In the lexicon, feature vectors from LF arguments are used to
generate selectional restrictions based on mappings between
subcategorization frames and LF arguments.

where 〈QUANTIFIER〉 is either a generalized quanti-
fier coming from a noun phrase specifier, or a quantifier
denoting the function of the variable, e.g., “SPEECHACT”
for speech acts, “F” for forms derived from verb and adver-
bial predicates, “IMPRO” for implicit pronouns, such as the
implicit subject of an imperative. Note that for simplicity, the
representation shown there is a simplified version that omits
some of the reference and discourse information and focuses
on the semantic content of an utterance.

4 From general semantic representation to
domain-specific KR

To produce domain-specific KR representations from the
generic LF representations, we developed a method to cus-
tomize parser output. Our method transforms the interme-
diate semantic representation produced by the parser (the
LF representation) into the specific KR representation used
by the reasoners. The transformation from LF representa-

(SPEECHACT sa1 SA REQUEST :content e123)
(F e123 LF Filling*load :agent pro1 :theme v1 :goal v2)
(IMPRO pro1 LF Person :context-rel +YOU+)
(THE v1 LF FOOD*orange)
(THE v2 LF VEHICLE*truck)

Figure 6: The LF representation of the sentence load the or-
anges into the truck.

tion to KR representation needs to accomplish two things:
it has to convert the domain-independent LF-representation
syntax into the syntax required by the KR, and it has to
map the general ontological concepts in the LF (LF types)
into the domain-specific ontological concepts in the KR (KR
types). We illustrate our method by showing how the LF rep-
resentations can be transformed into two different knowledge
representation languages: the knowledge representation cur-
rently used by the TRIPS planner (TRIPS Planner Language),
and the KM knowledge representation language [Clark and
Porter, 1999].

First we illustrate how the LF representation syntax can be
converted into the syntax required by either the Trips Planner
Language or the KM language. For simplicity, these exam-
ples assume that both of these languages use a definition of
the LOAD action with ACTOR, CARGO and VEHICLE slots
as specified in the Pacifica ontology (described in section 2).

Consider the example sentence Load the oranges into the
truck. The target forms that we want to sent to the Planner
for both KR languages are given in Figure 8: (a) is the rep-
resentation in the TRIPS Planner Language, and (b) is the
representation in the KM language. Our task is to transform
the LF representation for this sentence (shown in Figure 6)
into these target representations. The focus of this first exam-
ple is how we obtain the different syntactic representations
required by the different KR languages. However, note that
the first step in the transformation process is for reference res-
olution to replace all variables in definite descriptions in the

(a) (define-lf-to-kr-transform load-transform-trips
:pattern ((?spec ?ev LF Filling :agent ?a :theme ?t :goal ?g)

− > ((TYPE ?ev LOAD) (actor ?ev ?a) (cargo ?ev ?t) (container ?ev ?g))))

(b) (define-lf-to-kr-transform load-transform-km
:pattern ((?spec ?ev LF Filling :agent ?a :theme ?t :goal ?g)

− > (?ev is (a LOAD with (actor ?a) (cargo ?t) (container ?g)))))

Figure 7: Transforms between the domain-independent form and domain-dependent forms (a) in TRIPS planner language (b)
in the KM language

(a)
(AND (TYPE e1 LOAD) (ACTOR e1 YOU123)

(CARGO e1 oranges2) (VEHICLE e1 truck3))
(b)
e12 is (a LOAD with

(actor YOUR123)
(CARGO oranges2)
(VEHICLE truck3))

Figure 8: The KR representation for Load the oranges into
the truck in (a) the TRIPS planner language (b) the KM lan-
guage.

LF representation with constants denoting the entities they
refer to in the domain. In this example, v1 is replaced by OR-
ANGES2 and v2 is replaced by TRUCK3. The details of this
substitution process are beyond the scope of this paper.

In order to transform the domain-independent LF represen-
tation in Figure 6 into the domain-specific KR representations
in Figure 8, we define mapping rules that specify the pattern
that the LF must match, and the corresponding KR represen-
tation. The relevant transform for our example is shown in
Figure 7. It will map all LF representations using LF type
LF Filling into instances of the LOAD concept. This trans-
form specifies that the ACTOR slot of LOAD will be filled
with the variable from the AGENT argument of LF Filling
(?a), the CARGO slot with variable from the THEME argu-
ment (?t) , and the CONTAINER slot with the variable from
the GOAL argument (?g).

In this example, there is a direct correspondence between
the arguments of the LF type and the slots of a KR type.
A more complex case involves transforming a single LF
form into a set of frames or predicates in the target KR lan-
guage. For example, our LF representations treat all path
adverbials (LF To-loc, LF From-loc, etc.) as separate com-
ponents, which we have found to be the most convenient
domain-independent implementation for capturing their syn-
tactic variability. However, for a transportation domain, it is
more convenient to collect all adverbials into a single path
frame, because path descriptions are essential for routing.
The transform shown in Figure 10 maps all path adverbials
that modify an LF Motion event into a single path frame in
the KM language. The result of the application is a set of
frames (or a frame with another embedded frame) shown in
Figure 9.

The transforms use the hierarchical properties of the LF on-

e45 is (a MOVE
with (actor YOU123)
(path (a PATH with (source Pittsford)

(destination Rochester))))

Figure 9: The representation of a MOVE event as a MOVE
frame with an embedded PATH frame in the KM language.

tology. LF Motion is a high-level LF ontology concept that
covers a large class of motion words (motion, move, trans-
port, walk, etc.) In the example above, the system will apply
the path transform to any descendants of LF Motion unless a
more specific transform exists.

Conversely, we can define transforms that use adverbial
modifiers to fill slots in a single frame. For example, we
can define a transform that converts Go straight to Pittsford,
where straight is analyzed as modifying to in the LF represen-
tation and creates a MOVE frame with the slot value (Manner
DIRECT), if this is the form supported by the system reason-
ers.

In our examples so far, all arguments are optional. For ex-
ample, in Figure 10, we have LF From-loc, LF To-loc and
LF Via as semantic arguments for a MOVE event. These are
not always overtly expressed in language, and if not all of
them are present in the LF representation, the transform still
applies. However, there are some cases in which an argu-
ment must be present for a transform to apply. In such cases,
we specify preconditions on the required arguments. For ex-
ample, the TRIPS Pacifica ontology distinguishes between
MOVE, a request to move vehicles without any additional
planning required, and TRANSPORT, a request to move car-
gos, as described in section 2. With this representation, it
only makes sense to interpret motion verbs as instances of
TRANSPORT if there is an identifiable cargo present. We
achieve this with the transform in Figure 11, which specifies
that the THEME semantic argument that fills the CARGO slot
is required for the transform to apply.

To make transform writing more efficient, we use the lex-
ical (orthographic) form of words in transforms. For exam-
ple, from the point of view of the LF ontology, medication
names have similar distributions across syntactic contexts,
and therefore are represented as leaves under the LF DRUG
type, e.g., LF DRUG*prozac, LF DRUG*aspirin. However,
the KR ontology in the medication adviser domain makes
pragmatic distinctions between medications (e.g., prescrip-
tion vs. over-the-counter), but uses medication names as leaf

(define-lf-to-kr-transform path-transform-km
:pattern ((?spec ?ev LF Motion :lf from-loc ?fl :lf to-loc ?tl :lf via ?va)

− > ((?ev is (a MOVE with (path *1)))
(*1 is (a PATH with (source ?fl) (destination ?tl) (mid-point ?va))))

Figure 10: A transform to collect all path adverbials into a single path frame in the KM language. *1 denotes an operation of
creating a new variable for the path frame.

(define-lf-to-kr-transform transport-transform-trips
:preconditions ((:obligatory theme))
:pattern ((?spec ?ev LF Motion :agent ?a :theme ?t :instrument ?vh)

− > ((TYPE ?ev LOAD) (actor ?ev ?a) (cargo ?ev ?t) (vehicle ?ev ?vh))))

Figure 11: The transform for TRANSPORT actions in TRIPS Pacifica domain. The precondition limits the transform applica-
tion only to the cases when a cargo slot can be filled.

(define-lf-to-kr-transform drug-transform-medadvisor
:pattern ((?spec ?en (:* LF DRUG ?lf-form))

− > ((TYPE ?en ?lf-form))))
:defaults ((?lf-form substance))

Figure 12: A transform for medications in the medication ad-
viser system, using the TRIPS planner language.

types in the KR hierarchy. We can write a single transform
for all LF DRUG children, shown in Figure 12, that converts
the LF type to the KR type based on the lexical form specified
in the entry. Note that since the transform allows a variable
(?lf-form) to determine the resulting KR type, it also requires
the user to specify a default value that will be assigned if the
class with the name derived from ?lf-form cannot be found in
the KR ontology.2

For instance, assume a KR ontology in which the medica-
tion ASPIRIN is defined, but the medication ZOLOFT is not
defined. Then given the transform in Figure 12 and the logi-
cal form in Figure 13(a), we obtain an entity of KR type AS-
PIRIN, since ASPIRIN is defined in the KR ontology. How-
ever, since the concept ZOLOFT is not defined in the KR
ontology, we obtain an entity of KR type SUBSTANCE, as
shown in Figure 13(b), because SUBSTANCE was specified
as the default value in the transform.

5 Specializing the lexicon

In addition to using the transforms described above to convert
LF representations to KR representations, we also use them
in a pre-processing stage to specialize the lexicon. By inte-
grating the domain-specific semantic information into the lex-
icon and grammar, we increase parsing speed and improves
semantic disambiguation accuracy.

2Using the lexical form directly is the simplest possible case,
since it assumes that the KR will use the lexical forms directly as
concepts. An easy extension is determining the KR type based on
some operator applied to a lexical form, for example, concatenating
it with a pre-defined prefix used in the KR ontology, e.g., MED-
ASPIRIN, MED-TYLENOL, etc.

(a) (The v1 LF DRUG*Aspirin) =>

(TYPE v1 ASPIRIN)
(b) (The v2 LF DRUG*Zoloft) =>

(TYPE v2 substance)

Figure 13: The logical forms and the resulting KR forms af-
ter applying the transform in Figure 12 (a) when the type
ASPIRIN is defined in the KR ontology (b) when the type
ZOLOFT is not defined in the KR ontology.

We pre-process every lexical entry by determining all pos-
sible transforms that apply to its LF type. For each transform
that applies, a new sense definition is created that is identical
to the old definition but contains a new feature in the semantic
vector, kr-type, with the value of the KR ontology class spec-
ified in the transform. Thus, we obtain a (possibly larger)
specialized set of lexical entries that specify the KR class to
which they belong. We then propagate type information from
the LF representation into the syntactic arguments, which cre-
ates tighter selectional restrictions in the lexicon. Finally, we
increase the preference values for the senses for which map-
pings were found, so domain-specific entries will be tried first
during parsing.

We illustrate the lexicon specialization process with the
verb load. Given the definitions of load and LF Filling in
Figure 4, and the transform definitions in Figure 7, the algo-
rithm to generate the lexical entry for the verb load proceeds
as follows:

• Fetch the definition of LF Filling and the semantic fea-
ture vectors for it and its arguments;

• Determine the applicable transform, in this case load-
transform;

• Add KR-type load to the semantic feature vector of load,
as specified by the transform;

• Lexicon queries the ontology about selectional restric-
tions on arguments, and determines that the element that
fills the CARGO slot needs kr-type COMMODITY;

• Add KR-type COMMODITY to the semantic feature vec-
tor of the THEME argument;

(a)
(LF LF Filling*load)
(SUBJ (NP (SEM (phys-obj (intentional +) (kr-type Person) (origin human) (form solid-object))))

(SUBJ-MAP AGENT)
(DOBJ (NP (SEM (phys-obj (mobility movable) (kr-type commodity)))))

(DOBJ-MAP THEME)
(COMP3 (PP (ptype into) (SEM (phys-obj (container +) (kr-type Vehicle) (origin artifact) (form object)))))

(COMP3-MAP GOAL)
(b)

(LF LF Filling*load)
(SUBJ (NP (sem (phys-obj (intentional +) (kr-type Person) (origin human) (form solid-object))))

(SUBJ-MAP AGENT)
(DOBJ (NP (SEM (phys-obj (container +) (kr-type Vehicle) (origin artifact) (form object)))))

(DOBJ-MAP GOAL)
(COMP3 (PP (ptype with) (SEM (phys-obj (mobility movable) (kr-type Commodity)))))

(COMP3-MAP THEME)

Figure 14: The lexicon entry for the verb load specialized for Pacifica domain (a) for load the oranges into the truck (b) for
load the truck with oranges

• Apply similar transforms to the rest of the arguments.

This process creates a new definition of load, shown in
Figure 14, that has 2 entries corresponding to the same two
senses described in section 3, but with stricter selectional re-
strictions on the arguments as the result of domain specializa-
tion. Since this specialized lexical entry for load conforms to
KR requirements, now suitable objects or prepositional com-
plements of load must be not only movable, as specified in
the LF ontology, but also identified as belonging to the class
COMMODITY in the domain. Comparable transforms apply
to the relevant nouns, so oranges, people and other cargos
will have a kr-type value that is a subtype of COMMODITY
inserted in their semantic feature vectors.

The entries are further specialized with the use of feature
inference rules. Feature inference is a general mechanism
in the system lexicon used to express dependencies between
feature values. For example, we have a feature rule associ-
ated with our feature system declaring that if something is
marked as a human (origin human), it is also a solid object
(form solid-object), in (Figure 15(a)). During the specializa-
tion process we add the rules that declare dependencies be-
tween the values of kr-type features and the values of domain-
independent features. For example, in our Pacifica domain we
have a rule declaring that if something is marked as (kr-type
Person), then it must also have the domain-independent fea-
ture value (origin human), shown in Figure 15(b). When that
value is added to the feature vector in the subject restriction
in the entry for load, it will trigger the domain-independent
rule in 15(a), which causes (form solid-object) to be added to
the feature set. The new features added as the result of spe-
cialization and feature inference are highlighted with bold in
Figure 14.

Our lexicon specialization process is designed to easily in-
tegrate the specialized and non-specialized entries. If no spe-
cialization is found for a lexical entry, it remains in the lexi-
con, though with a lower preference, with the assumption that
kr-type is assigned an undefined value kr-root, which will sat-
isfy any kr-type restriction. It can then participate in any con-

(a) (origin human) => (form solid-object)

(b) (kr-type Person) => (origin human)

Figure 15: Some feature inference rules in the TRIPS lexicon.
(a) The domain-independent inference rule in the generic lex-
icon; (b) The domain-dependent inference rule defined in the
Pacifica domain.

structions with specialized entries. This makes the system
more robust for out of domain utterances, because it allows
us to find a parse and respond more intelligently even when
out of domain words are present. At the same time, using
feature specialization rules for domain-specific entries allows
us further restrict search space even for unspecialized entries
through tighter restrictions on argument slots. For example,
the domain-independent entry for load allows any containers
to fill the GOAL argument of the loading action. The special-
ized entry restricts the GOAL argument to vehicles. Thus, the
verb phrase load the dispenser will be accepted only if there
is no other interpretation available, because while dispenser
does not have a specialized entry in Pacifica, it is not marked
with the domain-independent value (object-function vehicle)
and therefore does not satisfy the restriction.

Lexicon specialization considerably speeds up the pars-
ing process. We conducted an evaluation comparing pars-
ing speed and accuracy on two sets of 50-best speech lattices
produced by our speech recognizer: 34 sentences in the med-
ical domain and 200 sentences in the Pacifica domain. Ta-
ble 2 provides some statistics on the lexicons used in these
domains. The results presented in Table 3 show that lexi-
con specialization considerably increases parsing speed and
improves disambiguation accuracy. The times represent the
average parsing time per lattice, and the errors are the num-
ber of cases in which the parser selected the incorrect word
sequence out of the alternatives in the lattice.3

3For the purpose of this evaluation, we considered correct

Generic Pacifica Medical
of senses 1947 2028 1954
of KR classes - 228 182
of mappings - 113 95

Table 2: Lexicon statistics.

Pacifica Medical
of sentences 200 34
Time with KR (sec) 4.35 (870) 2.5 (84)
Time with no KR (sec) 9.7(1944) 4.3 (146)
Errors with KR 24%(47) 24% (8)
Errors with no KR 32% (65) 47% (16)

Table 3: Average parsing time per lattice in seconds and sen-
tence error rate for our specialized grammar compared to our
generic grammar. Numbers in parentheses denote total time
and error counts for the test set.

The amount of work involved in domain customization is
relatively small. The generic lexicon and grammar stay es-
sentially the same across domains, and a KR ontology must
be defined for the use of back-end reasoners anyway. We need
to write the transforms to connect the LF and KR ontologies,
but as their number is small compared to the total number of
sense entries in the lexicon and the number of words needed
in every domain, this represents an improvement over hand-
crafting custom lexicons for every domain.

6 Discussion
In previous work, we have relied on the built-in ontology sup-
port in the TRIPS system to provide ontology definitions,
subtype unification and other information necessary in the
customization process [Dzikovska et al., to appear]. The
built-in ontology facilitates efficient processing, but it lim-
its the expressiveness of the language to the forms supported
in the TRIPS knowledge representation (first-order logic and
frames with simple slots). Using an external ontology such
as KM allows us to utilize the richer representations that sup-
port reasoning, but comes at a performance cost of having to
call the external ontology during parsing, which can poten-
tially be expensive. However, with caching the results of the
previous calls, or pre-compiling some of the information, we
believe it should not significantly impair system performance.

In lexicon specialization, there is a tradeoff between the
strength of the selectional restrictions and the lexicon size.
The number of distinct lexical entries may increase in the
specialized lexicon because there is no one-to-one correspon-
dence between the LF and KR ontologies, so several trans-
forms may apply to the same LF type depending on the se-
mantic arguments that are filled. A new entry is created for
every transform that applies, and during parsing the selec-

choices in which a different pronoun, article or tense form were sub-
stituted, e.g., can I tell my doctor and could I tell my doctor were
considered equivalent. However, equally grammatical substitutions
of a different word sense, e.g., drive the people vs. get the people
were counted as errors.

tional restrictions propagated into the entries will effectively
select the correct definitions. Table 2 shows that the number
of lexicon entries increased from 1947 to 2048 (5%) in our
Pacifica domain, and from 1947 to 1954 (0.3%) in our Medi-
cation Advisor domain.

In spite of the increased number of lexical entries, we be-
lieve that our approach offers significant benefits with respect
to portability. It is difficult to quantify the effort of porting a
system to a new domain, but as a first approximation, we list
the tasks that are involved:

• Define a domain model and the KR ontology. This
comes for free in a dialogue system, since the reasoning
components need it in any case.

• Define lexical entries for previously unseen words
and add new type to the LF ontology as needed. The
number of words that need to be added diminishes as the
lexicon and the LF ontology grow. We are also working
on automatic methods to obtain new words from sources
such as WordNet and FrameNet.

• Modify the grammar as needed to cover new syn-
tactic constructs. We already have a wide-coverage
grammar that can deal with a variety of constructs
such as conjunction, long-distance dependencies, rela-
tive clauses and a variety of other phenomena common
in speech. So the development of the grammar is a
one-time investment that requires diminishing amount of
work as more domains are added.

• Define the LF-KR transforms. This is the most time-
consuming part of the process. However, the size of the
transform set is proportional in size to the size of the do-
main, which is considerably smaller than the set of all
lexical entries in the domain, and convenience features
such as using the LF hierarchical structure and the lex-
ical forms help speed up the process considerably. In
addition, the separation between the linguistic and do-
main ontologies allows developers to write mappings in
semantic terms, using descriptive labels assigned to se-
mantic arguments such as AGENT, THEME, etc., at a
level of abstraction that avoids addressing the details of
the grammar and subcategorization frames such as those
in COMLEX. They can also take advantage of the hi-
erarchical structure in the domain-independent ontology
and write mappings that cover large classes of words.

• Define feature inference rules. This is not required, but
it is very helpful in improving parsing speed, especially
when parsing speech inputs where out of domain words
can be present. In the specialization process, we actively
utilize the hierarchical structure of the KR ontology - a
rule defined for a parent is inherited by all its children,
so the rules need only be defined for a relatively small
set of concepts.

Note that the first three items in the list above (defining
a domain grammar, defining new words and defining new
grammar rules) need to be done in any system which is being
employed in a new domain. The advantage of our approach
is that instead of trying to change and adapt the lexical entries
and the rules from the previous domain to suit the language

in the new domain, we can re-use the old lexicon and define
LF-KR transforms and inference rules, the number of which
is an order of magnitude smaller than the number of lexical
items in the lexicon.

Another advantage of using a domain-independent se-
mantinc representation that is later mapped to a domain-
specific form is that it makes it easier to design domain-
independent reference resolution and discourse management
components. Many current ontologies do not have explicit
support for encoding information needed for reference and
dialogue processing, such as distinguishing between definite
and indefinite descriptions. In our system, we use the LF rep-
resentations generated by the parser to encode this informa-
tion, which guarantees that the reference module can get it
encoded consistently regardless of the specific language used
by the back-end. During reference resolution, these descrip-
tions are replaced with references to constants or sets known
to the back-end reasoners, thus insulating them from the de-
tails necessary for reference resolution and discourse process-
ing.

7 Conclusion
Our development of spoken dialogue systems in multiple do-
mains has highlighted the need for a method of adapting a
broad-coverage parser to different domain applications that
allows us to preserve general language information common
across domains and also produce interpretations customized
to the needs of each domain. We have developed the method
described here to meet this need. By maintaining two on-
tologies, one that is generalized for language representation,
and another that is customized to the domain, and defining
mappings between them, we can preserve our broad-coverage
language components across domains as well as produce se-
mantic representations that are optimally suited to the domain
reasoners.

8 Acknowledgments
This material is based upon work supported by the Office of
Naval Research under grant number N00014-01-1-1015 and
the Defense Advanced Research Projects Agency under grant
number F30602-98-2-0133. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
ONR or DARPA.

References
[Allen et al., 1996] James F. Allen, Bradford W. Miller,

Eric K. Ringger, and Teresa Sikorski. A robust system
for natural spoken dialogue. In Proceedings of the 1996
Annual Meeting of the Association for Computational Lin-
guistics (ACL’96), 1996.

[Allen et al., 2000] James Allen, Donna Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu, and
Amanda Stent. An architecture for a generic dialogue
shell. NLENG: Natural Language Engineering, Cam-
bridge University Press, 6(3):1–16, 2000.

[Allen et al., 2001] James Allen, Donna Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu, and
Amanda Stent. Towards conversational human-computer
interaction. AI Magazine, 22(4):27–38, 2001.

[Clark and Porter, 1999] P. Clark and B. Porter. KM (1.4):
Users Manual. http://www.cs.utexas.edu/users/mfkb/km,
1999.

[Davidson, 1967] Donald Davidson. The logical form of ac-
tion sentences. In Nicholas Rescher, editor, The Logic
of Decision and Action, pages 81–95. University of Pitts-
burgh Press, Pittsburgh, 1967. Republished in Donald
Davidson, Essays on Actions and Events, Oxford Univer-
sity Press, Oxford, 1980.

[Dzikovska et al., to appear] Myroslava O. Dzikovska,
Mary D. Swift, and James F. Allen. Customizing mean-
ing: building domain-specific semantic representations
from a generic lexicon. In Harry Bunt, editor, Computing
Meaning, Volume 3, Studies in Linguistics and Philosophy.
Kluwer Academic Publishers, to appear.

[Ferguson et al., 2002] G.M. Ferguson, J.F. Allen, N.J. Blay-
lock, D.K. Byron, N.W. Chambers, M.O. Dzikovska,
L. Galescu, X. Shen, R.S. Swier, and M.D. Swift. The
medication advisor project: Preliminary report. Techni-
cal Report 766, Computer Science Dept., University of
Rochester, May 2002.

[Goddeau et al., 1994] D. Goddeau, E. Brill, J. Glass,
C. Pao, M. Phillips, J. Polifroni, S. Seneff, and
V. Zue. Galaxy: A human-language interface to on-
line travel information. In Proc. ICSLP ’94, pages
707–710, Yokohama, Japan, September 1994. URL
http://www.sls.lcs.mit.edu/ps/SLSps/icslp94/galaxy.ps.

[Gurevych et al., 2003] Iryna Gurevych, Stefan Merten, and
Robert Porzel. Automatic creation of interface specifica-
tions from ontologies. In Proceedings of the HLT-NAACL
Workshop on The Software Engineering and Architecture
of Language Technology Systems (SEALTS), May 2003.

[Johnson and Fillmore, 2000] Christopher Johnson and
Charles J Fillmore. The FrameNet tagset for frame-
semantic and syntactic coding of predicate-argument
structure. In Proceedings ANLP-NAACL 2000, Seattle,
WA, 2000.

[Macleod et al., 1994] Catherine Macleod, Ralph Grishman,
and Adam Meyers. Creating a common syntactic dic-
tionary of English. In SNLR: International Workshop
on Sharable Natural Language Resources, Nara, August
1994.

[Miller and Schubert, 1988] Stephanie A. Miller and
Lenhart K. Schubert. Using specialists to accelerate
general reasoning. In Tom M. Smith, Reid G.; Mitchell,
editor, Proceedings of the 7th National Conference on
Artificial Intelligence, pages 161–165, St. Paul, MN,
August 1988. Morgan Kaufmann.

[Rosé, 2000] Carolyn Rosé. A framework for robust seman-
tic interpretation. In Proceedings 1st Meeting of the North
American Chapter of the Association for Computational
Linguistics, 2000.

[Seneff, 1992] Stephanie Seneff. TINA: A natural language
system for spoken language applications. Computational
Linguistics, 18(1):61–86, March 1992.

