
Statistical Goal Parameter Recognition∗

Nate Blaylock and James Allen
Department of Computer Science

University of Rochester
Rochester, New York, USA

{blaylock,james}@cs.rochester.edu

Abstract

We present components of a system which uses statisti-
cal, corpus-based machine learning techniques to per-
form instantiated goal recognition— recognition of
both a goal schema and its parameter values. We first
present new results for our previously reported statisti-
cal goal schema recognizer. We then present our goal
parameter recognizer. The recognizer is fast (linear in
the number of observed actions) and is able to recognize
parameter values which were never seen in training. In
addition, this is the first system we are aware of that uses
statistical methods to recognize goal parameter values.

Introduction
Much work has been done over the years inplan recognition,
which is the task of inferring an agent’s goal and plan based
on observed actions.Goal recognitionis a special case of
plan recognition, in which only the goal is recognized.

Goal and plan recognition have been used in a variety
of applications including intelligent user interfaces (Lesh,
Rich, & Sidner 1999), traffic monitoring (Pynadath & Well-
man 1995), and dialogue systems (Carberry 1990; Allenet
al. 2000).

For most applications, there are several properties re-
quired in order for goal recognition to be useful:

1. Speed: Most applications use goal recognition “online”
and must use recognition results before the observed
agent has completed its activity. Ideally, goal recognition
should take a fraction of the time it takes for the observed
agent to execute its next action.

2. Early/partial prediction: In a similar vein, applications
need accurate goal prediction as early as possible in the
observed agent’s task execution. Even if a recognizer is
fast computationally, if it is unable to predict the goal until

∗This material is based upon work supported by a grant from the
Department of Education under grant number P200A000306-02; a
grant from DARPA/Air Force under grant number F30602-98-2-
0133; a grant from Department of Defense/ONR under grant num-
ber N00014-01-1015; and a grant from the National Science Foun-
dation under grant number E1A-0080124. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
above-mentioned organizations.

after it has seen the last action in the agent’s task, it will
not be suitable most applications, which need recognition
resultsduring task execution. If full recognition is not
immediately available, applications can often make use
of partial information.

In this paper, we apply supervised machine-learning tech-
niques to the tasks of goal schema recognition and goal pa-
rameter recognition. This has two advantages (which cor-
respond to the two desired traits of goal recognizers de-
scribed above). First, recognition is fast. The schema
recognizer runs in time linear to the number of possible
goal schemas, while the parameter recognizer runs in time
linear to the number of observed actions. In contrast,
most previous work (e.g., (Kautz 1991; Charniak & Gold-
man 1993)) has had runtimes that are exponential in the
number of goals.1 Subsequent work (e.g., (Vilain 1990;
Albrecht, Zukerman, & Nicholson 1998; Pynadath & Well-
man 2000)) has improved runtimes, but only at the expense
of expressiveness — typically either totally-ordered plans,
or the recognition of only goal schemas, but not their pa-
rameter values.

The use of statistics from a corpus allows the recognizer
to be more predictive. Most logic-based recognizers (e.g.,
(Kautz 1991; Lesh 1998)) are sound (assuming a complete
plan library), but are unable to distinguish between (often
numerous) logically-consistent goals.

In the remaining sections, we first describe the plan cor-
pus we use in our experiments. We then present the formu-
lation for statistical instantiated goal recognition and discuss
our previous work on goal schema recognition. We then
present our model of goal parameter recognition. Finally,
we briefly mention our current work on using the two recog-
nizers together as a full goal recognizer. We then conclude
and mention future work.

1In this paper, we will only refer to goal recognition, even
though most previous work has tackled the harder problem of plan
recognition (which is really recognition of an agent’s goaland
plan). In this sense, it is somewhat unfair to compare our goal
recognizer to full-fledged plan recognizers. However, very little
work has been done on goal recognition in its own right, so plan
recognizers are all we have to compare against.

Plan Sessions 457
Goal Schemas 19
Action Schemas 43
Ave. Actions/Session 6.1

Table 1: The Linux corpus

The Linux Plan Corpus
In our preliminary work on goal schema recognition (Blay-
lock & Allen 2003), we used Lesh’s Unix plan corpus (Lesh
1998), which was gathered from human Unix users (CS un-
dergraduates) at the University of Washington. Users were
given a task in Unix (a goal), and were instructed to solve
it using any Unix commands (with a few rules such as no
pipes, noawk, etc.) The users’ commands and results were
recorded, as well as whether or not they successfully accom-
plished the goal. There were 59 successful goal sessions
which involved 11 different goals.

In order to test our work on a bigger data set, both in terms
of more training data as well as more goal schemas, we gath-
ered the Linux corpus. The Linux corpus was gathered from
human Linux users (graduate and undergraduate students,
faculty, and staff) from the University of Rochester Depart-
ment of Computer Science in a manner similar to the Unix
corpus. We were able to gather 457 successful goal ses-
sions involving 19 different goal schemas. Other relevant
data about the corpus is shown in Table 1. Table 2 shows
several of the goal schemas in the Linux corpus. We prefix
parameter names with a dollar sign ($) to distinguish them
from instantiated parameter values.

We use this corpus to train and test statistical models of
goal recognition.

Statistical Goal Recognition
In most domains, goals are not monolithic entities; rather,
they aregoal schemaswith instantiated parameters. In
(Blaylock & Allen 2003), we describe a statistical goal
schema recognizer. We briefly review that work here and re-
port our most recent results. This will then serve as the con-
text and motivation for our work on goal parameter recogni-
tion. Combining goal schema recognition with goal parame-
ter recognition allows us to doinstantiated goal recognition,
which we will refer to here as simplygoal recognition.

We first give some definitions which will be useful
throughout the paper. We then describe the recognition
model and our most recent results.

Definitions
For a domain, we define a set of goal schemas, each tak-
ing q parameters, and a set of action schemas, each takingr
parameters. If actual goal and action schemas do not have
the same number of parameters as the others, we can easily
pad with ’dummy’ parameters which always take the same
value.2

2The requirement that goal and action schemas have the same
number of parameters is for convenience in the mathematical anal-
ysis and is not a requirement of the algorithm itself.

Given an instantiated goal or schema, it is convenient to
refer to the schema of which it is an instance as well as
each of its individual parameter values. We define a func-
tion Schema that, for any instantiated action or goal, re-
turns the corresponding schema. As a shorthand, we use
XS ≡ Schema(X), whereX is an instantiated action or
goal.

To refer to parameter values, we define a functionParam
which returns the value of thekth parameter of an in-
stantiated goal or action. As a shorthand we useXk ≡
Param(X, k), whereX is again an instantiated action or
goal.

As another shorthand, we refer to number se-
quences by their endpoints: 1, n ≡ 1, 2, . . . , n.
Thus A1,n ≡ A1, A2, . . . , An and A1,r

1,n ≡
A1

1, A
2
1, . . . , A

r
1, A

1
2, A

2
2, . . . , A

r
n−1, A

1
n, . . . , Ar

n.

Problem Formulation
We define goal recognition as the following: given an ob-
served sequence ofn instantiated actions observed thus far
(A1,n), find the most likely instantiated goalg:

g = argmaxG P (G|A1,n) (1)

If we expand the goal and actions into their schemas and
parameters, this becomes:3

g = argmaxGS ,G1,q P (GS , G1,q|AS
1,n, A1,r

1,n) (2)

If we assume that goal parameters are independent of each
other and that goal schemas are independent from action pa-
rameters (given their action schemas), this becomes:

g = argmaxP (GS |AS
1,n)

q∏
j=1

P (Gj |GS , AS
1,n, A1,r

1,n) (3)

In Equation 3, the first term describes the probability of
the goal schemaGS , which we will use for goal schema
recognition. The other terms describe the probability of each
goal parameterGj , which we discuss in detail later in the
paper.

Goal Schema Recognition4

We use the first term from Equation 3 to recognize a goal
schemagS . By making a bigram independence assumption
over observed actions, we get the following:

gS = argmaxP (GS)
n∏

i=1

P (AS
i |AS

i−1, G
S) (4)

In training, we use the plan corpus to estimate prior goal
schema probabilities (P (GS)) and the bigram probabilities
over observed action schemas (P (AS

i |AS
i−1, G

S)).

3From now on we drop the argmax subscript when the context
makes it obvious.

4This section summarizes our previous work and presents some
new results. For more details, please see (Blaylock & Allen 2003).

Goal Schema English Description
find-file-by-ext($extention) Find a file that ends in ’.$extention’
find-file-by-name($filename) Find a file named ’$filename’
know-filespace-usage-file($filename) Find out how much space file ’$filename’ uses
know-filespace-free($partition name) Find out how much filespace is used on

filesystem ’$partitionname’
move-files-by-name($filename,$dirname) Move all files named ’$filename’ to a

(preexisting) directory named ’$dirname’
move-files-by-size-lt($numbytes,$dirname) Move all files with less than $numbytes bytes

to a (preexisting) directory named ’$dirname’

Table 2: A few goal schemas from the Linux corpus

During recognition, the recognizer first initializes its goal
schema probabilities withP (GS). Then, for each action ob-
served, it multiplies each goal’s score by the corresponding
conditional bigram probability and makes a prediction.

This algorithm has the nice feature of compositionality.
For each goal, its probability after observationi + 1 is sim-
ply the new bigram probability times the overall probability
after observationi. Because of this the complexity of mak-
ing a prediction after each observation isO(|G|), whereG
is the set of goal schemas in the domain.

Making Predictions Instead of letting the recognizer
make a prediction after each observed action, we set a con-
fidence thresholdτ , which allows the recognizer to decide
whether or not it is confident enough to make a prediction.
If the probability of the prediction is greater thanτ , the rec-
ognizer predicts. Otherwise, it predicts “don’t know.”

For some applications where the result of goal recogni-
tion is used for further reasoning (e.g., natural language un-
derstanding for dialogue systems, which is where we plan to
use the goal recognizer), we do not necessarily need a sin-
gle prediction, but instead can use ann-best prediction as a
measure of uncertainty. In the case of ann-best prediction,
the probability of the prediction is taken to be the sum of the
probabilities of then individual goals, and that is then com-
pared againstτ in deciding whether to make a prediction.

Experiments
We measure several things for our experiments, based on our
requirements described above.Precisionand recall report
the number of correct predictions divided by total predic-
tions and total prediction opportunities, respectively.Con-
vergenceandconvergence pointstem from the fact that, of-
tentimes, the recognizer will be unsure very early on in ob-
servation, but may at some point ’converge’ on the correct
answer, predicting it from that point on until the end of the
plan session.Convergencemeasures the percentage of plan
sessions where the correct answer was converged upon.5 For
those plan sessions which converge,convergence pointre-
ports the average action observation after which it converged
over the average number of actions for the converged ses-
sions. This is an attempt to measure howearly in the plan

5This basically measures how manylast predictions were cor-
rect, i.e., whether weendedpredicting the right answer.

N-best(τ) 1 (0.3) 2 (0.7) 3 (0.9) 4 (0.9)
Precision 35.1% 66.7% 73.7% 76.4%

Recall 23.6% 39.2% 41.4% 45.4%
Convergence 37.9% 55.1% 59.7% 64.6%

Convergence Point 3.5/5.9 4.1/7.2 4.1/7.2 4.0/7.2

Table 3: Goal schema recognition results on the Linux cor-
pus using a bigram model

session the recognizer was able to zero in on the correct an-
swer.

Because of the small size of the Linux corpus, we ran
experiments using cross-validation training and testing over
the whole corpus, testing on sets of 5 plan sessions at a time.
Table 3 shows some of the results for different n-best val-
ues.6 For example, the recognizer was able to achieve 73.7%
precision with 41.4% recall for the 3-best case (with 59.7%
of the plan sessions converging). Note that although the av-
erage convergence point increases from 3.5 to 4.1 from 1-
best to 2-best, the 2-best is actually converging earlier in the
session percentage-wise, since the average total actions per
converged session goes up from 5.9 to 7.2.

Discussion

At a first glance, the 1-best results are not very encourag-
ing, and are much worse than our pilot results on the smaller
Unix corpus (Blaylock & Allen 2003). Precision is only
35.1% and recall only 23.6%, with only 37.9% of sessions
converging. However, things may not be as bad as they may
seem from those numbers.

First of all, it appears that Linux is a hard domain. Wrong
and missed predictions seem to come from several cate-
gories of problems. First, the data is from real humans and
therefore noisy. Although we do some automatic filtering of
the corpus before training, typos still exist (e.g., using the
commandln instead ofls). More difficult to weed out are
bad use of commands. For example, one user used the com-
mandfgrep to try to search for a file in a directory tree
(fgrep is for searching files for text). Such mistakes often
ruined an entire session.

6The threshold valueτ needs to be individually set for each n-
best value. Theτ values chosen here were chosen experimentally.

In addition to noisy data, some of the goal
schemas we chose for Linux are very similar (e.g.,
find-file-by-ext and find-file-by-name).
The recognizer often confused these (and other similar sets
of goals).

Also, although we represent the domain with “flat” plans,
a natural subgoal relationship exists between some of the
goal schemas, which also confused the recognizer. For ex-
ample, in order to perform amove-files-by-name , a
user has to first find the files (find-file-by-name) and
the directory to move them to (find-dir-by-name).
The recognizer would often predict one of the “subgoals”
instead of the real goal schema.

Taking all of that into account, let’s look at the results one
more time. Precision and convergence increase substantially
if we take the 2-best results. This seems, in a large part, to
be due to the fact that similar goal schemas could now be
predicted together. A precision of 66.7% is actually not too
bad.

Recall, however, remains fairly low: only 39.2% for the
2-best case. It is important to note that, in all but the most
trivial domains, 100% recall will probably be impossible,
even for humans. In order to have 100% recall, we would
have to be able to predict, and converge on, the correct
goal after the agent’s very first action. In the Linux do-
main, for example, a first action ofpwd, which has very
little predictive power, was not uncommon. Also, for goals
like move-files-by-name it is not always clear that the
goal is a move (as opposed to a copy, for example) until the
very last action (which is typically themvcommand).

We believe that this system will do better on other do-
mains. We are currently testing it in a more “typical” domain
of 911 emergencies. Also, we believe that the solution to
some of these problems will be to move to a hierarchical de-
composition model, which would allow the separate recog-
nition of subgoals and end goals. We are currently working
to extend the model to handle hierarchical plans.

Goal Parameter Recognition
The above system only recognizes goal schemas. To do full
goal recognition, we also need to recognize each parameter
value for the goal schema.

One straightforward way of doing this would be
to treat instantiated goal schemas as atomic goals
and then use the goal schema recognition algorithm
from above. Thus, instead of estimatingP (move-
files-by-name|ls,cd), we would estimateP (move-files-by-
name(a.txt,bdir)|ls(papers),cd(progs)).

This solution has several problems. First, this would re-
sult in an exponential increase in the number of goals, as we
would have to consider all possible ground instances. This
would seriously impact the speed of the algorithm. It would
also affect data sparseness, as the likelihood to have seen any
n-gram in the training data will decrease substantially.

Instead, we perform goal schema and parameter recogni-
tion separately, as described in Equation 3 above. From the
last term of the equation, we get the following for a single
parametergj :

gj = argmaxP (Gj |GS , AS
1,n, A1,r

1,n) (5)

We could estimate this with an n-gram assumption as we
did above. However, there are several problems here as well.
First, this would make updates at least linear in the num-
ber of objects in the world (the domain ofgj), which may
be expensive in domains with many objects. Second, even
without a large object space, we may run into data sparsity
problems, since we are including both the action schemas
and their parameter values.

The solution above misses out on the generalization that,
oftentimes, thepositionsof parameters are more important
than their value. For example, the first parameter (i.e., the
source file) of the actionmv is often the$filename pa-
rameter of the goalmove-files-by-name , whereas the
second parameter (i.e., thedestination) almost never is, re-
gardless of the parameter’s actual value. Our model learns
probability distributions of equality over goal and action pa-
rameter positions. During recognition, we use these distribu-
tions along with a special, tractable case of Dempster-Shafer
Theory to dynamically create a set of possible parameter val-
ues and our confidence of them, which we use to estimate
Equation 5.

In this section we first describe this model and then report
on experiments using it on the Linux corpus.

Our Model
Formally, we want to learn the following probability distri-
bution: P ((Gj = Ak

i)|GS , AS
i). This gives us the probabil-

ity that the value of thekth parameter of actionAi is equal
to thejth parameter of the goalG, given both the goal and
action schemas as well as the two parameter positions. Note
that thevalueof the parameter is not considered here, only
theposition. We can easily compute this conditional proba-
bility distribution from our training corpus.

To use the above model to predict the value of each goal
schema parameter as we make action observations, we need
to be able to combine probabilities for each parameter in
the observed action, as well as probabilities from action to
action. For this we use Dempster-Shafer Theory.

Dempster-Shafer Theory Dempster-Shafer Theory
(DST)7 is a generalization of probability theory which
allows for incomplete knowledge. Given a domainΩ, a
probability mass is assigned to each subset ofΩ, as opposed
to each element, as in classical probability theory. Such an
assignment is called abasic probability assignment(bpa).

Assigning a probability mass to a subset in a bpa means
that we place that level of confidence in the subset, but can-
not be any more specific. For example, suppose we are con-
sidering the outcome of a die roll (Ω = {1, 2, 3, 4, 5, 6}).8 If
we have no information, we have a bpa ofm(Ω = 1), i.e.,
all our probability mass is onΩ. This is because, although
we have no information, we are 100% certain thatone of
the elements inΩ is the right answer; we just can’t be more
specific.

7See (Bauer 1995) for a good introduction.
8This example is taken from (Bauer 1995).

Now suppose we are told that the answer is an even num-
ber. In this case, our bpa would bem({2, 4, 6}) = 1; we
have more information, but we still can’t distinguish be-
tween the even numbers. A bpa ofm({2, 4, 6}) = 0.5 and
m({1}) = 0.5 would intuitively mean that there is a 50%
chance that the number is even, and a 50% chance that it is
1. The subsets ofΩ that are assigned non-zero probability
mass are called thefocal elementsof the bpa.

A problem with DST is that the number of possible focal
elements ofΩ is the number of its subsets, or2|Ω|. This is
both a problem for storage as well as for time for bpa com-
bination (as discussed below). For parameter recognition,
we use a special case of DST which only allows focal el-
ements to be singleton sets orΩ (the entire set). This, of
course, means that the maximum number of focal elements
is O(|Ω|). As we show below, this significantly decreases
the complexity of bpa combination, allowing us to run in
time linear with the number of actions observed so far, re-
gardless of the number of objects in the domain.

Evidence Combination Two bpasm andm′ representing
different evidence can be combined into a new bpa using
Dempster’s rule of combination:

(m⊕m′)(A) =

∑
B∩B′=A

m(B)m′(B′)∑
B∩B′ 6=∅

m(B)m′(B′)
(6)

The complexity of computing this isO(lmlm′ |Ω|), where
lm and lm′ are the number of focal elements inm andm′

respectively. Basically, the algorithm does a set intersection
(hence the|Ω| term) for combinations of focal elements.9

As mentioned above, the complexity would be prohibitive
if we allowed any subset ofΩ to be a focal element. How-
ever, our special case of DST limitslm and l′m to |Ω| + 1.
Also, because we only deal with singleton sets andΩ, we
can do set intersection in constant time. Thus, for our spe-
cial case of DST, the complexity of Dempster’s rule of com-
bination becomesO(lmlm′) or O(|Ω|2) in the worst case.

As a final note, it is easily shown that our special case of
DST is closed under Dempster’s rule of combination. We
omit a formal proof, but it basically follows from the fact
that the set intersection of any two arbitrary focal-element
subsets from special-case bpas can only result inΩ, a single-
ton set, or the empty set. Thus, as we continue to combine
evidence, we are guaranteed to still have a special-case bpa.

Representing the Model with DST As stated above, we
estimateP ((Gj = Ak

i)|GS , AS
i) from the corpus. For a

given goal schemaGS and theith action schemaAS
i , we de-

fine alocal bpamj
i,k for each goal and action parameter po-

sitionsj andk s.t. mj
i,k({Ak

i }) = P ((Gj = Ak
i)|GS , AS

i)
andmj

i,k(Ω) = P ((Gj 6= Ak
i)|GS , AS

i). This local bpa in-
tuitively describes the evidence of a single goal parameter

9We only need consider the focal elements here, since non-focal
elements have a probability mass 0, which will always make(m⊕
m′)(A) = 0.

value from looking at just one parameter position in just one
observed action. The bpa has two focal elements:{Ak

i },
which is a singleton set of the actual action parameter value,
andΩ. The probability mass of the singleton set describes
our confidence that that value10 is the goal parameter value.
The probability mass ofΩ expresses our ignorance, as it did
in the die roll example above.11

In order to smooth the distribution, we always make sure
that both elements (Ω andAk

i) are given at least a little prob-
ability mass. If either one is 1, a very small value is taken
from that and given to the other.

There are several things worth noting here. First, we as-
sume here that we already know the goal schemaGS . This
basically means we have a two-step process where we first
recognize the goal schema and then use that to recognize the
parameters. Below, we discuss how we can combine these
processes in a more intelligent way.

Secondly, if a goal schema has more than one parameter,
we keep track of these and make predictions about them sep-
arately. As we discuss below, it is possible that we will be
more confident about one parameter and predict it, whereas
we may not predict another parameter for the same goal
schema. This allows us to make more fine-grained partial
predictions.

Lastly, we do not need to represent, enumerate or even
know the elements ofΩ. This means that we can handle
domains where the set of possible values is very large, or in
which values can be created or destroyed. (Both of these are
properties of the Linux domain.)

Combining evidence As mentioned above, we maintain
a separateprediction bpamj for each goal parameter posi-
tion j. Each of these are initialized asmj(Ω) = 1, which
indicates complete ignorance about the parameter values.

As we observe actions, we combine evidence within a
single action and then among single actions. First, within
a single actioni, we combine each of the local bpasmj

i,k

for each parameter positionk, which gives us anaction
bpa mj

i . This describes the evidence the entire action has
given us. Then, we combine the evidence from each ob-
served action to give us an overallprediction bpathat de-
scribes our confidence in goal parameter values given all
observed actions so far. We then use this prediction bpa to
make (or not make) predictions. When we observe an ac-
tion Ai(p1, p2, . . . , pr) we create local bpas for each action
parameter positionmj

i,1 . . .mj
i,r. The action bpamj

i is the

combination of all of these:mj
i = mj

i,1⊕mj
i,2⊕ . . .⊕mj

i,r.

10Note that this is the actual instantiated value and not just the
position. Two instances of the same action schema with different
parameter values will create different bpas.

11Note here thatΩ is the set ofall possible domain values and
still includes Ak

i . The reason for this is that just because we
may not have seen much evidence forAk

i given the action schema
doesn’t necessarily mean thatAk

i is not the goal parameter value.
It just means that we don’t yet have much evidence that itis the
value. We actually ran experiments in whichΩ did not include any
of the values in the singleton focal elements and, while precision
went up, recall dropped significantly.

The prediction bpa is similarly calculated from all of the ac-
tion bpas from observed actions:mj = mj

1⊕mj
2⊕. . .⊕mj

i .
However, we can calculate this incrementally by calculating
m′j = mj ⊕ mj

i at each action observation. This allows us
to only do 1 action-bpa combination per observed action.

It is worth nothing here that only values that we have seen
as an action parameter value will be part of the prediction
bpa. Thus, the maximum number of focal elements for a
bpamj will be the total number of unique action parameters
seen, plus one (forΩ). As a corollary, this means that our
method will not be able to correctly predict a goal parameter
unless its value has been seen as an action parameter value
in the current plan session. In the reported results below, we
report results of total recall and also ’recall/feasible’, which
restricts recall to the prediction points at which the algorithm
had access tothe right answer. Admittedly, there are do-
mains in which the correct parameter value could be learned
directly from the training corpus, without having been seen
in the current session, although we do not believe it will be
so in most cases. We plan to investigate ways of learning
both parameter values and positions in future work.

Prediction At some level, we are using the prediction bpa
as an estimation ofP (Gj |GS , AS

1,n, A1,r
1,n) from Equation 5

above. However, because the bpa containsΩ, it is not a true
probability distribution and cannot provide a direct estima-
tion. Instead, we useΩ as a measure of confidence in decid-
ing whether to make a prediction.

To make an n-best prediction, we take then singleton sets
with the highest probability mass and compare their com-
bined mass with that ofΩ. If their mass is greater, we make
that prediction. IfΩ has a greater mass, we are still too
ignorant about the parameter value and hence make no pre-
diction.

Complexity The other thing to mention is computational
complexity of updating the prediction bpa for a single goal
parameterGj . We first describe the complexity of comput-
ing theith action bpamj

i , and then the complexity of com-
bining it with the previous prediction bpamj .

To computemj
i , we combiner 2-focal-element local

bpas, one for each action parameter position. If we do a
serial combination of the local bpas (i.e.,mj

i = ((mj
i,1 ⊕

mj
i,2)⊕mj

i,3)⊕ . . .⊕mj
i,r), this results inr − 1 combina-

tions, where the first bpa is an intermediate composite bpa
m̂j

i and the second is always a 2-element local bpa. Each
combination (maximally) adds just 1 subset tom̂j

i (the other
subset isΩ which is always shared). The (k-1)th combina-
tion resultm̂j

i,k−1 will have maximum lengthk + 1. The
combination of that with a local bpa is O(2(k + 1)). Thus,
the overall complexity of the combination of the action bpa

is
r−1∑
k=1

O(2(k + 1)) ≈ O(r2).

The action bpamj
i is then combined with the previous

prediction bpa, which has a maximum size ofr(i − 1) + 1

Nbest 1 2 3
Precision 84.3% 84.4% 84.7%

Recall 37.2% 42.1% 44.1%
Recall/Feasible 66.3% 75.0% 78.5%

Convergence 64.4% 70.5% 72.1%
Conv./Feasible 78.4% 85.9% 87.8%

Conv. Point 3.2/5.8 3.0/5.8 3.2/6.1

Table 4: Goal parameter recognition results

(from the number of possible unique action parameter values
seen). The combination of the two bpas isO(ir2), which, to-
gether with the complexity of the computation of the action
bpa becomesO(ir2 + r2) ≈ O(ir2). r is actually constant
here (and should be reasonably small), so we can treat it as
a constant, in which case we get a complexity ofO(i). This
is done for each of theq goal parameters, butq is also con-
stant, so we still haveO(i). This gives us a fast parameter
recognition algorithm which is not dependent on the number
of objects in the domain.

Experiments
Results We tested our parameter recognizer on the Linux
corpus by doing cross-validation training and testing simi-
lar to that described above for the schema recognizer. The
results are shown in Table 4 for various n-best values. The
metrics shown here mean the same as they did in the goal
schema recognition results. We also report two new met-
rics: recall/feasibleandconvergence/feasible, both of which
measure how much recall/convergence the recognizer got
from what it couldfeasiblyget. As mentioned above, the
recognizer can only predict values that it has seen as action
parameter values within the current session. Feasible recall
for the corpus is 56.1%, meaning that at only 56.1% of the
places where a prediction could have been made, the cor-
rect value had actually shown up in the action parameters.
In fact, only in 82.1% of the goal sessions does the goal pa-
rameter value appear at all. Given these facts, the parameter
recognizer actually does very well for the cases it can han-
dle, both in terms of precision (84.7% for 3-best) and recall
(44.1% for 3-best — 78.5% of feasible).

It is also interesting to note that, along those same mea-
sures, the feasible convergence point is 2.8/6.2, i.e., on av-
erage, for the sessions in which the correct parameter value
does appear, it appears for the first time after 2.8 actions have
been observed. By that measure, the convergence points of
3.2 and 3.0 mean that, in cases where the parameter predic-
tion will converge, it usually converges right after it sees the
correct value for the first time.

Discussion
As we note above, the parameter recognition results are
good, especially compared to what is feasible for the algo-
rithm. (Again, this appears to be a hard domain.) Some
errors resulted from typographical errors from the user (e.g.,
typing ls flie instead ofls file and the recognizer
predictingflie). More frequently, errors came from the

recognizer over-zealously predicting when it had not yet
seen the correct value.

Much of missed feasible recall also appeared to be ’cor-
pus noise’, where the user used a command incorrectly. For
example, for the goalcreate-dir(s2,linux) where
the user was instructed to create a directory named s2 in-
side a preexisting directory named linux, the users first com-
mand wasfgrep linux , in an apparent attempt to find
a directory named linux. While this made the correct value
’linux’ feasible, it was assigned a very low probability mass,
asfgrep searches for values in files, which is unrelated to
this goal. The user went on to do a very long 29-command
session usingcd and ls to find the directory instead, and
the recognizer mispredicted on all of them.

Full Goal Recognition
We have now presented a goal schema recognizer and a goal
parameter recognizer. In this section we give a brief descrip-
tion of our current work of putting them together to form a
complete goal recognizer. To perform full goal recognition,
we combine both the schema and the parameter recogniz-
ers in finding the argmax described in Equation 4 above.
Although the argmax is over several variables (GS , G1,q),
computing it is tractable because of our assumption that goal
parameter values are independent of each other. Given a goal
schemagS , the set of individual argmax results for each goal
parametergj (described in Equation 5) is guaranteed to be
the maximum for that goal.

To fully search for the argmax, we first perform goal
schema recognition, and then do 1-best parameter recogni-
tion for each of the possible goal schemas. This has an over-
all complexity ofO(|G|i), which is still quite tractable. This
gives us the most likely parameter instantiation for each of
the goal schemas. We then choose the n-best of these by
multiplying the posterior goal schema probability with the
combined parameter probabilities.

Related Work
As mentioned above, most previous work on goal recog-
nition has been very slow. In addition, non-probabilistic
logic-based recognizers are typically not predictive enough
for most domains, as they cannot choose among logically-
consistent hypotheses. For this reason, we only discuss
probabilistic recognizers here.

There has been much work on probabilistic goal schema
recognition, although very little experimental results have
been reported. (Bauer 1995) uses DST to do goal schema
recognition, but, as it uses full DST, it is not clear if it is a
tractable solution in general. (Charniak & Goldman 1993),
(Huber, Durfee, & Wellman 1994), and (Horvitz & Paek
1999) use Belief Networks (BNs) to do goal recognition.
However, the size of these networks must either be large
from the start, or they will grow as the number of observed
actions increases, and reasoning with BNs is intractable in
general.

(Pynadath & Wellman 2000) and (Bui 2003) use Dynamic
Belief Networks (DBNs) to cast plan recognition as some-
thing akin to parsing. Both, however, are dependent on the

ability of the system to be able to perceive (estimate) when
higher-level plans terminate, and may not be suitable to the
many domains where this is difficult to predict.

Probably the closest work to our goal schema recognizer
is (Albrecht, Zukerman, & Nicholson 1998), which uses a
dynamic belief network to do goal recognition in a multi-
user dungeon domain. They use a bigram model of action
schemas to predict goal schemas. Although our approaches
are similar, there are a few significant differences. They
encode state into their model (in the form of location and
previous goal schema), whereas our system only considers
actions. We use abstract goals for partial recognition (not re-
ported in this paper), whereas their system only makes full
predictions. They also do not do parameter recognition.

Relatively little attention has been given in the literature
to goalparameterrecognition. Most systems either do not
do parameter recognition at all (e.g., (Albrecht, Zukerman,
& Nicholson 1998; Pynadath & Wellman 2000)), or use
logical-based, non-probabilistic reasoning based on a plan
library (e.g., (Bauer 1995)). The only other system we are
aware of that does probabilistic parameter recognition is
(Charniak & Goldman 1993), which includes action param-
eter values as nodes in the BN as well as the probability that
they fill a slot in the plan. Parameter recognition, however,
was not the focus of their research, and they simply assume
that all objects of a given type are equally likely to fill a goal
parameter.

Conclusions and Future Work

We have presented a goal schema recognizer and a goal pa-
rameter recognizer that are trainable from a plan corpus. The
recognizers are much faster than previous work (linear in the
number of goals and observed actions, respectively) and get
fairly good results, considering the domain.

For future work, we plan to extend the recognizer to han-
dle hierarchical (decomposition) plans. Complex plans cov-
ering longer time-scales are less likely to be identifiable
from a few observations alone (which tend to reflect more
immediate subgoals). Ideally, we would want to recognize
subgoals for partial results, even if we still cannot recognize
the high-level goal.

As additional future work, we plan to explore the use of
AI planners to generate artificial plan corpora to be used
for training. The approach we plan to take combines plan-
ning and Monte-Carlo simulation to generate plan corpora.
The idea is to generate plans stochastically (allowing dis-
tributions over different aspects of the planning process,
such as the goals, situations and action decompositions).
By combining “context-free” Monte-Carlo simulation tech-
niques with richly context-dependent planning algorithms,
we hope to obtain a corpus that captures likely user behavior.
In addition, this generated corpus has the big advantage that
the subgoal hierarchy that generates the observed actions is
also known, which should help in recognition of hierarchical
plans.

References
Albrecht, D. W.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-
ture game.User Modeling and User-Adapted Interaction
8:5–47.

Allen, J.; Byron, D.; Dzikovska, M.; Ferguson, G.;
Galescu, L.; and Stent, A. 2000. An architecture for a
generic dialogue shell.Journal of Natural Language En-
gineering special issue on Best Practices in Spoken Lan-
guage Dialogue Systems Engineering6(3):1–16.

Bauer, M. 1995. A Dempster-Shafer approach to modeling
agent preferences for plan recognition.User Modeling and
User-Adapted Interaction5(3–4):317–348.

Blaylock, N., and Allen, J. 2003. Corpus-based, statistical
goal recognition. In Gottlob, G., and Walsh, T., eds.,Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, 1303–1308.

Bui, H. H. 2003. A general model for online probabalistic
plan recognition. In Gottlob, G., and Walsh, T., eds.,Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence.

Carberry, S. 1990.Plan Recognition in Natural Language
Dialogue. ACL-MIT Press Series on Natural Language
Processing. MIT Press.

Charniak, E., and Goldman, R. P. 1993. A Bayesian model
of plan recognition.Artificial Intelligence64(1):53–79.

Horvitz, E., and Paek, T. 1999. A computational architec-
ture for conversation. InProceedings of the Seventh Inter-
national Conference on User Modeling, 201–210. Banff,
Canada: Springer-Verlag.

Huber, M. J.; Durfee, E. H.; and Wellman, M. P. 1994. The
automated mapping of plans for plan recognition. In de
Mantaras, R. L., and Poole, D., eds.,UAI94 - Proceedings
of the Tenth Conference on Uncertainty in Artificial Intelli-
gence, 344–351. Seattle, Washington: Morgan Kaufmann.

Kautz, H. 1991. A formal theory of plan recognition and
its implementation. In Allen, J.; Kautz, H.; Pelavin, R.;
and Tenenberg, J., eds.,Reasoning about Plans. San Ma-
teo, CA: Morgan Kaufman. 69–125.

Lesh, N.; Rich, C.; and Sidner, C. L. 1999. Using plan
recognition in human-computer collaboration. InProceed-
ings of the Seventh International Conference on User Mod-
eling. Banff, Canada: Springer-Verlag. Also available as
MERL Tech Report TR-98-23.

Lesh, N. 1998.Scalable and Adaptive Goal Recognition.
Ph.D. Dissertation, University of Washington.

Pynadath, D. V., and Wellman, M. P. 1995. Accounting
for context in plan recognition, with application to traffic
monitoring. InProceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, 472–481. Montreal,
Canada: Morgan Kaufmann.

Pynadath, D. V., and Wellman, M. P. 2000. Probabilis-
tic state-dependent grammars for plan recognition. InPro-
ceedings of the 16th Conference on Uncertainty in Artifi-
cial Intelligence (UAI-2000), 507–514.

Vilain, M. 1990. Getting serious about parsing plans:
a grammatical analysis of plan recognition. InProceed-
ings of the Eighth National Conference on Artificial Intel-
ligence, 190–197. Boston: AAAI Press.

