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Abstract
We describe a simple approach for integrating
shallow and deep parsing. We use phrase struc-
ture bracketing obtained from the Collins parser
as filters to guide deep parsing. Our exper-
iments demonstrate that our technique yields
substantial gains in speed along with modest
improvements in accuracy.

1 Introduction
The detailed linguistic analyses generated by deep
parsing are an essential component of spoken dia-
log systems that collaboratively perform tasks with
users (e.g., (Allen et al., 2001)). For example, inter-
pretation in the TRIPS collaborative dialog assistant
relies on the representation produced by its parser
for word sense disambiguation, constituent depen-
dencies, and semantic roles such as agent, theme,
goal, etc. Broad coverage unification-based deep
parsers, however, unavoidably have problems meet-
ing the very high accuracy and efficiency require-
ments needed for real-time dialog. On the other
hand, parsers based on lexicalized probabilistic con-
text free grammars such those of Collins (1999) and
Charniak (1997), which we call shallow parsers1,
are robust and efficient, but the structural represen-
tations obtained with such parsers are insufficient as
input for intelligent reasoning. In addition, they are
not accurate when exact match is considered as op-
posed to constituent recall and precision and bracket
crossing. For example, the standard Collins parser
yields an exact match on only 36% on the standard
test set (section 23) of the Wall Street Journal Cor-
pus.

In this paper we explore the question of whether
preprocessing with a shallow parser can produce
analyses that are good enough to help improve the
speed and accuracy of deep parsing. Previous work
on German (Frank et al., 2002) pursued a similar
strategy and showed promising results after consid-
erable effort transforming the output of the shal-

1We do not intend the “chunking” sense of shallow parsing
— all our parsers return tree structures.

low parser into useful guidance to the deep parser.
We were interested in seeing if we could take a
shallow parser off the shelf, namely the Collins
parser, and use its output fairly directly to improve
the performance of the TRIPS parser. It has been
reported that stochastic parsers degrade in perfor-
mance on domains different than what they were
trained on (Hwa, 1999; Gildea, 2001), so there re-
ally was an issue whether the output would be good
enough. In particular, we are taking the Collins
parser trained on the Wall Street Journal and ap-
plying it unchanged to spontaneous human-human
dialog in an emergency rescue task domain. We
have found that there are islands of reliability in the
results from the Collins parser that can be used to
substantially improve the performance of the TRIPS
parser.

The remainder of the paper is organized as fol-
lows. Section 2.1 provides background on the Mon-
roe corpus, a set of task-oriented dialogs that is the
basis for the parser evaluations. In section 2.2 we
describe the TRIPS parser and the representation it
produces for reasoning. In section 3 we describe the
preliminary evaluations we carried out by running
the Collins parser over the Monroe corpus. We then
describe our experiments in combining the parsers
under different conditions. We look at different con-
ditions, first seeing how this method can improve
overall parsing of our corpus, and then with real-
time parsing conditions, as required for spoken di-
alog systems. We find we can get substantial effi-
ciency improvements on the corpus parsing, which
mostly disappear when we look at the semi-real-
time case. In the latter, however, we do see some
improvement in coverage.

2 Background
2.1 The Monroe Corpus
Our data consists of transcribed dialogs between
two humans engaged in carefully designed tasks
in simulated emergency management situations in
Monroe County, New York (Stent, 2001). The sce-
nario was designed to encourage collaborative prob-



U We also have to send a road crew there as well
S So we probably can’t actually send the ambulance over the bridge
U You’re probably right
U Because it’s going to take another two hours
U So we’ll actually run out of time if we wait for that
U So I guess we’ll need to send them
U Actually could we send them up fifteen across two fifty two down three eighty three
U Take that way around
S Wait
S The generator’s going downtown
S Right
U The generator is going to two fifty two
S Oh oh I see the problem
U So if we go up fifteen or go south on fifteen
S And then go up three eighty three
U Two fifty two
S Three eighty three
U And that’ll get us all the way over to the person with pneumonia or the person who needs the generator
U Say at the most it takes an hour
U It should take no more than an hour to get the generator over to that person
S Okay
S So we have the people taken care of

Figure 1: Excerpt from Monroe dialog

lem solving and mixed initiative interaction involv-
ing complex planning and coordination between the
participants, so the communication is very sponta-
neous and interactive. The corpus is split into utter-
ances, and the speech repairs are marked and auto-
matically removed for these tests. Utterances that
are incomplete or uninterpretable (by humans) are
also marked and eliminated from the corpus. The
remaining utterances form the set on which we have
been developing and testing the grammar. Figure 1
shows an excerpt from one of the dialogs.

The entire Monroe corpus consists of 20 dialogs
ranging from about 7 minutes up to 40 minutes in
length. Our tests here focus on a subset of five di-
alogs that have been used to drive the grammar de-
velopment: s2, s4, s12, s16 and s17 (henceforth di-
alogs 1, 2, 3, 4 and 5), constituting 1556 parseable
utterances.2

2.2 The TRIPS Parser

The deep parser we used is a robust parsing sys-
tem developed in the TRIPS system over the past
five years being driven from five different domains.
The grammatical formalism and parsing framework
is essentially a lexicalized version of the formalism
described in (Allen, 1995). It is a GPSG/HPSG
(Pollard and Sag, 1994) inspired unification gram-
mar of approximately 1300 rules with a rich model
of semantic features (Dzikovska, 2004). The parser

2Parseable utterances exclude utterances that are incom-
plete or ungrammatical (see (Tetreault et al., 2004).)

is an agenda-driven best-first chart parser that sup-
ports experimentation with different parsing strate-
gies, although in practice we almost always use a
straightforward bi-directional bottom-up algorithm.
As an illustration of its flexibility, the modifications
required to perform this experiment required adding
only one function of ten lines of code. The grammar
used for these experiments is the same TRIPS gram-
mar used in all our applications, and the rules have
hand-tuned weights. The weights of newly derived
constituents are computed exactly as in a PCFG al-
gorithm, the only difference being that the weights
don’t necessarily add to 1 and so are not probabil-
ities.3 The TRIPS parser does not use a maximum
entropy model (cf. the XLE system (Kaplan et al.,
2004)) because there is insufficient training data and
it is as yet unclear how such as model would per-
form at the detailed level of semantic representation
produced by the TRIPS parser (see Figure 2 and dis-
cussion below).

The rules, lexicon, and semantic ontology are in-
dependent of any specific domain but tailored to
human-computer practical dialog. The grammar
is fairly extensive in coverage (and still growing),
and has quite good coverage of a corpus of human-
human dialogs in the Monroe domain, an emer-
gency management domain (Swift et al., 2004). The

3We have a version of the grammar that uses a non-
lexicalized PCFG model, but it was not used here as it does
not perform as well. Thus we are using our best model, making
it the most challenging to show improvement.



SA_TELL LF::FILL-CONTAINER
:content

A (SET-OF LF::FRUIT)

:theme

:goal

THE (SET-OF LF::FRUIT):subset

:of

THE LF::LAND-VEHICLE

LF::WEIGHT-UNIT POUND

:QUANTITY

LF::QMODIFIER MIN
:quan

300:is

LF::NUMBER
:mods

(SPEECHACT V38109 SA_TELL :CONTENT V37618)
(F V37618 (LF::FILL-CONTAINER LOAD) :GOAL V37800 :THEME V38041

:TMA ((TENSE PAST) (PASSIVE +)))
(THE V37800 (LF::LAND-VEHICLE TRUCK))
(A V38041 (SET-OF (LF::FRUIT ORANGE)) :QUANTITY V37526 :SUBSET V37539)

(QUANTITY-TERM V37526 (LF::WEIGHT-UNIT POUND) :QUAN V37479)
(QUANTITY-TERM V37479 LF::NUMBER :MODS (V38268))

(F V38268 (LF::QMODIFIER MIN) :OF V37479 :IS V37523)
(QUANTITY-TERM V37523 LF::NUMBER :VALUE 300)

(THE V37539 (SET-OF (LF::FRUIT ORANGE)))

Figure 2: Parser logical form (together with a graphical approximation of the semantic content) for At least
three hundred pounds of the oranges were put in the truck.

system is in active use in our spoken dialog un-
derstanding work in several different domains. It
operates in close to real-time for short utterances,
but degrades in performance as utterances become
longer than 8 or 9 words. As one way to control
ambiguity, the grammar makes use of selectional re-
strictions. Our semantic model utilizes two related
mechanisms: first, an ontology of the predicates
that are used to create the logical forms, and sec-
ond, a vector of semantic features associated with
these predicates that are used for selectional restric-
tions. The grammar computes a flattened and un-
scoped logical form using reified events (see also
(Copestake et al., 1997) for a flat semantic represen-
tation), with many of its word senses derived from
FrameNet frames (Johnson and Fillmore, 2000) and
semantic roles (Fillmore, 1968). An example of the
logical form representation produced by the parser
is shown in Figure 2, in both a dependency graph
(upper) and the actual parser output (lower).4

4Term constructors appearing at the leftmost edge of terms
in the parser output are F (relation), A (indefinite entity),
THE (definite entity) and QUANTITY-TERM (numeric ex-
pressions).

3 Collins Parser Evaluation
As a pilot experiment, we evaluated the perfor-
mance of the Collins parser on a single dialog of
167 sentences from the Monroe corpus, dialog 3.
We extracted context-free grammar backbones from
our TRIPS gold standard parses to score the Collins’
output against. The evaluation was complicated by
difference in tree formats, illustrated in Figure 3.
The two parsers use a different (though closely re-
lated) set of syntactic categories. The TRIPS struc-
ture generally has more levels of structure (roughly
corresponding to levels in X-bar theory) than the
Penn Treebank analyses (Marcus et al., 1993), in
particular for base noun phrases.

We converted the TRIPS category labels to their
nearest equivalent in Penn Treebank inventory be-
fore scoring the Collins parser in terms of la-
beled precision and recall of constituents, the stan-
dard measures in the statistical parsing community.
Overall recall was 32%, while precision was 64%.
While we expect the Collins parser to have low
recall (it generates fewer constituents overall), the
low precision indicates that simply relabeling con-
stituents on a one-for-one basis is not sufficient to
resolve the differences in the two formalisms. Pre-
cision and recall broken down by constituent type is
shown in Table 1.
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Figure 3: Skeleton tree output from the Collins parser (left) and the TRIPS parser (right) for I have a bomb
attack at the airport.

However, 82% of the sentences have no cross-
ing brackets in the Collins parse. That is, while the
parser may not generate the same set of constituents,
it generates very few constituents that straddle the
boundaries of any constituent in the TRIPS parse.
At this level, the parsers agree about the structure
of the sentences to a degree that is perhaps surpris-
ing given the very different domain on which the
Collins parser is trained. This indicates that the
low performance on the other measures has more
to do with differences in the annotation style than
real mistakes by the Collins parser.

The high level of agreement on unlabeled brack-
etings led us to believe that the Collins structure
could be used as a filter for constituents generated
by the TRIPS parser. We tested this strategy in ex-
periments reported in the following section.

4 Experiments
In all the experiments, we used a subset of five di-
alogs (consisting of 1326 utterances) from the Mon-
roe corpus, described in 2.1. Pilot trials were con-
ducted on dialog 3 (167 utterances), and the exper-
iments were run with the remaining dialogs (1, 2, 4
and 5).

4.1 Method

The first experiment evaluates whether we can ex-
tract information from the Collins output that is reli-
able enough to provide significant improvements to
the TRIPS parser. In order to compare our perfor-

mance with (Frank et al., 2002), the test only uses
utterances for which we have a gold-standard. In
addition, we report our experiments only on utter-
ances 6 words or longer (with an average of 10.3
words per utterance), as shorter utterances pose lit-
tle problem for the TRIPS parser and thus running
the Collins pre-processing step would not be pro-
ductive.

We parsed dialogs 1, 2, 4 and 5 with the Collins
parser, and extracted the phrase-level bracketing for
the most reliable constituents (those which has a
precision of at least 60%) in our pilot study: NP, VP
and ADVP.5 From this information we constructed
a parse skeleton for each utterance, such as the one
shown in Figure 4.

For our experiments we modified the TRIPS
parser so that when a constituent is to be added to
the chart, if the constituent type and its start and end
positions are found in the skeleton then the ranking
for that constituent is boosted by a small amount. In
pilot trials we determined the optimal boost weight
to be 3% (see Table 2).

With a broad coverage grammar, it is possible that
the parser could run almost indefinitely on sentences
that are difficult to parse. Thus we set an upper limit
on the number of constituents that can be added to
the chart before the parser quits. The parser runs
until it finds a complete analysis or hits this upper

5The Collins parse time for the 309 utterances of 6 words or
longer was 30 seconds.



label gold recall produced precision crossing
ADJ 2 0.0% 0 0.0% 0.0%
ADJP 17 17.6% 7 42.9% 28.6%
ADVP 106 23.6% 35 71.4% 11.4%
CD 17 0.0% 0 0.0% 0.0%
DT 39 0.0% 0 0.0% 0.0%
FRAG 0 0.0% 2 0.0% 0.0%
INTJ 0 0.0% 19 0.0% 0.0%
N 5 0.0% 0 0.0% 0.0%
NNP 5 0.0% 0 0.0% 0.0%
NP 170 79.4% 225 60.0% 8.9%
NPSEQ 5 0.0% 0 0.0% 0.0%
NX 106 0.0% 0 0.0% 0.0%
PP 4 50.0% 37 5.4% 13.5%
PRED 6 0.0% 0 0.0% 0.0%
PRT 0 0.0% 2 0.0% 0.0%
QP 16 0.0% 1 0.0% 100.0%
RB 5 0.0% 0 0.0% 0.0%
S 75 42.7% 83 38.6% 6.0%
SBAR 18 50.0% 17 52.9% 23.5%
SBARQ 0 0.0% 1 0.0% 0.0%
SINV 0 0.0% 2 0.0% 0.0%
SPEC 61 0.0% 0 0.0% 0.0%
SQ 0 0.0% 2 0.0% 0.0%
UTT 185 0.0% 0 0.0% 0.0%
UTTWORD 15 0.0% 0 0.0% 0.0%
VB 6 0.0% 0 0.0% 0.0%
VP 235 43.8% 124 83.1% 7.3%
WHNP 0 0.0% 3 0.0% 0.0%

Table 1: Breakdown of Collins parser performance by constituent type. Recall refers to how many of the
gold-standard TRIPS constituents were produced by Collins, precision to how many of the produced con-
stituents matched TRIPS, and crossing brackets to the percentage of TRIPS constituents that were violated
by any bracketing produced by Collins.

So [NP I] [VP guess that if [NP we] [VP send [NP one ambulance] to [NP the airport]] [NP we] [VP can [VP get [NP
more people off] [ADVP quickly]]]

Figure 4: Skeleton filter for the utterance So I guess that if we send one ambulance to the airport we can get
more people off quickly.

Boost weight 1% 2% 3% 4% 5%
Speedup factor 1.1 1.3 2.4 2.0 1.2

Table 2: Pilot trials on dialog 3 to determine boost
factor.

limit.In the first experiment, this upper limit is set at
10000 constituents. In addition, we performed the
same experiments with lower upper limits to explore
the question of how much of the parser time is spent
on the sentences that hit the maximum chart size
limit. In the second experiment we used an upper

limit of 5000, and in the third we used an upper limit
of 1500 (the standard value for use in our real-time
dialog system to avoid long delays in responding).

4.2 Results

Results show significant improvements in the speed
of parsing. Table 3 shows the exact match sen-
tence accuracy and timing results for parsing with
and without skeletons with a maximum chart size
of 10000. The first row shows how many utterances
of 6 words or longer were parsed in each dialog.
The next two rows show exact match sentence ac-
curacy results for parses obtained with and without



Dialog 1 2 4 5 Total
Utts (6+ words) 83 78 78 70 309
Sentence accu-
racy w/ skeleton

57.8 50 37.2 52.9 49.5

Sentence accu-
racy no skeleton

56.6 48.7 35.9 52.9 48.5

Time w/ skeleton 46 85 127 45 303
Time no skeleton 90 190 321 60 661
Speedup Factor 1.9 2.2 2.5 1.3 2.0

Table 3: Sentence accuracy and timing results with
maximum chart size 10000 for utterances of 6 or
more words.

skeletons. The next two rows show the total time
(in seconds) to parse the dialogs with and without
the skeletons. The last row shows the speed up fac-
tor (computed as time-without-skeletons/time-with-
skeletons).6

We see substantial speed-ups in the parser using
this technique. The parser using skeletons com-
pleted the parses in less than half of the time of the
original parser. Looking at individual utterances,
70% were parsed more quickly with the skeletons,
while 25% were slower. Overall, our simple ap-
proach appears to provide a substantial payoff in
speed along with a small improvement in accuracy.

Note that we use a strict criterion for accuracy,
so both the correct logical form as well as the cor-
rect syntactic structure must be computed by the
parser for an analysis to be considered correct in
our evaluation. A correct logical form requires cor-
rect word sense disambiguation, constituent depen-
dencies, and semantic role assignment (see section
2.2). For example, in some cases the parser pro-
duces a structurally correct parse, but selects an in-
appropriate word sense, in which case the analysis
is considered incorrect. One such case is the utter-
ance You know where the little loop is, in which the
where is assigned the sense TO-LOC (which should
only be used for trajectories, as in Where did he go),
when in this utterance the correct sense for where is
SPATIAL-LOC.

To explore the question of how much of the speed
increase is the result of time spent on difficult sen-
tences that cause the parser to reach the maximum
chart size limit, we performed the same experiment
with a smaller maximum chart size of 5000, shown
in Table 4. As expected the speed-up gain declined
to 1.8, still quite a respectable gain, and again there

6These experiments were run with CMU Common LISP
18e and a Linux 2.4.20 kernel on a 2 GHz Xeon dual processor
with 1.0 GB total memory.

Dialog 1 2 4 5 Total
Utts (6+ words) 83 78 78 70 309
Sentence accu-
racy w/ skeleton

57.8 50 37.2 52.9 49.5

Sentence accu-
racy no skeleton

55.4 48.7 35.9 52.9 48.2

Time w/ skeleton 46 82 126 45 299
Time no skeleton 90 148 286 59 583
Speedup Factor 1.9 1.8 2.3 1.3 1.8

Table 4: Sentence accuracy and timing results with
maximum chart size 5000 for utterances of 6 or
more words.

Dialog 1 2 4 5 Total
Utts (6+ words) 83 78 78 70 309
Sentence accu-
racy w/ skeleton

57.8 48.7 37.2 52.9 49.2

Sentence accu-
racy no skeleton

55.4 47.4 35.9 52.9 47.9

Time w/ skeleton 47 76 109 45 277
Time no skeleton 74 92 150 59 375
Speedup Factor 1.6 1.2 1.4 1.3 1.4

Table 5: Sentence accuracy and timing results with
maximum chart size 1500 for utterances of 6 more
words.

is no loss of accuracy.

As we drop the chart size to 1500, the speed-up
drops to just 1.4, as shown in Table 5. However,
we have improvements in accuracy using skeletons
when we parse with low upper limits. In certain
cases the skeleton guides the parser to the correct
parse more quickly, so it can be found even when
the maximum chart size is reduced. For example,
for the utterance And meanwhile we send two am-
bulances from the Strong Hospital to take the six
wounded people from the airport (from dialog 1),
a correct full sentence analysis is found with the
larger maximum chart sizes (5000 or more), but
with a maximum chart size of 1500 the correct anal-
ysis for this utterance is found only with the help of
the skeleton.

Our best results are similar to those reported in
(Frank et al., 2002), who show a speed-up factor
of 2.26, although they use a much larger maximum
chart size (70,000). Because of the differences in
grammars and parsers, it is not clear how to fairly
compare the chart sizes.



5 Conclusion
With minimal modifications to our deep parser, we
have been able to achieve a substantial increase in
parsing speed with this technique along with a small
increase in accuracy. The experiments reported here
investigated this technique using off-line methods.
Given our promising results, we are currently work-
ing to integrate an on-line shallow parsing filter into
our collaborative dialog assistant.
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