
Towards Tractable Agent-based Dialogue

by

Nathan James Blaylock

Submitted in Partial Fulfillment
of the

Requirements for the Degree
Doctor of Philosophy

Supervised by

Professor James F. Allen

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

2005

ii

Curriculum Vitae

Nate Blaylock was born in Provo, Utah on June 8, 1975, and grew up in the neigh-

boring city of Orem. He attended Brigham Young University (BYU) from 1993 to 1994

and then took two years off to serve as a missionary for the Church of Jesus Christ of

Latter-day Saints in the Japan Tokyo North Mission. While a missionary, Nate learned

Japanese, which, as an agglutinating language, was so regular, he often thought that

verb conjugations could be done by a computer.

Upon completing his mission in 1996, he reentered BYU and tooka Linguistics

class “on a whim.” It was in this class that he was first introduced to Computational

Linguistics, which prompted him to add a Linguistics major to his Computer Science

major. He graduated from BYU in 1999 with a BS in Computer Scienceand a BA in

Linguistics.

Nate entered the PhD program at the University of Rochester’sDepartment of Com-

puter Science in the Fall of 1999 and actively worked in the TRIPS research group (with

advisor James Allen) during his time in Rochester. He was granted an MS in Computer

Science in 2001.

In the Spring of 2004, Nate accepted a position as a research associate in the De-

partment of Computational Linguistics, Saarland University, in Saarbr̈ucken, Germany,

where he currently working on the EU-funded TALK project.

iii

Acknowledgments

I would first like to thank my advisor, James Allen. He gave me the freedom to

work on what interested me and at the same time guidance to steer my research in the

right direction. I would also like to thank my thesis committee members, Greg Carlson,

Henry Kyburg, and Len Schubert for their comments and suggestions.

I have done this work in two very rich research environments.Working with the

people in the TRIPS group at Rochester — including James Allen,George Ferguson,

Amanda Stent, Donna Byron, Lucian Galescu, Myrosia Dzikovska, Joel Tetreault, Scott

Stoness, Ellen Campana, Greg Aist, Mary Swift, Carlos Gómez-Gallo, Phil Michalak,

and Nate Chambers — was a great experience. They were a great group of people to

work with, both personally and professionally.

For the last year, I have been also working with the Saarbrücken TALK group

— Manfred Pinkal, Ivana Kruijff-Korbayov́a, Ciprian Gerstenberger, Verena Rieser,

Tilman Becker, Peter Poller, Jan Schehl, Michael Kaißer, Gerd Fliedner, Daniel Bob-

bert and Diana Steffen — which has been equally rewarding. The group has always

been willing to listen to and comment on my ideas.

I also had the opportunity to do several summer internships,where I was able to

work with great people and expand my horizons. I’d like to especially thank Manfred

Pinkal, Steve Richardson, and John Dowding for making those internships possible, as

well as all the people I was able to work with.

I am deeply indebted to the Rochester staff, who were always there to pull me out

of last-minute problems, and were still nice enough to chat with me when I didn’t have

iv

crises. I would especially like to thank Elaine Heberle, Marty Guenther, Peg Meeker,

Jill Forster, Eileen Pullara, and JoMarie Carpenter.

My parents, Nan and Giff Blaylock have always supported my educational goals

and were always there to encourage me when I needed it. I wouldalso like to thank my

brother Seth Blaylock who proof-read this thesis for me.

Finally, and most importantly, I would like to thank my wife Felicita, without whom

I may have never finished. She was always there to tell me to take it easy when I needed

it, to nudge me when I needed extra motivation, and to make me laugh, even when I

didn’t feel like it. Gracias, mi perla.

This thesis is based upon work supported by a grant from DARPA (no. #F30602-

98-2-0133); a grant from the Department of Energy (no. #P2100A000306); two grants

from The National Science Foundation (award #IIS-0328811 and award #E1A-0080124);

and the EU-funded TALK Project (no. IST-507802). Any opinions, findings, conclu-

sions or recommendations expressed in this thesis are thoseof the author and do not

necessarily reflect the views of the above-named organizations.

v

Abstract

This thesis describes research which attempts to remove some of the barriers to cre-

ating true conversational agents — autonomous agents whichcan communicate with

humans in natural language. First, in order to help bridge the gap between research in

the natural language and agents communities, we define a model of agent-agent col-

laborative problem solving which formalizes agent communication at the granularity

of human communication. We then augment the model to define anagent-based model

of dialogue, which is able to describe a much wider range of dialogue phenomena than

plan-based models. The model also defines a declarative representation of communica-

tive intentions for individual utterances.

Recognition of these intentions from utterances will require an augmentation of

already intractable plan and intention recognition algorithms. The second half of the

thesis describes research in applying statistical corpus-based methods to goal recogni-

tion, a special case of plan recognition.

Because of the paucity of data in the plan recognition community, we have gener-

ated two corpora in distinct domains. We also define an algorithm which can stochas-

tically generate artificial corpora to be used in learning. We then describe and evaluate

fast statistical algorithms for both flat and hierarchical recognition of goal schemas and

their parameter values. The recognition algorithms are more scalable than previous

work and are able to recognize goal parameter values as well as schemas.

vi

Table of Contents

Curriculum Vitae ii

Acknowledgments iii

Abstract v

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Agent-based Dialogue Modeling .3

1.2 Requirements for Agent-based Dialogue 4

1.3 Thesis Overview . 8

2 Dialogue Modeling: Background 13

2.1 Fixed-Task Models . 13

2.2 Plan-based Models . 16

3 A Model of Collaborative Problem Solving 31

3.1 The Collaborative Problem-Solving Process 32

vii

3.2 A Collaborative Problem-Solving Model 36

3.3 Single-agent Problem Solving .37

3.4 Collaborative Problem Solving .63

3.5 Conclusions and Future Work . 73

4 Modeling Dialogue as Collaborative Problem Solving 75

4.1 Collaborative Problem Solving and Communicative Intentions 76

4.2 Grounding . 78

4.3 Coverage of the CPS Dialogue Model 89

4.4 Conclusions and Future Work . 98

5 Plan Recognition: Background 100

5.1 Intention Recognition and Plan Recognition 101

5.2 Requirements for Plan Recognition .102

5.3 Previous Work in Plan Recognition .103

5.4 Goal Recognition . 108

5.5 Towards Statistical Goal Recognition 114

6 Obtaining Corpora for Statistical Goal Recognition 116

6.1 Definitions . 117

6.2 Existing Plan Corpora . 117

6.3 The Linux Corpus . 119

6.4 General Challenges for Plan Corpora Collection 125

6.5 Generating Artificial Corpora .128

6.6 The Monroe Corpus . 133

6.7 Plan Corpora: Human vs. Artificial .136

6.8 Conclusions and Future Work . 138

viii

7 Flat Goal Recognition 139

7.1 Problem Formulation . 139

7.2 Goal Schema Recognition . 142

7.3 Goal Parameter Recognition . 152

7.4 Instantiated Goal Recognition .163

7.5 Conclusion . 167

8 Hierarchical Goal Recognition 169

8.1 Goal Schema Recognition . 170

8.2 Goal Parameter Recognition . 189

8.3 Instantiated Goal Recognition .196

8.4 Conclusion . 203

9 Conclusion 205

9.1 Future Work in Dialogue Modeling .207

9.2 Future Work in Goal Recognition . 209

9.3 Future Work in Agent-based Dialogue Systems 212

Bibliography 215

A Instructions Given to Users in the Linux Corpus Collection 228

B Goal Schemas in the Linux Corpus 230

C Action Schemas in the Linux Corpus 232

C.1 General Issues for Conversion . 232

C.2 The Action Schemas . 235

D Goal Schemas in the Monroe Corpus 237

ix

List of Tables

3.1 Abbreviations for Type and Feature Names 68

4.1 Conversation Act Types [Traum and Hinkelman1992] 80

6.1 Contents of the Linux Corpus . 124

6.2 Comparison of the Linux and Monroe Corpora 134

7.1 Goal Schema Recognition Results on the Monroe Corpus 150

7.2 Goal Schema Recognition Results on the Linux Corpus 151

7.3 Goal Parameter Recognition Results on the Monroe Corpus 161

7.4 Goal Parameter Recognition Results on the Linux Corpus 162

7.5 Instantiated Goal Recognition Results for the Monroe Corpus 166

7.6 Instantiated Goal Recognition Results for the Linux Corpus. 167

8.1 Results of Schema Recognition using the CHMM 185

8.2 Results of Flat Schema Recognition on the Monroe Corpus (from Chap-

ter 7) . 185

8.3 Results of Schema Recognition using the CHMM and Observation In-

formation . 188

8.4 Results of Parameter Recognition . 194

x

8.5 Results of Flat Parameter Recognition on the Monroe Corpus (from

Chapter 7) . 195

8.6 Results of Instantiated Recognition 201

8.7 Results of Flat Instantiated Recognition on the Monroe Corpus (from

Chapter 7) . 202

B.1 Goal Schemas in the Linux Corpus . 231

D.1 Goal Schemas in the Monroe Corpus 237

xi

List of Figures

1.1 Example Dialogue . 2

1.2 Possible Architecture of an Agent-based Dialogue System 4

3.1 Type Description forobject . 39

3.2 Type Description forps-object . 41

3.3 Type Description forslot . 43

3.4 Type Description forsingle-slot . 43

3.5 Type Description forfiller . 44

3.6 Type Description forfiller(σ) . 44

3.7 Type Description forsingle-slot(σ) . 45

3.8 Type Description formultiple-slot . 45

3.9 Type Description forconstraints-slot. 45

3.10 Type Description forevaluations-slot. 46

3.11 Type Description forobjectives-slot 47

3.12 Type Description forobjective . 47

3.13 Full Type Description forobjective . 48

3.14 Type Description forrecipe . 48

3.15 Type Description forconstraint. 49

xii

3.16 Type Description forresource . 49

3.17 Type Description forevaluation . 50

3.18 Type Description forsituation . 50

3.19 Type Description forsong. 53

3.20 Type Description forlisten-song . 53

3.21 A Simple Initial PS State . 57

3.22 The PS State after Executingidentify-objective(actual-situation,2) . . . 60

3.23 Type Description forc-situation . 66

3.24 listen-songObjective 2 . 69

3.25 The CPS State after A’s First Turn .70

3.26 The Abbreviated Version of Figure 3.25 71

3.27 The CPS State after B’s First Turn . 72

3.28 songResource4 — “Yesterday” by the Beatles 72

3.29 The CPS State after A’s Second Turn73

4.1 Example of Conversation Acts: Grounding Acts [Traum and Hinkel-

man1992] . 82

4.2 Example of Conversation Acts: Core Speech Acts [Traum and Hinkel-

man1992] . 82

4.3 The TRAINS Example Interpreted with the Agent-based Model 85

4.4 Contents ofobjective1 . 87

4.5 Contents ofrecipe 2 . 88

4.6 Contents ofconstraint 3 . 88

4.7 A Planning Dialogue from [Traum and Hinkelman1992] (Continuation

of Figure 4.3) . 91

xiii

4.8 Execution Dialogue from [Grosz and Sidner1986]: Part 1 93

4.9 Execution Dialogue from [Grosz and Sidner1986]: Part 2 94

4.10 A Planning and Execution Dialogue (from Figure 1.1) 97

7.1 Schema Recognition Example:τ = 0.8 145

7.2 Evaluation Metrics for Example in Figure 7.1 149

8.1 An Example Plan Tree . 171

8.2 A Cascading Hidden Markov Model (CHMM) 173

8.3 Algorithm for Calculating Forward Algorithm for CHMMs 176

8.4 The Sequence of Goal Chains Corresponding to the Plan Tree in Fig-

ure 8.1 . 178

8.5 A Plan Tree with Varying Depth . 179

8.6 The Expanded Version of the Plan Tree in Figure 8.5 180

8.7 The Sequence of Goal Chains Corresponding to the Expanded Plan

Tree in Figure 8.6 . 180

1

1 Introduction

Language is typically used as a means to an end. People use language to help them

achieve their goals by soliciting help from and coordinating their efforts with those

with whom they talk.

The range of activities that can be accomplished (or supported) through language is

vast. The following are just a few examples:

1. Obtaining (and providing) information

A: where is the bathroom?
B: up the stairs to your left.

2. Getting someone to perform some action (and report the result)

A: turn off the sprinklers.
B: [turns off sprinklers]

done.

3. Getting someone to suggest a course of action

A: how can I open this door?
B: push the red button, wait 30 seconds, and then twist the knob.

The above are short dialogue exchanges illustrating some ofthe individual uses

of language. However, dialogue exchanges can be much longerand freely mix the

different individual uses as dialogue partners work together to achieve a goal.

2

1.1 A: let’s go to the park today.
2.1 B: okay.
2.2 B: should we walk or drive?
3.1 A: what’s the weather going to be like?
4.1 B: I don’t know.
4.2 B: let’s watch the weather report.
5.1 A: no, it’s not on until noon.
5.2 A: just look on the internet.
6.1 B: okay. [looks on internet]
6.2 B: it’s supposed to be sunny.
7.1 A: then let’s walk.
8.1 B: okay.
9.1 A: do you want to go now?

10.1 B: sure.

Figure 1.1: Example Dialogue

Consider the dialogue in Figure 1.1. Here the dialogue participants use language

to agree on a common goal (going to the park); to decide on a plan for accomplishing

the goal (walking); to coordinate execution of the plan (when to leave the house); and

finally, to plan and execute a separate goal in order to help them decide on a plan

(looking up weather on the internet).

Although this type of dialogue is fairly common, we are unaware of any dialogue

system that could handle it in a general way. Current models ofdialogue do not han-

dle the level of complexity shown in Figure 1.1. Most dialogue systems use dialogue

models tailored to a specific application. Other, more general systems model dialogue

as coordination in joint execution of predetermined plans (e.g., [Cohen et al.1991;

Ardissono, Boella, and Lesmo1996; Rich, Sidner, and Lesh2001]) or coordination in

building joint plans, but not their execution (e.g., [Groszand Sidner1990; Ferguson and

Allen1998; Chu-Carroll and Carberry2000]). Both of these general approaches are typ-

ically referred to as “plan-based” dialogue models, as theyuse generalized mechanisms

which work on a planning representation of actions and goalsin the domain.

Although they are domain-independent, these plan-based dialogue models still can-

3

not cover the type of dialogue in Figure 1.1, primarily because it consists of both plan-

ning andexecution. Also, most models would also not be able to handlethe beginning

interchange of the sample dialogue, when the participants agree on a goal. Most plan-

based models assume that a goal is already mutually known andagreed-uponbeforethe

dialogue begins.

Our goal is to build dialogue systems capable of engaging in the what Allen et

al. callpractical dialogue— “dialogue focused on accomplishing some specific task,”

[Allen et al.2000]. We, as they, believe that this “genre” ofdialogue is what humans

will most want to use with machines (as opposed to, say, humorous or social dialogue).

1.1 Agent-based Dialogue Modeling

In this thesis, we present anagent-basedapproach to dialogue systems, in which we

model dialogue ascollaborative problem solvingbetween agents. Before we go any

further, we will define what we mean by some of these terms.

First, problem solvingis the general process used by agents of formulating and

pursuing goals. It can include activities such as goal selection (or abandonment); the

selection of plans as courses of action for accomplishing a goal; the execution and

monitoring of plans; replanning (when errors occur); and the cognitive processes (such

as goal evaluation) used for making these decisions. Problem solving is closely re-

lated to the concept of “rational behavior” (cf. [Cohen and Levesque1990a; Rao and

Georgeff1995]), and can be described as the driving core of an agent.Collaborative

problem solvingis the coordinated problem solving of two or more agents.

There are several things which make collaborative problem solving an attractive

model for dialogue. First, it subsumes previous plan-basedmodels of dialogue, since

it includes both planning and execution. However, as described above, collaborative

problem solving goes beyond just planning and execution; itattempts to describe the

full set of agent activities. We believe that humans are also(to some approximation)

4

GenerationUnderstanding

Language Language

Behavior

Actions

Intentions
Communicative

Communicative
Intentions

Figure 1.2: Possible Architecture of an Agent-based Dialogue System

collaborative problem-solving agents, and that most practical dialogue can be modeled

by collaborative problem solving.

1.2 Requirements for Agent-based Dialogue

A dialogue model is just the first step to building a dialogue system. Making gen-

eralized, agent-based dialogue systems a reality will require progress in many areas of

artificial intelligence, including natural language processing and autonomous agents. In

this section we first describe a generalized architecture for an agent-based dialogue sys-

tem based on the TRIPS dialogue system architecture [Allen, Ferguson, and Stent2001;

Blaylock, Allen, and Ferguson2002]. Then, using that architecture as a reference point,

we describe some requirements of an agent-based dialogue system.

The architecture shown in Figure 1.2 divides the dialogue system into three subsys-

tems: interpretation, behavior, andgeneration. In interpretation, the system must be

5

able tounderstandwhat is meant by a user’s utterance. This goes much deeper than

just what the utterance means on the surface. The system mustbe able to understand

much more. Why did the user utter what he did? What was he trying to accomplish by

uttering it? These conversational “ends” are calledcommunicative intentions.

The behavioral subsystem is essentially an intelligent agent that is able to reason

with the user’s communicative intentions, (as well as otherthings such as the world

state, its own goals and intentions, etc.) and decide what actions to take (either in the

world or cognitively). It also needs to be able to form its ownintentions for communi-

cation with the user.

In the generation subsystem, the system’s communicative intentions are transformed

into natural language and uttered to the user.

As mentioned above, there are many aspects to our ideal agent-based system that

the current state-of-the-art does not support. We discuss several of the most prominent

by subsystem.

1.2.1 Interpretation

The task of interpretation is typically divided into many levels of analysis (speech

recognition/synthesis, morphology, syntax, semantics, pragmatics, etc.), and an enor-

mous body of research has been done at all of them. The most salient level, however,

for agent-based dialogue is at the “topmost” level, which wecall theintention/language

interface, where communicative intentions are recognized from a high-level semantic

form (i.e., communicative acts). This process of inferringcommunicative intentions

from communicative acts is calledintention recognition.

There are several barriers to using current intention recognition techniques in an

agent-based system. First, we need a representation of the communicative intentions

to be recognized. Second, we need algorithms that can recognize intentions for the

6

full range of collaborative problem solving. Lastly, such algorithms need to be fast, as

dialogue happens in real time. We discuss each of these below.

Representation of Communicative Intentions Very little work has been done on

descriptive representations of communicative intentions. Most dialogue systems do not

use intention recognition — the domains covered are usuallysimple and the exchanges

circumscribed, so that intentions are transparent from theutterance semantics. In sys-

tems which do perform intention recognition (typically plan-based systems), commu-

nicative intentions are not explicitly represented, but rather are tied to the intention

algorithm which updates some sort of dialogue state.

In Chapter 4, we present a descriptive language of communicative intentions based

on the model of collaborative problem solving.

Intention Recognizer for Collaborative Problem Solving As mentioned above, in

most dialogue systems, explicit intention recognition is not needed, as the domain and

exchanges are simple and transparent. Plan-based dialoguesystems, however — es-

pecially those that model dialogue as joint planning — oftendo perform intention

recognition. However, these intention recognition algorithms are specifically tied to

the dialogue model (typically planning), and would not be directly applicable to an

agent-based dialogue model. It is possible (and indeed we believe it to be the case),

that these algorithms can be extended to cover the range of collaborative problem solv-

ing, but such a question is left to future research.

Real-time Intention Recognition Another problem with intention recognition is speed.

Dialogue happens in real time, and the system is expected to respond to the user within

a reasonable amount of time (on the order of several seconds). However, all inten-

tion recognizers of which we are aware are based on the more general process ofplan

recognition— the recognition of an agent’s plan from observed actions. In the gen-

7

eral case, plan recognition is known to be exponential in thenumber of possible goals

[Kautz1991], thus for any reasonable-sized domain, intention recognition will be too

slow to support real-time dialogue. Although more recent work has improved on this

(e.g., [Vilain1990]), it has done so at the expense of expressiveness and flexibility.

Unless alternative methods of intention recognition can befound, faster, more scal-

able methods of plan recognition will be essential to supporting real-time dialogue for

agent-based systems.

In the second half of this thesis, we present a goal recognizer — a special type of

plan recognizer — which preserves scalability without a large sacrifice of expressive-

ness, which could be used as the main engine for a real-time intention recognizer for

agent-based dialogue.

1.2.2 Behavior

Once an utterance has been successfully interpreted, the behavioral subsystem must be

able to act on it. The behavioral system must be an intelligent agent that is not only

able to reason and act in the world (i.e., do problem solving), it must also be able to

communicate and coordinate its activities with a (human) user (i.e., do collaborative

problem solving).

Much work has been done on building autonomous agents, but very little on human-

agent collaboration. In fact, most agent-agent collaboration work makes explicit as-

sumptions that both agents are artificial (assuming, for example, than the two collabo-

rating agents are running the same code). This assumption, however, cannot be made

when one of those agents is a human!

In Chapter 3, we present a model of collaborative problem solving which is based

on human communication, and show how this can be used to modelhuman-agent or

agent-agent communication. This is a first step to building agents that can collaborate

with humans in a human-like way.

8

Work still remains, however, to actually build an autonomous agent that uses and

reasons with the collaborative problem-solving model.

1.2.3 Generation

Parallel to interpretation, work on generation has been done at many levels (phonology,

syntax, etc.) The most important for agent-based dialogue,of course, is that of con-

verting communicative intentions to some high-level semantic form (a process we will

termcontent planning).

This is perhaps the most open of the areas mentioned here. Most generation sys-

tems for dialogue assume that the behavioral component (usually called thedialogue

manager) has already transformed intentions to a semantic form, andwe are unaware

of any system that generates directly from communicative intentions (probably because

most systems do not have an explicit representation for these intentions).

1.3 Thesis Overview

As noted in the preceding section, building an agent-based dialogue system requires a

lot of work in many areas. Unfortunately, the required amount of research is outside

the scope of a single thesis, and we do not attempt it here. Instead, as the title suggests,

this thesis represents our efforts to provide several of thenecessary foundational pieces

required for further work on agent-based dialogue systems.

The remainder of this thesis can be divided into two parts, representing its two main

areas of contributions. The first part (Chapters 2 to 4) describes a domain-independent

model of dialogue based on agent collaborative problem solving. The second part

(Chapters 5 to 8) presents a fast algorithm for goal recognition — a special type of

plan recognition. Chapter 9 then concludes the thesis and discusses areas of future

work.

9

We now discuss each of these main contributions in more detail.

1.3.1 An Agent-based Dialogue Model

As stated above, the most vital foundation to supporting agent-based dialogue is a di-

alogue model. In Chapter 2, we introduce the field of dialogue modeling and discuss

previous work.

In Chapter 3, we present a model of collaborative problem solving for agents. In this

model an agent (individually) or group of agents (collaboratively) perform problem-

solving activities in three general areas.

• Determining Objectives: In this area, agents manage their objectives, deciding to

which they are committed, which will drive their current behavior, etc.

• Determining and Instantiating Recipes for Objectives: In this area, agents choose

recipes to use towards attaining their objectives. Agents may either choose and

instantiate recipes from a recipe library, or they may choose tocreatenew recipes

via planning.

• Acting: In this area, agents follow a recipe and execute atomic actions. This area

also includes monitoring the execution to check for success.

It is important to note that these areas need not proceed in order and may be freely

interleaved. Decisions made at one level can also be revisited at any point. Collab-

orative decisions are negotiated among the agents, and onlybecome valid when both

agents agree to a proposal.

This model is able to describe a large range of collaborativeagent activity, includ-

ing not only (interleaved) planning and execution, but alsogoal selection, replanning,

evaluations, etc. This general collaborative problem-solving model contributes not only

10

to the study of human-agent dialogue, but is also general enough to be applied to gen-

eral collaboration among heterogeneous agents, whether human or artificial, through

natural language or by other means.

In Chapter 4, we use this collaborative problem-solving model as the basis for an

agent-based model of dialogue. In particular, we model dialogue participants as collab-

orative agents, and the dialogue itself as the collaboration about their problem-solving

activities. Because this dialogue model is based on a rich model of agent collabora-

tion, it is able to describe a much wider range of dialogue types than previous models,

including dialogues similar to that shown in Figure 1.1.

An additional contribution described in Chapter 4 is a domain-independent, de-

scriptive language for communicative intentions. The communicative intentions of an

utterance are modeled as attempts to negotiate collaborative problem-solving decisions.

As discussed above, most dialogue systems treat communicative intentions only implic-

itly in language understanding and intention recognition algorithms. This description

language supports the labeling of an utterance with its intended meaning and lays the

foundation for future work in agent-based intention recognition algorithms (see Chap-

ter 9).

1.3.2 Fast Goal Recognition

The other major area of contribution of this thesis is that ofusing machine learning

techniques to build fast goal recognition algorithms. As discussed in Section 1.2.1, fast

goal recognition is important part of building a real-time intention recognizer to support

agent-based dialogue.

Plan recognition is the general process of inferring an agent’s current plan based on

observed actions. Goal recognition is a special case of planrecognition where only the

agent’s current goals are inferred. In Chapter 5, we introduce plan and goal recognition

and previous work in this area.

11

In order to support machine learning, one must have corpora,and there is a paucity

of such for plan recognition. In Chapter 6, we describe methods we used in collecting

two labeledplan corpora.

The first corpus, the Linux corpus, was gathered by giving human Linux users a

goal and then recording their commands used to achieve it, similar to the collection

done for the Unix corpus [Lesh1998]. This data collection resulted in the contribution

of a corpus of more than 400 goal-labeled action sequences — more than an order of

magnitude larger than the Unix corpus.

However, in many domains, labeled corpora are difficult to gather, especially cor-

pora that include hierarchical goal structure (see below).For the second corpus, we

introduce a novel technique for automatically generating labeled plan corpora. We use

an AI planner to stochastically generate plan sequences forgenerated goals and start

states. This provides a way to rapidly generate data for machine learning in plan recog-

nition in domains where human data is difficult or impossibleto obtain. The resulting

Monroe corpus contains 5000 hierarchical plans for an disaster-management domain.

Together with the Linux corpus, this contributes two labeled corpora as a resource

for researchers in plan recognition (something that was lacking before, as observed in

[Lesh1998]). In addition, the stochastic plan corpus generation techniques can be used

to quickly generate corpora in other domains as well.

In Chapter 7, we describe aflat goal recognizer (a recognizer which only recog-

nizes a current top-level goal, but no subgoals). The recognizer is able to perform fast

recognition of both goal schemas and their parameter values. It achieves reasonable

results on both the Linux and Monroe corpora and its time complexity is only linear in

the number of goal schemas and observed actions, making it much faster than previous

systems.

In Chapter 8, we augment the flat recognizer to perform hierarchical goal recogni-

tion — recognizing both the top-level goal as well as active subgoals. The recognizer

uses cascading Hidden Markov Models to compute the most likely subgoal at each

12

level of the hierarchy. It is fast, with a time complexity quadratic in the number of goal

schemas and linear in the number of subgoal levels, and givesencouraging results on

test cases in the Monroe domain. This contributes a fast, flexible hierarchical goal rec-

ognizer which can be rapidly ported to new domains. We expectto use this recognizer

as the principal component of an intention recognizer in future work (see Chapter 9).

13

2 Dialogue Modeling: Background

The goal ofdialogue modelingis to provide a representation of dialogue processes

which can be used to build systems that act as dialogue participants. Such a repre-

sentation is an important first step towards building a dialogue system, especially for

performingdialogue management— the process of controlling the overall dialogue

behavior of the system.

In this chapter we discuss previous work in dialogue modeling. We first discuss

fixed-task dialogue models and then plan-based models.

2.1 Fixed-Task Models

In this section, we group together three classes of dialoguemodels which make the

(explicit or implicit) assumption that the form of thedomain task(the non-linguistic

task which is the focus of the dialogue) is known (and encoded) at the design time of

the dialogue system. As we discuss below, this doesnotnecessarily mean that the form

of the dialogue itself (thediscourse task) need be fixed.

For fixed-task systems, a prototypical dialogue task is thatof database lookup for

such information as flight or train schedules [Rudnicky et al.1999; Lamel et al.2000]

or weather reports [Zue et al.2000]. Here, the form of the domain task (the database

14

lookup) is fixed, and the system only needs to query the user for certain information,

such as the user’s preferences or personal details, in orderto be able to perform the

task.

We will see in the section below that this constraint is removed by plan-based mod-

els, which allows (to varying degrees) the user and system not only to discussinforma-

tion needed for the task, but also to decide on theformof the task itself. As we discuss

in Chapter 4, this is a vital feature of supporting agent-based dialogue.

We discuss here finite state models and form-filling models.

2.1.1 Finite State

Finite state dialogue models (e.g., [Hansen, Novick, and Sutton1996]) are the most

constrained models we discuss here. In this approach, a dialogue designer must encode

not only the domain task, but alsoall possible dialogue sequences. Typically, a finite

state automaton is encoded, with each state representing a system utterance (e.g., a

prompt) and each transition arc representing a user utterance. Accepting states typically

signify successful completion of the domain task (or at least “successful” completion

of the dialogue, e.g., the system said goodbye properly).

There are many arguments against finite state models of dialogue (see [Bohlin et

al.1999] for some of them). We will only mention a few here which are most relevant

to agent-based dialogue.

First, not only do finite state models require a fixed domain task structure (which

we will discuss more below with the other models), they also require a fixed, or at

least fully-enumerated discourse task structure. This means that a user is restricted to

making utterances which correspond to outgoing transitions from the current state, and

more generally, must follow one of the predefined paths through the automaton. In

practice, this means that the user must talk about task information in the order that the

system designer envisioned.

15

Another shortcoming of finite state models is their inherentlack of memory. The

system only has knowledge of what state it is in, but not of howit got there. Long-term

dependencies, such as an agreed-upon decision, would be difficult if not impossible to

represent in a general way.

2.1.2 Form-filling

In form-filling dialogue (e.g., [Seneff and Polifroni2000;Lamel et al.2000; Chu-Carroll2000]),

a frame listsslots which represent information needed for the system to perform a

(fixed) domain task. Dialogue is modeled as the process of filling in those slots.

This results in a much more free exchange at the discourse-task level, as users can

now give information (fill slots) in any order they wish within a single form. Later work

[Rudnicky et al.1999; Bohus and Rudnicky2003] added the ability to support the filling

of several forms each representing different parts of the domain task. When the form is

filled, then the system performs the domain task.

Although form-filling frees one from a fixed discourse task structure, domain task

structure remains fixed. A designer must know the domain taskstructure beforehand in

order to design forms that contain the necessary slots for that task.

Arguments against fixed domain task structure are similar tothose with fixed dis-

course task structure mentioned above. Agents often don’t have fixed plans for accom-

plishing goals, and often there may be many possible ways foraccomplishing a goal,

one of which must be created (planned) by the agent, often on the fly based on the

current state of the world. Specifying all possible tasks and their structure beforehand

seriously constrains the ability of the agent to adapt to a changing world, and limits the

ability of a dialogue system to cover many desirable domains(such as interaction with

an autonomous robot).

16

2.2 Plan-based Models

Plan-based models of dialogue1 share the view that the purpose of dialogue is to pursue

domain goals — either by planning a course of action (joint planning) or by executing

such a plan (joint execution). In this section, we first discuss the foundations of plan-

based dialogue modeling. We then discuss various threads ofresearch using plan-based

dialogue models. Finally, we discuss common shortcomings of these approaches for

modeling agent-based dialogue.

2.2.1 Foundations

Austin [1962], Grice [1957; 1969; 1975], and Searle [1975] all noted that human utter-

ances can actually causechangesin the world. The utterance “I pronounce you man

and wife,” said by the right person in the right context actually causes two people to

be married. More subtly, the utterance of “John is in the kitchen” may have effect of

causing the hearer to believe that John is in the kitchen.

Utterances can have preconditions and effects, the same as other non-linguistic ac-

tions. We can also build plans that contain utterances as well as other actions. A full

discussion of speech acts is beyond the scope of this thesis.It is important to realize,

however, that treating utterances like actions (speech acts) allows us to link it to general

theories of planning, execution, and plan recognition in Artificial Intelligence.

Allen, Cohen, and Perrault [1982] were the first to computationalize a theory of

speech acts. Cohen [1978][Cohen and Perrault1979] concentrated on using plan syn-

thesis together with speech acts for content planning for language generation. Allen

[1979; 1983][Allen and Perrault1980], on the other hand, used plan recognition and

speech act theory for intention recognition in language understanding. We concentrate

here only on Allen’s work.

1This section contains material from [Blaylock2002] and [Blaylock, Allen, and Ferguson2003].

17

Allen studied transcripts of actual interactions at an information booth in a Toronto

train station. A typical exchange was something like this [Allen1983]:

Patron: When does the Montreal train leave?
Clerk: 3:15 at gate 7.

Note that although the patron only requested the departure time, the clerk also vol-

unteered information about the departure gate as well. Presumably, the clerkrecognized

the plan of the patron (to board the train), and realized thatthe patron would also need

to know where the train departed and volunteered that information as well. Allen called

this behaviorobstacle detection.

Allen’s system took the direct speech act of the utterance, and, using certain in-

ference rules and heuristics to apply them, performed backward chaining in order to

infer the user’s plan. Heuristics included things such as, if a person wants P, and P is a

precondition of action ACT, then the person may want to perform ACT; or if a person

wants to know if P is true, they may want P to be true (or false).

Using these inference rules, the system was able to recognize not only indirect

speech acts, but also the user’s domain plan. Plan-based dialogue models have built

upon this foundational work.

Sidner and Israel [1981] extended Allen’s work to multiple-utterance dialogues

about execution. Their work takes previous discourse context into account in interpret-

ing a new utterance. Each utterance causes the system to update its beliefs about the

user’s beliefs, wants, goals, and plans, based on Grice’s theoretical work [Grice1957;

Grice1969] as well as plan recognition similar to Allen’s.

18

2.2.2 Domain-level Plans

Carberry

Carberry [1987; 1990b] models dialogue as joint planning. Her system uses a plan

decomposition hierarchy similar to Kautz’ [1991] (see Chapter 5) which holds infor-

mation about decomposition and parameters of plan schemas in the domain. Based on

this hierarchy, dialogue utterances build a hierarchical plan by filling in parameters and

decomposing subgoals. The system supports planning in botha bottom-up (talk about

actions first) and top-down (talk about goals first) fashion.

Although Carberry’s system is able to account for dialogues that build complex

plans, it only works for utterances that talk directly aboutactions and goals in the

domain. Other dialogue phenomena (such as correction and clarification subdialogues)

were not addressed. Also, this system is unable to handle dialogues that support actual

plan execution.

Lemon, Gruenstein and Peters

Lemon, Gruenstein and Peters [2002] describe a model similar to that of Carberry,

except they model dialogue as joint execution.2 In their system, dialogue progresses

about (possibly) several concurrent execution tasks described asdialogue threads. In

dialogue, the user can give the system new tasks to execute, state constraints on the

execution process, query current execution, abort execution, and so forth. The system

not only executes plans, but also uses dialogue to report progress and problems as

execution progresses.

In this system, the system and user discuss execution of pre-made plans, but it does

not support dialogue for building new plans. Also, coordination of roles— or which

2In [Lemon, Gruenstein, and Peters2002], it is stated that the model also includes planning, although

it is unclear how and to what extent it is supported.

19

agent performs which action — appear to be hard-coded in plans and not negotiable

during dialogue.

2.2.3 Meta-Plans

In order to support dialogue-level phenomena such as correction and clarification sub-

dialogues, several dialogue models also include a meta-plan level.

Litman and Allen

Litman and Allen [1987; 1990][Litman1985; Litman1986] extended Carberry’s earlier

work to better account for various dialogue phenomena. Although a dialogue’s focus is

on the domain, there seems to be a meta-layer which helps ensure robust communica-

tion.

Essentially, Litman and Allen added a new layer to the dialogue model — meta-

plans3, which are domain-independent plans that take other plans as arguments. Litman

and Allen’s model is able to account for a number of dialogue phenomena, including

that of clarification subdialogues. For example, consider the following dialogue [Lit-

man and Allen1990]:

teacher: OK the next thing you do is add one egg to the blender,
to the shrimp in the blender.

student: The whole egg?
teacher: Yeah, the whole egg. Not the shells.
student: Gotcha. Done.

The domain-level plan here is one of cooking. The student’s first utterance (“The

whole egg?”), however is uttered because of confusion aboutthe previous utterance.

Instead of replying directly to the teacher’s instruction,the student asks a clarification

3Litman and Allen actually called thesediscourseplans. In light of subsequent work, however, these

are better characterized as meta-plans.

20

question about one of the objects (the egg) to be used in the plan. Litman and Allen

model this as an IDENTIFY-PARAMETER meta-plan, as the egg canbe seen as a

parameter for the plan. The teacher responds to this question and then the student

completes the IDENTIFY-PARAMETER plan, and continues with the domain-level

plan.

Litman and Allen model meta-plans in a stack-like structure, where new meta-plans

can be pushed on the stack in relation to current ones. Other examples of meta-plans in-

clude: CORRECT-PLAN (changes a plan when unexpected events happen at runtime),

INTRODUCE-PLAN (shifts focus to a new plan), and MODIFY-PLAN(changes some

part of a plan).

The addition of meta-level plans allows fuller coverage of various dialogue phe-

nomena, especially correction and clarification subdialogues. While we see this work

as an early foundation for our own, we note that the meta-level plan library was some-

what ad hoc and never fully developed. There was also no overall theory of the relations

between meta-plans and the over all dialogue strategy of theparticipants.

Ardissono, Boella and Lesmo

Ardissono, Boella and Lesmo [1996] also introduce a meta-plan, or problem-solving

plans for decomposing and executing a subgoal.

The problem-solving level consists of two high-level plans: SatisfyandTry-execute

which model a single-agent execution model. In order for an agent toTry-execute

an action, it first checks constraints andSatisfiesthem if necessary; it then verifies

preconditions, does the action and checks the results. Utterances are explained based

on some step in this execution model. For example, consider the following dialogue

[Ardissono, Boella, and Lesmo1996].

Mark: Sell me a bottle of whiskey.
Lucy: Are you over 18?

21

Here, Lucy’s response can be seen as her performing aTry-executeof selling the

whiskey. She needs to know if Mark is over 18 in order to verifyan execution constraint.

This dialogue model can also be seen as a predecessor of our own, but there are

several key differences. First, the model only accounts forexecution, but not planning.

Also, the single-agent execution model is used for a dialogue participant to recognize

the coherence of the other participant’s utterance during execution, but it does not di-

rectly supportjoint execution, where both dialogue participants coordinate a plan’s

execution.

Rayner, Hockey and James

Rayner, Hockey and James [2000] don’t use meta-plans per se, but rather what they call

meta-output. In their system, as a user’s utterance is interpreted, it istransformed into

two signals: ascript, which is an executable representation the user’s command to the

system, andmeta-output, which contains information about the interpretation process.

The meta-output is used to report information such as errorsand presupposition failures.

This meta-output information is used to support dialogue phenomena such as correction

and clarification subdialogues.

The dialogue model is again one of execution. The user is essentially giving com-

mands to the system, which the system then executes when it has enough information to

do so. The information is necessary to execute a script, however, is computed on the fly,

which distinguishes this from a form-filling approach. Similar to the model of Ardis-

sono, Boella, and Lesmo (above), this model only supports dialogue about single-agent

execution, and not joint execution, or joint planning.

2.2.4 Other Plan Levels in Dialogue

There have been several efforts to extend the work on meta-plans, specifically that of

Litman and Allen, creating other levels of plans to support other dialogue phenomena.

22

We mention several here.

Lambert

Lambert [1993][Lambert and Carberry1991] proposes a three-level model of dialogue,

consisting of the domain and meta levels of Litman and Allen as well as a level of

discourse plans, which specifically handles recognition ofmulti-utterance speech acts.

The following utterances, for example, constitute a warning (a discourse plan) only if

taken together [Lambert and Carberry1991].

U1: The city of xxx is considering filing for bankruptcy.
U2: One of your mutual funds owns xxx bonds.

The separation of discourse plans allows the recognition ofspeech-act-like phe-

nomena such as warnings and surprise at a multi-utterance level.

Ramshaw

At the same time as Lambert, Ramshaw [1989; 1989; 1991] proposed a differently

separated three-level model. Instead of a discourse level,Ramshaw proposed anex-

ploration level. The intuition is that some utterances are made simplyin the attempt

to explorea possible course of action, whereas others are explicitly made to attempt to

executea plan.

Ramshaw’s model allows the system to distinguish between thetwo cases, He uses

a stack-based approach, with exploration-level plans pushed on lower-level plans. Un-

fortunately, this approach means that exploration-level and domain-level plans must be

separate. Once one starts exploring, one cannot talk about the plan-execution level un-

til done exploring. As observed in [Carberry, Kazi, and Lambert1992], this prevents

understanding of contingent commitments when one is at the exploration level. One

cannot build two complex, competing plans and compare them.Also, the model could

23

not handle bottom-up dialogues (dialogues which start withatomic actions and build

their way up).

Although Ramshaw’s model allows for some problem-solving behavior, including

comparisons of different plans, it does not model this collaboratively. Instead, individ-

ual comparisons can only be detected, but they do not affect the planning state.

Carberry, Kazi and Lambert

Carberry, Kazi an Lambert [1992] incorporate Ramshaw’s work into the previous work

by Lambert (see above). They overcome the problem with contingent commitments and

also modeling the building and comparing of complex plans. Their model also allows

for the handling of both top-down (goal first) and bottom-up (actions first) dialogues.

However, the problem-solving level was fairly undeveloped, mentioning only ex-

ploring different recipes, choosing the best, and doing thesame at lower levels. There

are also several other shortcomings of this approach.

First, the plan structure requires that these meta plans be executed linearly. In other

words, one must first explore all recipes, and once this is fully done, choose the best,

etc. The model does not appear to support the revisiting of previous decisions by an

agent.

Second, there is no execution in the model. It only provides for dialogues about

planning. Also, although there is a limited problem-solving model, there is no notion

of collaboration. It is not clear how each participant couldcontribute separately to

the plan being built. Sample dialogues are all of the master-slave type [Grosz and

Sidner1990], where one participant is proactive in planning and the other basically

serves as an information source.

24

Chu-Carroll and Carberry

Chu-Carroll and Carberry [1994; 1995; 1996; 2000] extend the three-level model of

Lambert and add a fourth level, belief. They also changed themodel so that it dis-

tinguished between proposed and accepted plans and beliefs. This extends coverage

to includenegotiation dialogues, where participants have conflicting views and collab-

orate to resolve them. The model is based on Lambert’s work, and shares the same

shortcomings as we mentioned above.

2.2.5 SharedPlans

Another thread of plan-based dialogue modeling has been in the SharedPlans approach.

One of the shortcomings of many of the plan-based systems mentioned above is that,

although they model dialogue on plans, they do not explicitly model the collaborative

nature of dialogue.

The SharedPlan formalism [Grosz and Kraus1996; Grosz and Kraus1999] was cre-

ated in part to explain the intentional structure of discourse [Grosz and Sidner1986;

Grosz and Sidner1990; Lochbaum, Grosz, and Sidner2000]. Itdescribes how agents

collaborate together to form a joint plan. The model has fouroperators which are used

by agents in building SharedPlans.

• SelectRec: An individual agent selects a recipe to be used to attain a given sub-

goal.

• ElaborateIndividual: An individual agent decomposes a recipe into (eventually)

completely specified atomic actions.

• SelectRecGR: Intuitively, the same as SelectRec, only at the multi-agent level.4

A group of agents select a recipe for a subgoal.

4Individual and group operators entail different constraints on individual intentions and beliefs. How-

ever, this is not important for understanding the formalismas a model of collaborative planning.

25

• ElaborateGroup: The multi-agent equivalent of ElaborateIndividual — a group

of agents decompose a recipe.

Using these four operators, a group of agents collaborates until it has completely

specified afull SharedPlan(which they will presumably execute at some time in the

future).

Based on the theoretical formalism, Lochbaum [1998] developed an intention recog-

nition algorithm that works on the process ofplan augmentation. In her algorithm, an

utterance causes the hearer to ascribe certain intentions and beliefs to the speaker. If

willing, the hearer also adopts those intentions and beliefs. As a result of the new

beliefs and intentions, the SharedPlan is augmented, i.e.,brought one step closer to

completion.

At a more concrete level, the algorithm attempts to segment dialogue into a stack of

discourse segments, which roughly correspond to the SharedPlan operators mentioned

above. At each new utterance, the algorithm decides if it is (a) completing a discourse

segment, (b) continuing the current discourse segment, (c)pushing a new discourse

segment on to the stack, or (d) some combination of these functions. The algorithm

was specified at a very high level, and appears to have never been fully implemented.

The main focus of the SharedPlan model has been to formalize agent intentions

and beliefs in forming and sharing joint plans, something which is weak in our model.

However, for our purposes — supporting agent-based dialogue — there are several

shortcomings in the SharedPlans model.

First, SharedPlans only models collaboration for joint planning between agents. It

does not model the collaboration that occurs when agents aretrying to executea joint

plan.5

5Although the formalism does specify the needed intentions and beliefs for agents executing joint

plans.

26

Second, the SharedPlans formalism models the formulation of joint plans with the

four operators previously discussed:SelectRec, ElaborateIndividual, SelectRecGR,

andElaborateGroup. Although these operators were sufficient to allow the formal-

ization of group intentions and beliefs about joint plans, they do not provide enough

detail for us to model collaboration at an utterance-by-utterance level (which is needed,

among other things, to represent communicative intentions). As an example, consider

theElaborateGroupoperator, which has the function of decomposing a recipe, instan-

tiating the parameters (including which agent or subgroup will perform which action at

what time and which resources will be used), and making sure the rest of the group has

similar intentions and beliefs about the plan. AnElaborateGroupcan (and often does)

consist of many individual utterances. In order to build a dialogue system, we need to

be able to model the communicative intentions behind a single utterance.

We actually believe that our model may be compatible with theSharedPlans for-

malism and can be seen as specifying the details of the SharedPlan operators.6

COLLAGEN

COLLAGEN [Rich and Sidner1998; Rich, Sidner, and Lesh2001] is ageneral toolkit

for building collaborative interface systems (natural language or otherwise) in which

user interaction with an application is modeled with a subset of the SharedPlans model.

In order to “port” COLLAGEN to a new application, a developer needs just to model

domain plans and provide an agent to interact with both COLLAGEN and the appli-

cation to be interfaced. The actual interaction modeling and management is handled

automatically by COLLAGEN, thus simplifying the developer’s task as well as provid-

ing consistency across applications.

The COLLAGEN interaction manager models dialogue using an implementation of

Grosz and Sidner’s tripartite structure of dialogue [Groszand Sidner1986]. Utterances

6This is actually mentioned in [Grosz and Kraus1996] as an area of needed future work.

27

(and other actions) are grouped into segments (linguistic level), which have pointers

into a plan-tree structure (intentional level), as well as afocus stack (attentional level).

Utterances themselves are modeled with a subset of Sidner’sartificial negotiation

language [Sidner1994; Sidner1994], although to our knowledge, the content language

was never fully specified. The most common examples in publications have hadPro-

poseForAccept(PFA) and AcceptProposal(AP) at a top level, withSHOULD and

RECIPEnested within them. The actionPFA(RECIPE)means that the agent (artifi-

cial or human) is proposing to use the given recipe. The action PFA(SHOULD)seems

to roughly correspond to the agent (or human) either volunteering to perform an ac-

tion, or assigning the other agent to perform it. However, whether this proposal is

to add the action to the plan or to actually begin execution seems ambiguous. Ex-

amples in the literature have only dealt with execution and not planning. COLLAGEN

uses an implementation of the principles in Lochbaum’s intention recognition algorithm

[Lochbaum1998] to update discourse structures based on howthe newly observed ac-

tion/utterance fits into the understood recipe library.

Using the operators above, COLLAGEN seems7 to cover dialogue about goal selec-

tion and plan execution (including hierarchical decomposition of predefined recipes).

However, as the intentional structure does not distinguishbetween whether a node was

only planned or actually executed, it does not appear that COLLAGEN covers dialogue

supporting both planning and execution. Also, although it allows for mixed-initiative

collaboration through the use of proposals and acceptance/rejection, it does not appear

to include a mechanism of revising previous decisions (e.g., in replanning).

7Again, it is in some ways difficult to make an assessment of COLLAGEN’s representational capa-

bilities, as the utterance representation language was never fully specified.

28

2.2.6 Rational-Behavior Models

Several researchers [Cohen and Levesque1990c; Cohen et al.1991; Cohen1994; Sadek

and De Mori1998] have suggested that dialogue should simplybe modeled asratio-

nal behaviorof agents (cf. [Cohen and Levesque1990a; Cohen and Levesque1990b;

Levesque, Cohen, and Nunes1990]). In a nutshell, these models predict that agents

communicate because they are committed to by the principlesof rational behavior.

As an example, agents, in order to achieve goals, form joint intentions. These joint

intentions commit rational agents to certain behavior suchas helping their fellow agents

achieve their part of the plan and letting the other agents know if, for example, they

believe the goal is achieved, or they decide to drop their intention. These commitments

and rationality can be seen as what causes agents to engage indialogue.

On the surface, these models may seem to be what is needed to support agent-

based dialogue, since they are modeled as agent collaboration. However, we see several

shortcomings in these models.

First and foremost, rational behavior models have only modeled dialogue support-

ing joint execution of plans and do not handle dialogue that supports joint planning.8

Also, although the single-agent levels of formal representations of individual and

joint agent rationality are very thorough, the levels of dialogue modeling and agent

interaction were never fully developed as far as we are aware.

2.2.7 General Shortcomings of the Plan-based Approach

Here we mention two of the general shortcomings in the previously-mentioned systems,

which motivate our own work: the limitations of their problem-solving models and

8This likely stems from the fact that the theoretical models of rationality upon which these systems

are based (e.g., [Cohen and Levesque1990a]) focus on formalizing agent execution, and not planning. In

a way, work on rational behavior models can be seen as a kind ofcomplement to work on SharedPlans

— which focuses on planning, but not execution.

29

collaboration paradigms.

Problem-Solving Models As discussed in Chapter 1, we would like to model a wide

range of dialogue, especially dialogue which supports different types of tasks. Most

previous plan-based dialogue models have only supported dialogue which supports

planningor dialogue which supports execution, but not both. However, as the ex-

ample dialogue in Figure 1.1 illustrates, dialogue can often be used to support both

planning and execution. In fact, dialogue can support just about any facet of collabora-

tive activity. This includes not only just planning and execution, but also goal selection,

plan evaluation, execution monitoring, replanning, and a host of others. In addition,

conditions often change, requiring dialogue participantsto go back and revisit previ-

ous decisions, reevaluate and possibly even abort goals andplans. Previous models

have sometimes handled a few of these activities, but none, as far as we are aware, has

handled them all.

Collaboration Paradigms A collaboration paradigmdescribes the respective roles

and authority each participant has during collaboration. Participants may, for example,

have different social statuses, giving rise to different collaboration paradigms. If two

participants are on equal social footing, then they may bothbe free to make and reject

proposals as they see fit. Decisions are discussed and made jointly. This paradigm is

often referred to asmixed-initiative[Chu-Caroll and Brown1997].

At the other extreme is themaster-slavecollaboration paradigm [Grosz and Sid-

ner1990], in which one participant completely controls theflow of the collaboration

as well as the decisions made. There is a whole spectrum of collaboration paradigms

between the extremes of mixed-initiative and master-slave. In aboss-workerparadigm,

for example, the socially higher (boss) participant likelycontrols most of the discus-

sion, but the worker participant may be expected to make contributions at certain levels

but not be allowed to disagree with the boss.

30

With the exception of [Chu-Carroll and Carberry2000], previous work in intention

recognition has only modeled master-slave collaboration.Most previous research was

restricted to information-seeking dialogues (e.g., [Carberry1990b]), where collabora-

tion consists of the user (the master) getting information from the system (the slave).

Although the system may possibly ask clarification questions, it cannot take task-level

initiative [Chu-Caroll and Brown1997] and is not party to the user’s planning decisions.

Expert-apprentice dialogues (e.g., [Grosz1981]) also fit this model. In these, the expert

is the master, and the apprentice only follows the plan the expert puts forth.

This master-slave assumption limits the types of collaboration which can be mod-

eled. We are interested in modeling the entire spectrum of collaboration paradigms,

from master-slave to mixed-initiative.

31

3 A Model of Collaborative Problem

Solving

As we discussed in Chapter 2, current dialogue models are unable to support the kind of

agent-based dialogue that we are interested in. This is mainly due to two shortcomings:

(1) the models cover dialogue about very narrow set of agent behavior — typically

either planning or execution; and (2) most models do not support the range of collab-

oration paradigms, especially mixed-initiative — where both parties have an equal say

in the decision-making.

In this chapter, we present a model of agent-agent collaborative problem solving

which will serve as the foundation of our agent-based dialogue model presented in

Chapter 4. The collaborative problem-solving model serves as a model of agent-agent

communication which takes into account a range of agent behavior and allows for a

range of collaborative paradigms. This then allows us in thenext chapter to build an

agent-based dialogue model that overcomes the two shortcomings described above.

Although much work has been done on language specification for (artificial) agent

communication, most (e.g., [DARPA Knowledge Sharing Initiative, External Interfaces

Working Group1993]) has focused on the meaning of individual messages orutterances

and not on how those utterances contribute to ongoing collaboration between the agents.

Because they only deal with collaboration among artificial agents, most multi-agent

systems define and use ad hoc interaction protocols (often finite-state based as in [The

32

Foundation for Intelligent Physical Agents2002]) which allow agents to understand

utterances in the context of the current “dialogue”. As discussed in Chapter 2, such

fixed-dialogue representations are only able to account fora small range of human

dialogue behavior.

On the other hand, work on general agent collaboration (e.g., [Cohen et al.1991;

Grosz and Kraus1996; Wooldridge and Jennings1999]) typically formalizes collabora-

tion in a logic of individual agent mental state. However, the processes described are too

high-level to describe interaction at the granularity of human utterances (as described

in Chapter 2).

In this chapter, we present a model of collaborative problemsolving which repre-

sents a kind of “middle ground” of the work mentioned above. We model collaboration

at a level suitable to represent individual utterances without placing restrictions on the

form of collaboration itself. Although we do not provide a formal model in terms of in-

dividual agent mental state, we believe our model may be compatible with other work

on general agent collaboration. In Section 3.4.4, we describe possible compatibility

with the SharedPlans model [Grosz and Kraus1996]. We also note that we make the

simplifying assumption here, that there are only two agentscollaborating. We are hope-

ful, however, that the model discussed here can be extended to the general case of many

agents. We leave this as an area of future research.

In the remainder of the chapter, we first provide an intuitivedescription of what

we mean by problem solving and collaborative problem solving. We then describe the

collaborative problem-solving model and its applicability as a general model of agent-

agent communication.

3.1 The Collaborative Problem-Solving Process

Before we describe our model, it is first important to describewhat we mean by problem

solving and collaborative problem solving, as these terms are widely used but seldom

33

defined in the literature. We first describe (single-agent) problem solving and then

extend the description to collaborative problem solving between two agents.

3.1.1 Single-Agent Problem Solving

We define problem solving (PS) to be the process by which an agent chooses and pur-

sues goals orobjectives. Specifically, we model it as consisting of the following three

general phases:

• Determining Objectives: In this phase an agent manages objectives, deciding to

which it is committed, which will drive its current behavior, etc.

• Determining and Instantiating Recipes for Objectives: In this phase, an agent

determines and instantiates a recipe to use to work towards an objective. An

agent may either choose a recipe from its recipe library, or it may choose to

createa new recipe via planning.1

• Executing Recipes and Monitoring Success: In this phase, an agent executes a

recipe and monitors the process to check for success.

There are several things to note about this general description. First, we do not

impose any strict ordering on the phases above. For example,an agent may begin

executing a partially-instantiated recipe and do more instantiation later as necessary.

An agent may also adopt and pursue an objective in order to help it in deciding what

recipe to use for another objective. In the section below, weprovide several examples

of behavior that we consider to be problem solving.

It is also important to note that our purpose here is not to specify a specificproblem-

solving strategyor prescriptive model of how an agentshouldperform problem solv-

ing. Instead, we want to provide a general descriptive modelthat encompasses the many

1Actually, both of these activities (instantiating a recipeversus creating a new one) have been called

planning in the literature.

34

possible problem-solving strategies agents may have. For example, an agent which sim-

ply executes recipes and reasons little about them will be reactive but brittle, whereas

an agent that constantly re-evaluates its objectives and recipes will be flexible, but slow.

This reflects the variance of problem-solving strategies inhumans: some of us are cau-

tious and slower to react, while others make decisions only once and then stick to them.

In fact, an individual may use different strategies in different situations. In the human

world, people with problem-solving strategies from one extreme can still collaborate

with people from the other extreme. Our model needs to allow for collaboration among

heterogeneous agents as well.

Examples of Problem-Solving Behavior

In order to better illustrate the possible range of problem solving, we give several simple

examples of problem-solving behavior. This is not meant to be an exhaustive list.

• Prototypical: Agent Q decides to go to the park (objective). It decides to take the

10:00 bus (recipe). It goes to the bus stop, gets on the bus andthen gets off at

the park (execution). It notices that it has accomplished its objective, and stops

pursuing it (monitoring).

• Subordinate Objective: Agent Q decides to go to the park (objective1). In order

to decide which recipe to use, it decides to see what the weather is like (objec-

tive2) by looking outside (recipe for objective2). It goes to the window and looks

outside (execution) and notices that it is sunny. It decidesto walk to the park

(recipe for objective1)....

• Interleaved Planning and Execution: Agent Q decides to to go to the park. It

decides to take a bus (partial recipe) and starts walking to the bus stop (partial ex-

ecution) as it decides which bus it should take (continues toinstantiate recipe)....

35

• Replanning: Agent Q decides to go to the park. It decides to walk (objective) and

goes outside of the house (begins execution). It notices that it is raining and that

it can’t successfully walk to the park2 (monitoring). It decides instead to take the

10:00 bus (replanning)....

• Abandoning Objective: Agent Q decides to go to the park by taking the 10:00

bus. As it walks outside, it notices that it is snowing and decides it doesn’t want

to go to the park (abandons objective). It decides to watch TVinstead (new

objective)....

3.1.2 Collaborative Problem Solving

Collaborative problem solving (CPS) follows a similar process to single-agent problem

solving. Here two agents jointly choose and pursue objectives in the same stages (listed

above) as single agents.

There are several things to note here. First, the level of collaboration in the prob-

lem solving may vary greatly. In some cases, for example, thecollaboration may be

primarily in the planning phase, but one agent will actuallyexecute the plan alone. In

other cases, the collaboration may be active in all stages, including the planning and

execution of a joint plan, where both agents execute actionsin a coordinated fashion.

Again, we want a model that will cover the range of possible levels of collaboration.

Another thing to note is that, as discussed in Chapter 2, we need to be able to handle

the range of collaboration paradigms (the respective rolesand authorities of each agent)

— from master-slave to mixed-initiative. In some cases, forexample, one agent may

have the authority to make all decisions while the other may just provide suggestions (a

kind of boss-worker paradigm). In others, both agents may betotally autonomous and

need to negotiate to agree on decisions.

2At least, it can’t walk there and still maintain its objective to stay dry (cf. [Wilensky1983]).

36

3.2 A Collaborative Problem-Solving Model

We now describe our collaborative problem-solving (CPS) model. We will first give a

brief overview of the model and then describe the individualparts in detail.

We believe that the general collaborative problem-solvingprocess remains the same,

regardless of the task and domain (cf. [Allen et al.2000; Allen et al.2001]). Thus the

CPS model is built to be domain-independent.Task modelsare used as a type of “plug-

in” to specialize the model to a particular domain. Objects in the task model are spe-

cializations of abstract objects in the (single-agent and collaborative) problem-solving

models. The PS and CPS models are comprised of a set of acts whose execution updates

the (single-agent or collaborative)problem-solving state. Acts at this level include such

things as evaluating and adopting objectives and recipes, executing plans, and so forth.

At the CPS level, it is impossible for an agent to single-handedly change the col-

laborative problem-solving state. Doing so involves the cooperation of both agents

involved (cf. [Traum1994]). This means that CPS acts arenot directly executable by a

single agents. How is a single agent to affect the CPS state, then? It is done through

negotiation with the other collaborating agent.

Interaction actsare single-agent actions used to negotiate changes in the CPSstate.

If the agents are amenable to the change and cooperate, a certain combination of in-

teraction acts will result in the generation of a CPS act, changing the CPS state. In

collaborative problem solving between artificial agents, these interaction acts can be

used directly in a communication language. However, in natural language, they must

be encoded in (and decoded from) (natural language)communicative acts. (This con-

nection to natural language is actually outside of the CPS model proper, and will be

discussed in more detail in Chapter 4.)

At this point, we describe a single-agent model of problem solving. After that, we

show how it is extended to the collaborative case.

37

3.3 Single-agent Problem Solving

This section describes a model of single-agent problem solving. We should note from

the outset that the single-agent problem solving model described here is not meant

to compete with other, well-known models of mental states for autonomous agents

(e.g., [Cohen and Levesque1990a; Rao and Georgeff1991]). We are not proposing

that this be the basis of an implementation of an actual agent. Rather, we present this

as a kind of abstraction of single-agent mental models. We dothis for two reasons:

first and foremost, it is instructive to look at single-agentproblem-solving behavior to

compare and contrast what is done in collaboration. Second,although not mentioned

further in this thesis, it is important for collaborating agents to have a model of the other

agent’s current mental state (cf. [Cohen and Levesque1990c;Grosz and Kraus1996]).

We believe that the model presented here may be at the right level of abstraction to

provide such other-agent modeling, although we must leave this as a topic of future

research.

Central to the single-agent model is theproblem-solving state, which is an agent’s

mental model of its current state of the problem-solving process. The PS state is com-

posed of a number ofproblem-solving objectsand their status within the problem-

solving process. An agent can change its PS state by executing certain mental operators

calledproblem-solving acts.

In this section, we first discuss PS objects, then how they combine to form the PS

state. We then discuss how an agent can use PS acts to change the PS state.

3.3.1 PS Objects

The basic building blocks of the PS state are PS objects, which we represent as typed

feature-value structures. PS object types form a single-inheritance hierarchy, where

children inherit or specialize features from parents. Instances of these types are then

used in problem solving.

38

In our PS model, we define types for the upper level of an ontology of PS ob-

jects, which we termabstract PS objects. These abstract PS objects are used to model

problem-solving at a domain-independent level.

We first explain in more detail the representation of PS objects, and afterwards

define and explain each of the abstract PS objects. We then discuss how these objects

can be specialized to model a particular domain.

Representation of PS Objects

We represent all objects (PS as well as other auxiliary objects) as typed feature struc-

tures. For our own representation and the explanation here,we borrow heavily from

[Pollard and Sag1994], although we use terminology more familiar in the planning

field.

Types An object type3 declares which features an instance of that type must have, as

well as the allowable types for the values of those features.Formally, an object type

declaration is of the following form:

σ ← ρ

F1 τ1
...

...

Fn τn

whereσ, ρ, τ1, . . . , τn are types andF1, . . . , Fn are feature labels. Hereσ is the type

currently being defined andρ is its immediate parent in the inheritance hierarchy.

τ1, . . . , τn define the allowed type of value for each corresponding feature labelF1, . . . , Fn.

A type inherits all of its parent’s feature labels and their corresponding type restric-

tions. A type may change a type restriction from an inheritedfeature labelF from τ1

3[Pollard and Sag1994] use the termsort instead of type.

39

object← ε
[

ID id

]

Figure 3.1: Type Description forobject

to τ2 iff τ2 is a descendant ofτ1. Usually, we will not list unchanged, inherited features

in new type declarations, although we do occasionally when it makes the explanation

more clear.

In order to ensure that all objects in our problem-solving model are labeled with a

unique ID, we introduce in Figure 3.1 a basic typeobjectwhich has a single attribute

ID.4 We then require that all objects in our hierarchy be descendants ofobject.

We use the following atomic types, which are not defined here,but are taken to have

their typical meaning:stringandnumber. We also use the atomic typeid, which we do

not define, but it is something which allows each object to receive a unique ID.

We define several type templates:set(σ), list(σ), andstack(σ), where the set, list or

stack is restricted to elements of typeσ. When displaying a set in a token, we will use

curly brackets ({}); for a list, we use we use angle brackets (<>); and for a stack, we

use parens (()).

Finally, atomic types may also be defined by enumerating a finite set of elements

(like an enum in C). For the abstract model, we define the enumerationboolean=

{true,false}.

Tokens Feature-value tokens can be fully or partially instantiated,5 and we will dis-

play them in this text as attribute-value matrices (AVMs). Following [Pollard and

Sag1994], we also use paths of the formA | B | C to easily refer to embedded content

4Note that the lineobject← ε signifies thatobjectis a root in the hierarchy.
5[Pollard and Sag1994] require a token to be fully instantiated.

40

(in this case, the contents of theC feature embedded in theB feature ofA). We also use

boxed numbers (e.g.,1) to refer to entire tokens and to signify structure sharing.

An example of an instantiated token is shown later in Figure 3.28.

Abstract PS Objects

The following are the six abstract PS objects from which all other domain-specific PS

objects inherit:

Objective A goal, subgoal or action. For example, in a rescue domain, objectives could

include rescuing a person, evacuating a city, and so forth. We consider objectives

to be actions rather than states, allowing us to unify the concepts of action and

goal.

Recipe An agent’s beliefs of how to attain an objective. Although wedo not adhere

to any specialized definition of recipe, one example is Carberry’s domain plan

library [Carberry1990b] which has action decomposition information about ob-

jectives. An agent’s recipe library can be expanded or modified through (collab-

orative or single-agent) planning.

Constraint A restriction on an object. Constraints are used to restrict possible solu-

tions in the problem-solving process as well as possible referents in object iden-

tification.

Evaluation An agent’s assessment of an object’s value within a certain problem-solving

context. Agents will often evaluate several competing possible solutions before

choosing one.

Situation The state of the world (or a possible world). In all but the simplest domains,

an agent may only have partial knowledge about a given situation.

41

ps-object← object
[

CONSTRAINTS constraints-slot

]

Figure 3.2: Type Description forps-object

Resource All other objects in the domain. These include include real-world objects

(airplanes, ambulances, . . .) as well as concepts (song titles, artist names, . . .)

Each of the abstract PS objects share a set of common features. We put these com-

mon features in a new type,ps-object, which is the common parent of all of the abstract

PS objects. The type description forps-objectis shown in Figure 3.2. We briefly de-

scribe its features here and then continue by giving the typedeclarations for each of the

abstract PS objects in turn.

ps-objectinherits fromobject and therefore contains anID attribute (not shown

in the figure). It also has one additional attribute:CONSTRAINTS. TheCONSTRAINTS

attribute provides a way of describing theps-objectwith a set ofconstraints, which may

not be particularly useful for single-agent problem solving, but which is frequently used

in a collaborative setting, when agents try to refer to the same object. This is described

in more detail when we introduce theconstrainttype below.

It is important to note that the type of theCONSTRAINTSattribute is not simply a

set of typeconstraint. Rather, it is one of a special class of middleman types we call

slots. As slots are a vital part of the PS model, we take a brief asidehere to discuss

them before continuing with the abstract PS objects.

Slots and Fillers Problem solving can be seen as an agent’s decision-making process

with respect to choosing and pursuing objectives. In modeling problem solving, we

need to model more than just the decisions made. We need to model the decision-

makingprocessitself.

42

Within our model, decisions can be seen as the choosing of values (objects) or sets

of values for certain roles. For example, an agent decides ona set of objectives to

pursue. For each objective it has, an agent must decide on a (single) recipe to use in

pursuing it, and so forth. A straightforward way of modelingthese decisions would be

to include, for example, a featureRECIPE in an objective which takes a recipe value,

and represents the current recipe the agent is using to pursue this objective. Similarly,

we could define a featureOBJECTIVESat the top level which would hold the set of

objectives the agent is currently committed to.

However, doing this would only model the agent’sdecision, but not theprocessthe

agent followed in making that decision. In deciding on a recipe to use for an objective,

an agent may identify several possible recipes as possibilities and evaluate each one. It

may similarly narrow down the space of possible recipes by placing constraints on what

it is willing to consider. These kinds of meta-decisions arerarely explicitly modeled in

agents, and it may seem like overkill to do so. However, as we will see below, these

kind of meta-decisions are what a large bulk of collaborative communication is used

for!

To be able to model these and other kinds of decisions-makingprocesses, we add

two levels of indirection at each decision point in the model. The first is what we call

a slot, which contains information about the possible filler values (e.g., recipes) which

have been/are under consideration in that context. A slot also contains information

about possible constraints which have been put on what should be considered (e.g., not

all valid recipes, but just those which take less than 30 minutesto execute). A slot also

records which (if any)filler has been chosen by the agent.

A filler is the second layer of indirection. It is used to wrap an actual value with

a set of evaluations the agent has made/might make about it. Note that this wrapping

is necessary, as evaluations will always be context-dependent (i.e., dependent on the

current slot) and not attached in general to the value itself.

Using these two levels of indirection, slots and fillers, gives us a rich model of not

43

slot← object
[

IDENTIFIED set(filler(ps-object))

]

Figure 3.3: Type Description forslot

single-slot← slot

CONSTRAINTS constraints-slot

IDENTIFIED set(filler(ps-object))

ADOPTED filler(ps-object)

Figure 3.4: Type Description forsingle-slot

only the decisions (to be) made, but also the decision-making process itself.

In Figure 3.3, we define an abstractslot type, which is the parent ofsingle-slot

(Figure 3.4) andmultiple-slot(Figure 3.8). These types differentiate decision points

where just one filler is needed (e.g., a single recipe for an objective), or where a set of

values can be chosen (e.g., objectives that the agent wishesto pursue). We first discuss

the single case, and then the multiple case.

Slots for Single Values The most typical case is where a single value can be used to

fill a slot. single-slotis an abstract class for handling this. It has three features(besides

the ID inherited fromobject): IDENTIFIED is the set of all values (wrapped infillers)

that an agent has considered/is considering to fill this slot. ADOPTED records the single

value which the agent has committed to for this slot. (This value may also be empty

in the case that the agent has not yet decided, or has reverseda previous decision.)

TheCONSTRAINTSfeature describes possible constraints the agent has put onpossible

slot fillers (such that the chosen recipe have 5 or fewer steps). Note that this is itself a

type of slot,constraints-slot, which inherits frommultiple-slotas it can contain a set of

44

filler ← object

EVALUATIONS evaluations-slot

VALUE ps-object

Figure 3.5: Type Description forfiller

filler(σ)← filler

EVALUATIONS evaluations-slot

VALUE σ

Figure 3.6: Type Description forfiller(σ)

constraints. We will describe theconstraints-slottype shortly.

Note also that the types of theIDENTIFIED andADOPTED features contain afiller

type. Figure 3.5 shows the base definition of afiller. It contains both aVALUE which it

wraps, as well anEVALUATIONS attribute, which represents any evaluations the agent

may make/have made about the value in the local context. (TheEVALUATIONS attribute

is also a type of slot which inherits frommultiple-slotwhich we will also come to

shortly.)

The abstractfiller type in Figure 3.5 only restricts itsVALUE to be aps-object. In

most cases, we want to restrict this further to be the type of the expected value (e.g., a

recipe). In Figure 3.6, we define a type schemafiller(σ) which allows us to easily refer

to a subtype offiller which specializes theVALUE to typeσ.6

Similarly, we usually need to specify asingle-slotto allow only a certain type of

filler. Figure 3.7 defines a type schema which, similar to whatwe did withfiller above,

6For reasons of clarity, we have also used this notation in thedefinition ofsingle-slotin Figure 3.4,

even thoughσ is ps-objecthere and therefore the instantiated schema simply resolvesto the abstract type

filler.

45

single-slot(σ)← single-slot

CONSTRAINTS constraints-slot

IDENTIFIED set(filler(σ))

ADOPTED filler(σ)

Figure 3.7: Type Description forsingle-slot(σ)

multiple-slot ← slot

IDENTIFIED set(filler(ps-object))

ADOPTED set(filler(ps-object))

Figure 3.8: Type Description formultiple-slot

refers to a subtype ofsingle-slotwhich only allows identified and adopted values of

typefiller(σ).

Slots for Sets of Values Figure 3.8 defines an abstract slot for decisions which allow

more than one simultaneous value. In our model, we use three classes which inherit

from multiple-slot: constraints-slot,evaluations-slot, andobjectives-slot. We describe

each in turn.

Previously-discussed typesps-objectand single-slothave already introduced the

constraints-slottype. Its definition is shown in Figure 3.9. As discussed above, this

constraints-slot← multiple-slot

IDENTIFIED set(filler(constraint))

ADOPTED set(filler(constraint))

Figure 3.9: Type Description forconstraints-slot

46

evaluations-slot←multiple-slot

CONSTRAINTS constraints-slot

IDENTIFIED set(filler(evaluation))

ADOPTED set(filler(evaluation))

Figure 3.10: Type Description forevaluations-slot

type allows a set of constraints to be identified and adopted in a context. HereIDEN-

TIFIED and ADOPTED have a similar meaning to those insingle-slot, with the only

exception being thatADOPTED takes a set offillers, instead of a single value. We dis-

cuss constraints in more detail when we come to their definition within the PS model

below.

Note that, unlike all the other PS slot types,constraints-slotdoes not contain a

CONSTRAINTS attribute. Theoretically, we believe it is possible for an agent to set

constraints on which constraints it would consider adopting, but practically, nesting

a constraints-slothere would create an infinite regress of constraints-slots.We have

therefore chosen instead to exclude this from the model as itstands, and leave it as a

subject of future research.

The second slot for multiple values is theevaluations-slot, which we used above

in the definition offiller. An evaluation-slot(defined in Figure 3.10) provides a space

for determining a set ofevaluations. Its attributes are used in the same way to those of

single-slotandconstraints-slot, and do not merit further comment here.

The final slot type for multiple values is theobjectives-slot, which is defined in

Figure 3.11. It too has the featuresCONSTRAINTS, IDENTIFIED andADOPTED which

are used as they are inevaluations-slot. The reason that objectives use a multiple slot

and not a single slot will be discussed below in the various abstract PS objects where

theobjectives-slotis used. For now, it is just important to understand that an objective

being adopted means that the agent is committed to that objective within the local PS

47

objectives-slot← multiple-slot

CONSTRAINTS constraints-slot

IDENTIFIED set(filler(objective))

ADOPTED set(filler(objective))

SELECTED set(filler(objective))

RELEASED set(filler(objective))

Figure 3.11: Type Description forobjectives-slot

objective← ps-object
[

RECIPE single-slot(recipe)

]

Figure 3.12: Type Description forobjective

context.

Objectives are not only committed to, but can also be executed. Objectives in the

SELECTEDset are those which the agent is currently executing (more details below), as

opposed to just intending to execute.

Finally, as discussed above, an agent must monitor the situation in order to notice

when an objective has been fulfilled (so that it stops pursuing it). Objectives which the

agent believes have been fulfilled are put into theRELEASEDset.

Objective Now that we have described the various slot and filler types which are

used in the model, we are ready to get on with the definitions ofthe abstract PS ob-

ject types. The definition ofobjectiveis shown in Figure 3.12. This object, like all

six abstract PS objects, inherits directly fromps-objectand thus contains its attributes

(shown in Figure 3.2). In addition,objectivehas aRECIPEattribute which is of type

single-slot(recipe). This slot provides a place to record all problem-solving activity

48

objective← ps-object

ID id

CONSTRAINTS

constraints-slot

ID id

IDENTIFIED set(filler(constraint))

ADOPTED set(filler(constraint))

RECIPE

single-slot(recipe)

ID id

CONSTRAINTS

constraints-slot

ID id

IDENTIFIED set(filler(constraint))

ADOPTED set(filler(constraint))

IDENTIFIED set(filler(recipe))

ADOPTED filler(recipe)

Figure 3.13: Full Type Description forobjective

recipe← ps-object

ACTIONS objectives-slot

ACTION-CONSTRAINTS constraints-slot

Figure 3.14: Type Description forrecipe

related to choosing a singlerecipeto use to pursue theobjective.

The fully-expandedobjectivetype description is shown in Figure 3.13. This in-

cludes features inherited fromps-object(and indirectly fromobject) as well as the

result of expanding thesingle-slotandconstraints-slottemplates.

49

constraint← ps-object
[

EXPRESSION boolean-expression

]

Figure 3.15: Type Description forconstraint

resource← ps-object
[

ACTUAL -OBJECT id

]

Figure 3.16: Type Description forresource

Recipe Recipes are represented as a set of subobjectives (actions) and a set of con-

straints on those subobjectives. The attributes ofrecipeare shown in Figure 3.14. The

ACTIONS attribute is aobjectives-slotwhich allows a set ofobjectivesassociated with

therecipe, as discussed above. The attributeACTION-CONSTRAINTScontains thecon-

straintsplaced on theobjectives.

Constraint Constraints(Figure 3.15) are represented asboolean-expressions. We

do not define the form of these expressions here, but we envision a typical kind of

expression involving boolean connectives (and, or, etc.) as well as (possibly domain-

specific) predicates.

Resource Resources(Figure 3.16) are used to represent what would typically be

thought of as “objects” in a domain. This includes real-world objects, but can also

include any sort of object used in problem solving that does not fall into one of the

other categories of abstract PS objects.

In addition to the attributes inherited fromps-object, resourcescontain the attribute

ACTUAL -OBJECT, which holds a link to the “actual” object as represented in the agent’s

mental state.

50

evaluation← ps-object
[

ASSESSMENT unstructured

]

Figure 3.17: Type Description forevaluation

situation← ps-object

PS-OBJECTS set(ps-object)

PS-HISTORY list(ps-act)

FOCUS stack(object)

OBJECTIVES objectives-slot

Figure 3.18: Type Description forsituation

Evaluation Before making decisions in problem solving, an agent typically evaluates

each of the options that have been identified. Anevaluation(Figure 3.17) represents an

agent’s assessment of a particular PS object within a particular context. Theevaluation

is therefore always associated with a PS object and a context(e.g., which PS object to

choose to fill a slot).

A theory of evaluations and their representation is beyond the scope of this the-

sis, although they present an interesting challenge for future research. We believe, for

example, that this is where argumentation could be represented within our model, as

identifiedevaluationsare wrapped infillers and therefore also are associated with an

evaluations-slot.

As we are not sure how best to represent the evaluations themselves, we leave the

type of theASSESSMENTattribute unstructured. Analyses we provide that involveeval-

uationswill be given as natural language descriptions of the assessment (e.g.,good).

51

Situation A situation(Figure 3.18), describes the state of a possible world, or more

precisely, an agent’s beliefs about that possible world. Rather than just packing all

state information into a general world-state attribute, weseparate out information about

problem-solving in the situation, and then have a separate place to store other world

beliefs.

The PS-OBJECTSattribute holds a set of all PS objects known to the agent in the

situation. This includes domain-specific PS objects (such as objectives, recipes and

resources) which the agent can use in problem solving.

ThePS-HISTORY attribute records the history of the agent’s problem solving. This

is a list of problem-solving acts the agent has performed.

TheOBJECTIVESattribute encapsulates the problem-solving state of the agent in the

situation. This link betweensituationsand the PS state is described in Section 3.3.2.

Focus is a known attribute of human communication and is wellmarked in human

communication to make interpretation easier for the hearer[Grosz and Sidner1986;

Carberry1990b]. We include this in our single-agent model aswell, as we hypothesize

that focus is also a feature of single rational agents. This is likely due to resource-

boundedness and the need to concentrate resources on a smallset of possibilities. Here

we model theFOCUSattribute as a stack of generalobjects, following [Grosz and Sid-

ner1986], although, we, as they, admit that a stack is an imperfect representation of

focus.7 Focus can be placed on any type ofobject, includingslots, fillers, or ps-objects,

depending on whether the focus is finding a value for a slot, evaluating an object, or

identifying an object, respectively.

All other agent beliefs about the world are stored in theCONSTRAINTS attribute

(inherited fromps-object). We originally modeled this as a separate attribute with a

set of beliefs, but noticed that this information can be modeled more appropriately

with constraintsand aconstraints-slot. This turns out to be consistent with our use of

7Other proposals for focus structure exist [Lemon, Gruenstein, and Peters2002], but we leave the

question of how to best represent focus to future research.

52

constraints associated with a PS object to identify it. In all but the simplest of domains,

an agent will only have partial information about the state of the world and cannot,

therefore, model it completely. Instead, an agent can adopta set ofconstraintson what

the current situation is, meaning that it believes that the situation it is trying to model

at least conform to theconstraintsthat it has adopted towards it. Note, that the use

of a constraints-slotallows us to model the agent’s process of actually deciding which

constraints to adopt.

In our model, we only use a singlesituationwhich describes the current state of the

world. However, in future work, we would like to use multiplesituationsto support

what-if, possible-world reasoning.

Domain Specialization

The PS model can be specialized to a domain by creating new types that inherit from

the abstract PS objects and/or creating instantiations of them. We describe each of these

cases separately.

Specialization through Inheritance As described above, inheritance is basically the

process of adding new attributes to a previously existing type, and/or specializing the

types of preexisting attributes. In our PS model, inheritance is only used forobjectives,

andresources. The other abstract PS objects are specialized through instantiation.

Inheriting fromresourceis done to specify domain-specific resource type. As an

example, in the MP3 domain, we need to represent songs as resources.

We define a new typesong, shown in Figure 3.19, which inherits fromresource.

Here we add three new attributes,TITLE, ARTIST andALBUM so that this information

can be recorded in individualsonginstantiations. (Note that the resource typesartist

andalbumalso need to be created for the domain, although we do not showthem here.)

Each of these is asingle-slot, so that the values of these may be reasoned about in the

53

song← resource

TITLE single-slot(string)

ARTIST single-slot(artist)

ALBUM single-slot(album)

Figure 3.19: Type Description forsong

listen-song← objective
[

SONG single-slot(song)

]

Figure 3.20: Type Description forlisten-song

problem-solving process (e.g., in trying to decide who the artist of a particular song is

and considering several choices).

Note that it would be also possible to simply use theCONSTRAINTS attribute to

store this information for asong, however we choose to make these fields explicit, as

we want to model them as being in some way an inherent propertyof the resource.

Inheriting fromobjectiveis done to specify a particular domain goal, for example,

the goal of listing to a song. Typically, additional attributes aresingle-slotsof some sort

of resources, which are used to model parameters of the objective.

We define a new typelisten-songwhich represents the goal of listening to a par-

ticular song, shown in Figure 3.20. Here we add just one additional attributeSONG,

which is asingle-slotfor a song. This is a placeholder for deliberation about which

song should be listened to.

Specialization through Instantiation All PS object types (including new types cre-

ated by inheritance) can be further specialized by instantiation, i.e., by assigning values

to some set of their attributes. This can be done both at design time (by the domain

54

modeler) and (as we discuss below) it happens at runtime as part of the problem-solving

process itself. For example, we would want to populate our MP3 domain with instan-

tiations of resources: songs, artists, and so forth, as wellas recipes: e.g., a recipe for

playing a song with an MP3 player. We also instantiate the initial situation with the

current state of the world and the agent’s beliefs, as outlined in the next section.

3.3.2 The PS State

The PS state models an agent’s current problem-solving context. It is represented with

a special instance of typesituationcalled theactual-situation. As the name implies,

theactual-situationis a model of the agent’s beliefs about the current situationand the

actual problem-solving context.

TheCONSTRAINTSattribute describes the agent’s general beliefs about the current

state of the world and thePS-OBJECTSattribute contains all of the PS objects which the

agent currently knows about — including possible objectives, recipes, resources, etc.

The PS-HISTORY attribute is a list of all PS acts the agent has executed, andFOCUS

describes the agent’s current stack of focus.

The OBJECTIVESattribute contains all of the top-levelobjectivesassociated with

the agent’s problem solving process. In the same way as inrecipes, each of theseob-

jectivesis assigned a status, which we discussed below in more detail. Theseobjectives

form the roots of individual problem-solving contexts associated with reasoning with,

and/or trying to accomplish thoseobjectives, and can include all types of other PS ob-

jects.

Note that theactual-situationcontains not only information discovered during prob-

lem solving, but also the agent’s a priori knowledge.

55

3.3.3 PS Acts

An agent changes its PS state through the execution of PS acts. There are two broad

categories of PS acts: those used in reasoning and those usedfor commitment. We

describe severalfamiliesof PS act types within those categories:

Reasoning Act Families

• Focus: Used to focus problem solving on a particularobject.

• Defocus: Removes the focus on a particularobject.

• Identify: Used to identify aps-objectas a possible option in a certain context.

Commitment Act Families

• Adopt: Commits the agent to anobjectin a certain context.

• Abandon: Removes an existing commitment to anobject.

• Select: Moves anobjectiveinto active execution.

• Defer: Removes anobjectivefrom active execution (but does not remove a com-

mitment to it).

• Release: Removes the agent’s commitment to anobjectivewhich it believes it

has fulfilled.

Each of these families encompasses a set of actual PS acts. For the remainder of

this section, we discuss each of the PS act families and theircorresponding acts as well

as their effects on the PS state.

56

Focus/Defocus

As we described above, focus has been shown to be an importantpart of human com-

munication. We model focus as a stack within theactual-situation. The stack can hold

pointers to any type ofobject, including slots, fillers, andps-objects, depending on

whether the focus is finding a value for a slot, evaluating an object, or identifying an

object, respectively.

Focus is controlled with the following PS acts:

focus(situation-id,object-id)

defocus(situation-id,object-id)

The semantics of these are simple.focuspushes the givenobject-idonto the focus

stack in thesituation represented bysituation-id.8 defocuspops theobject-idoff the

stack as well as anyobject-idsabove it.

As an example, consider the beginning PS state shown in Figure 3.21 Note that,

as PS objects tend to become complex quite quickly, we will often omit attributes that

are not relevant to the current discussion. We will also at times, when it is not vital

to the discussion, give a description of the contents of an attribute value instead of the

formal representation. When this is the case, we will enclosethe description in single

quotes. Here we have done this forCONSTRAINTSandPS-OBJECTS. Note that within

CONSTRAINTS, we use 1 to signify structure sharing.

This initial PS state has theID actual-situationto uniquely identify it as the root of

the PS state. It also contains the agent’s current beliefs inCONSTRAINTSand knowl-

edge about PS objects inPS-OBJECTS.

8Note that we explicitly include asituation-idhere even though the current CPS model only contains

theactual-situation. As mentioned above, we hope in future work to extend the model to allow multiple

situations for possible-world reasoning.

57

situation

ID actual-situation

CONSTRAINTS

constraints-slot

ID world-state

IDENTIFIED 1

{

’general beliefs’

}

ADOPTED 1

PS-OBJECTS

{

’known PS objects’

}

PS-HISTORY 〈〉

FOCUS

(

actual-situation

)

OBJECTIVES

objectives-slot

ID top-objectives

CONSTRAINTS

constraints-slot

ID cslot1

IDENTIFIED {}

ADOPTED {}

IDENTIFIED {}

ADOPTED {}

SELECTED {}

RELEASED {}

Figure 3.21: A Simple Initial PS State

As no problem solving has yet taken place,PS-HISTORY is an empty set, andFOCUS

is simply on theactual-situationitself. There are also noobjectivesassociated with the

actual situation — meaning the agent currently has no objectives and has considered no

objectives to pursue.

At this point, our agent decides it needs to set some objectives for itself, and there-

fore decides to focus on theobjectives-slot top-objectivesby executing the following

PS act:

58

focus(actual-situation,top-objectives)

This has two effects. The first is to put the executed PS act onto the (previously

empty)PS-HISTORY list. The second is to pushtop-objectivesonto the focus stack.

Identify

PS acts in theidentify family are used to introduce PS objects into the realm of a

problem-solving context. This could either be in identifying previously unknown ob-

jects (i.e., objects not listed inPS-OBJECTSwithin the situation), or it could be in

identifying a known object as a possible option for filling a certain slot.

All objects must be identified before they can be used furtherin the PS process.

For this reason, PS acts in theidentify family exist for all PS objects.9 They are as

follows: identify-objective, identify-recipe, identify-constraint, identify-resource, and

identify-evaluation.

The basic syntax of identify acts is

identify-{type}(slot-id,ps-object)

wheretyperefers to any of the PS objects in the acts listed above. Theps-objectparam-

eter is the PS object instance which is being introduced and theslot-id parameter gives

the id of the problem-solving context for which it is being identified. Note thatidentify

acts take an actualps-objectas an argument, whereas the remaining PS acts take only

anobject-id(pointer to an object). The reasons for this will be discussed below.

The effect of anidentify is that theps-objectis inserted into thePS-OBJECTSset

in theactual-situation(if not already there). It is also wrapped in an appropriatefiller

type and inserted into theIDENTIFIED set of theslot identified byslot-id. If slot-id is

empty, theps-objectis only inserted into thePS-OBJECTSset in theactual-situation.

9Exceptsituationfor reasons described above.

59

Let us assume that at this point, our agent decides it wants toconsider an objective

of listening to a song and executes

identify-objective(top-objectives,2)

where 2 abbreviates the followingobjective:10

2

listen-song

ID objv1

SONG

sslot(song)

ID sslot1

IDENTIFIED {}

ADOPTED

RECIPE

sslot(recipe)

ID sslot2

IDENTIFIED {}

ADOPTED

This adds thislisten-songinstance to thePS-OBJECTSattribute ofactual-situation

and add it as well to theIDENTIFIED set of theobjectives-slot.

These changes, along with those from the focus section are shown in Figure 3.22.

Otheridentifyacts have similar effects.

Adopt/Abandon

We treat the PS act familiesadoptandabandontogether here, as one essentially undoes

the other. The syntax of the two is as follows:

adopt-{type}(slot-id,filler-id)

abandon-{type}(slot-id,filler-id)

10Again here, we have omitted certain features of theobjectivewhich are not relevant to the current

discussion.

60

situation

ID actual-situation

CONSTRAINTS

constraints-slot

ID world-state

IDENTIFIED 1

{

’general beliefs’

}

ADOPTED 1

PS-OBJECTS

{

’known PS objects’,2

}

PS-HISTORY

〈

focus(actual-situation,top-objectives)

identify-objective(actual-situation,2)

〉

FOCUS

(

top-objectives actual-situation

)

OBJECTIVES

objectives-slot

ID top-objectives

CONSTRAINTS

constraints-slot

ID cslot1

IDENTIFIED {}

ADOPTED {}

IDENTIFIED

filler(objective)

VAL 2

listen-song

ID objv1

SONG

sslot(song)

ID sslot1

IDENTIFIED {}

ADOPTED

RECIPE

sslot(recipe)

ID sslot2

IDENTIFIED {}

ADOPTED

ADOPTED {}

SELECTED {}

RELEASED {}

Figure 3.22: The PS State after Executingidentify-objective(actual-situation,2)

61

As with identify, these two families have types corresponding to most abstract

PS objects:adopt-objective, adopt-recipe, adopt-resource, adopt-constraint, adopt-

evaluation, abandon-objective, abandon-recipe, abandon-resource, abandon-constraint,

andabandon-evaluation.

An adopthas the effect of adding thefiller referred to byfiller-id to theADOPTED

attribute of theslot referred to byslot-id (either by assigning the value, in the case of a

single-slotor adding the value to the set of amultiple-slot. Note that this requires that

the PS object referred to byfiller-id actually be identified and in theIDENTIFIED set in

that context.

An abandonbasically has the opposite effect. It deletes the object from theADOPTED

attribute. Thusabandonrequires that the object actually be adopted when the act is ex-

ecuted.

When a PS object is adopted with respect to a slot, it means the agent is committed

to that object in that context. For example, for arecipe, this means the agent is commit-

ted to using thatrecipefor the associatedobjective. The other PS objects are similarly

treated.

Adopting objectives and Intention Although we do not commit here to any spe-

cific theory of commitment or intention (e.g., [Cohen and Levesque1990a; Grosz and

Kraus1996]), we need to comment here at least on the meaning of adoptedobjectives.

At the top level (i.e., in theactual-situation), adoptedobjectivesare thoseobjectives

which the agent has an intention to achieve.11 It also follows that if arecipeis adopted

for one of theseobjectivesand if thatrecipeitself has adopted sub-objectives, then the

agent also intends to achieve those objectives, and so forth. This is not novel.

However, in our model, nothing precludes the agent from adopting recipesfor ob-

jectiveswhich it has not adopted at the top level (e.g., those that areonly IDENTIFIED.

11Again, for this thesis, we try to remain neutral as to exactlywhat an intention is.

62

In this case, the agent is committed tousingan adopted sub-objectivein that recipe,

but not to actually achieving the sub-objective. Of course, if the agent later decides

to adopt the top-levelobjective, it then automatically intends not only to achieve the

top-levelobjective, but also all adopted sub-objectives.

This allows us to model what [Carberry, Kazi, and Lambert1992] term contingent

commitments, where an agent may do planning as part of deciding whether ornot to

actually decide to achieve the goal itself.

Select/Defer

The act familiesselectanddeferare only used forobjectives. Their syntax is as follows:

select-objective(slot-id,filler-id)

defer-objective(slot-id,filler-id)

Executing aselect-objectiveadds anobjectiveto theSELECTEDset in the given slot

context.Defer-objectivecan then be used to delete an object from theSELECTEDset.

Although an agent may have any number of adoptedobjectives, there is only a

small subset that is actually being executed at any given point. These are theobjectives

in theSELECTEDset. Anobjectivedoes not need to be an atomic action to be selected.

Higher-levelobjectivescan be marked as selected if the agent believes that it is currently

executing some action as part of executing the higher-levelobjective.

Release

The final PS act we discuss here isrelease. As with selectand defer, this is only

applicable toobjectives. The syntax is as follows:

release-objective(slot-id,filler-id)

63

This act has the effect of moving anobjectivefiller from the ADOPTED set to the

RELEASEDset. Note that theobjectivemust first be in theADOPTED set for this act to

be executed.

A rational agent should notice when anobjectivehas been successfully achieved

and then stop intending to achieve it (cf. [Cohen and Levesque1990a]). TheRELEASED

set contains thoseobjectiveswhich the agent believes have successfully been achieved.

Note that this is different thanobjectiveswhich are simply in theIDENTIFIED list, as

these were never successfully achieved, at least while the agent had them adopted. An-

other thing to note is that, in principle, it does not matter if the objective was achieved

through the agent’s own actions, or by some exogenous event.Fortuitous achievement

is achievement nonetheless.

Releasing not only applies to top-levelobjectivesbut toobjectivesin recipesas well.

As an agent executes arecipefor example, it marks off completed actions by releasing

them.

3.4 Collaborative Problem Solving

In the last section we described a problem-solving model fora single agent. In this

section, we extend that model to thecollaborativecase, where two agents do problem

solving together.

As mentioned above, we have modeled single-agent problem solving at a finer gran-

ularity of acts than is typically done. This was to support the granularity at which

collaboration occurs between agents (i.e., the contents ofutterances). These acts are

often more overt in collaborative problem solving since agents must communicate and

coordinate their reasoning and commitments in maintaininga collaborative problem-

solving (CPS) statebetween them. At the collaborative level, we have CPS acts which

operate on PS objects.

64

We first discuss CPS acts and then the CPS state itself. We then give an example of

collaborative problem solving and finish with a discussion of possible compatibilities

between our model and the SharedPlans model.

3.4.1 CPS Acts

At the CPS level are CPS acts which apply to the PS objects, paralleling the single-

agent PS model. In order to distinguish acts at the two levels, we append ac- before

CPS acts, creatingc-adopt-resource, c-select-objective, c-identify-constraint, and so

forth. CPS acts have the similar syntax and effects as those atthe PS level and we will

not redefine them here.12 Later we do discuss slight changes to thesituationobject and

the semantics of theidentifyact.

As we move to the collaborative level, however, we encounteran important differ-

ence. Whereas at the PS level, an agent could change its own PS state, at the collabo-

rative level, an agent cannot single-handedly make changesto the CPS state. Doing so

requires the cooperation and coordination of both agents. This means that no agent can

directly execute a CPS act. Instead, CPS acts are generated by the individualinterac-

tion acts(IntActs) of each agent. An IntAct is a single-agent action which takes a CPS

act as an argument. These are used by the agents to negotiate changes to the CPS state.

The IntActs arebegin, continue, completeandreject.13 These are defined by their

effects and are similar in spirit to the actions in the model of grounding proposed in

[Traum1994].

12Several formal models of intention [Levesque, Cohen, and Nunes1990; Grosz and Kraus1996] have

explored intentional differences between single-agent plans and group plans. This is beyond the scope

of this thesis.
13In earlier papers [Allen, Blaylock, and Ferguson2002; Blaylock, Allen, and Ferguson2003], we

usedinitiate instead ofbegin. However, we had to change this because of a naming clash withpart of the

dialogue model in Chapter 4.

65

An agent beginning a new CPS act proposal performs abegin. For successful gener-

ation of the CPS act, the proposal is possibly passed back and forth between the agents,

being revised withcontinues, until both agents finally agree on it, which is signified by

an agentnot adding any new information to the proposal but simply accepting it with a

complete. This generates the proposed CPS act resulting in a change to the CPS state.

At any point in this exchange, either agent can perform areject, which causes the

proposed CPS act — and thus the proposed change to the CPS state —to fail. This

ability of either agent to negotiate and/or reject proposals allows our model to represent

not just the master-slave collaboration paradigm, but the whole range of collaboration

paradigms (including mixed-initiative).14

Sidner’s negotiation language [Sidner1994; Sidner1994] has similar goals to our

interaction acts. However, as pointed out in [Larsson2002], the language conflates

proposal acceptance (similar to our interaction level) andcommunicative grounding,

i.e., coordination of the reliability of a communicative signal (which the CPS model

assumes to be handled by lower-level communicative behavior which is outside the

model). In addition, several actions in Sidner’s language (such asProposeAct, which

proposes that the other agent perform an action) include aspects of acts that we model

as CPS acts.

3.4.2 CPS State

In the single-agent case, we modeled the PS state as part of the agent’s mental state.

This is not possible in the collaborative case. Instead, we model the CPS state as an

emergent property of the mental states of the collaboratingagents. In this way, the

CPS state can be seen as part of the agents’common ground[Clark1996]. Thus each

14Again it is important to note that our purpose is not to specify problem-solving behavior for a

particular agent, but rather to provide a model which allowscollaboration between agents with (possibly)

very different behavior. In the master-slave paradigm, theslave agent will simply not use therejectact.

The fact that rejections do not occur in that interaction is unimportant to the CPS model.

66

c-situation← ps-object

PENDING-PS-OBJECTS set(ps-object)

PS-OBJECTS set(ps-object)

PS-HISTORY list(interaction-act)

FOCUS stack(object)

OBJECTIVES objectives-slot

Figure 3.23: Type Description forc-situation

agent has a mental model of what they believe the CPS state to be. With this model,

it is possible that agents’ CPS states get “out of sync” because of misunderstanding

or miscommunication. We leave the issue of how such problemsare resolved to fu-

ture research, although the reader is referred to [Clark1996] for a good discussion of

possible solutions based on human communication. In this discussion, we assume that

communicative signals are always received and properly understood — a restriction we

remove in the next chapter.

In the CPS model, we are able to reuse all of the PS objects as they are, except

one. In order to accommodate a collaborative version of the PS state, we introduce

a collaborative situationc-situation to replacesituation. The definition is shown in

Figure 3.23.

This differs fromsituation in two ways. First, we have changed the type ofPS-

HISTORY to be a list ofinteraction-actsinstead ofps-acts, as this is the new atomic

level of communication. Now, each time an IntAct is executed, it is automatically

added to thePS-HISTORY list.

Second, we have introduced a new featurePENDING-PS-OBJECTS. This is used

to storeps-objectswhich are objects under negotiation via ac-identify act. This is

necessary sinceps-objectsare not officially added to thePS-OBJECTSattribute of theC-

67

SITUATION until thec-identifyact has been successfully generated. ThusPS-OBJECTS

under negotiation can be accessed and changed without beingofficially identified.

All newly mentionedps-objectsare added to thePENDING-PS-OBJECTSset when

an IntAct introduces them. When acontinueIntAct makes a change to a pendingps-

object, it is changed in this set.

Finally, we slightly change the semantics of thec-identifyacts. When ac-identify

act is successfully generated, we move all of the newps-objectsfrom thePENDING-PS-

OBJECTSset to thePS-OBJECTSset (before we added them toPS-OBJECTSdirectly).

With these slight changes, we can now represent the collaborative problem-solving

state.

3.4.3 An Example

We show here one short example of the CPS model in an agent exchange. We then show

more examples in the next chapter, where we tie the model to natural language dialogue.

Examples are much easier to follow when shown in natural language dialogue.

As displayed feature structures tend to become large fairlyquickly, we will use a

set of abbreviations for type and feature names for this example as well as in examples

in Chapter 4. The abbreviations are shown in Table 3.1.

In this example, we will stay in the MP3 player domain mentioned above. Here two

agents (A and B) are collaborating on use of an MP3 player.

At the beginning of the exchange, Agent A decides it wants to listen to a song

(although it does not yet know which). It executes the following interaction acts:15

begin1(c-identify-objective(STATE | OBJVS| ID , 2))

begin2(c-adopt-objective(STATE | OBJVS| ID , 2 | ID))

15Note, for reasons of clarity, we ignore issues of focus in this example. We revisit focus in the

collaborative setting in the next chapter.

68

types features
full abbr. full abbr.
c-situation csit action-constraints acons
constraint con actions acts
constraints-slot cslot actual-object aobj
evaluation eval adopted aptd
evaluations-slot eslot constraints cons
filler fill evaluations evals
object obj expression exp
ps-object psobj identified ided
single-slot ss objectives objvs
objective objv pending-ps-objects pend
objectives-slot oslot ps-history pshist
recipe rec ps-objects psobjs
resource res recipe rec
situation sit released reld

selected seld
value val

Table 3.1: Abbreviations for Type and Feature Names

Note that here, instead of using the ids (top-objectivesandobjv1) for the context

parameters of the acts, we use absolute paths (STATE | OBJVS| ID and 2 | ID). We

introduce a constantSTATE, which always identifies the root of the CPS state. Here,

2 abbreviates an emptylisten-songobjective, shown in Figure 3.24. We also subindex

the IntActs here to allow us to easily match them up with laterIntActs operating on the

same CPS acts (see below).

The CPS state resulting from the two IntActs is shown in Figure3.25. In order to

show feature structures more compactly, we will often omit those features which are

empty or unimportant for discussion purposes. An abbreviated version of the CPS State

from Figure 3.25 is shown in Figure 3.26.

There are several things to note here. First, we use a path to refer to theAPTD feature

within CONS. In the full version, this set is actually structure-sharedwith CONS| IDED.

However, as we note earlier, for an object to be adopted, it must be identified. Thus this

69

2

listen-song

ID objv1

SONG

ss(song)

ID ss1

IDED {}

APTD

REC

ss(rec)

ID ss2

IDED {}

APTD

Figure 3.24:listen-songObjective 2

.

is a common phenomenon that we omit as redundant information.

Also note that we still display theOBJVS feature, even though it is empty. This is

of course because we will need it soon in our example.

Now, back to our example. Notice that only thePEND andPSHISTattributes are set

at this point. Although other parts of the CPS can only be changed through negotiation,

a successful communication (execution of an IntAct)doeschange the state to represent

that that communication has occurred — without any negotiation (cf. [Clark1996]).

Agent B now decides to accept these proposals and executes the following interac-

tion acts:16

complete1

complete2

which complete and therefore generate the corresponding CPSacts:

16We will usually omit the act arguments and use coindexing instead.

70

csit

ID actual-situation

CONS

cslot

ID world-state

IDED 1

{

’general beliefs’

}

APTD 1

PEND

{

2

}

PSOBJS

{

’known PS objects’

}

PSHIST

〈

begin1(c-identify-objective(STATE | OBJVS| ID , 2))

begin2(c-adopt-objective(STATE | OBJVS| ID , 2 | ID))

〉

FOCUS

(

actual-situation

)

OBJVS

oslot

ID top-objectives

CONS

cslot

ID cslot1

IDED {}

APTD {}

IDED {}

APTD {}

SELD {}

RELD {}

Figure 3.25: The CPS State after A’s First Turn

71

csit

CONS| APTD

{

’general beliefs’

}

PEND

{

2

}

PSOBJS

{

’known PS objects’

}

PSHIST

〈

begin1(c-identify-objective(STATE | OBJVS| ID , 2))

begin2(c-adopt-objective(STATE | OBJVS| ID , 2 | ID))

〉

FOCUS

(

STATE | ID

)

OBJVS

oslot

IDED {}

APTD {}

SELD {}

RELD {}

Figure 3.26: The Abbreviated Version of Figure 3.25

c-identify-objective(STATE | OBJVS| ID , 2)

c-adopt-objective(STATE | OBJVS| ID , 2 | ID)

This results in the CPS state shown in Figure 3.27.

Note that here the items inPEND have been moved toPSOBJSas they have now

been identified. Also note that2 has been wrapped in afiller (3) and is both in the

IDED andAPTD sets ofOBJVSas a result of being both identified and adopted.

At this point, B has a suggestion for a song — “Yesterday” by the Beatles:

begin3(c-identify-resource(2 | ID , 4))

begin4(c-adopt-resource(2 | ID , 4 | ID))

The structure corresponding to4 is shown in Figure 3.28.

72

csit

PEND {}

PSOBJS

{

’known PS objects’,2

}

PSHIST

〈

begin1(c-identify-objective(STATE | OBJVS| ID , 2))

begin2(c-adopt-objective(STATE | OBJVS| ID , 2 | ID))

〉

OBJVS

oslot

IDED

3

fill

VAL 2

listen-song

SONG

ss

IDED {}

APTD

APTD

{

3

}

SELD {}

RELD {}

Figure 3.27: The CPS State after B’s First Turn

4

song

TITLE | APTD | VAL ’Yesterday’

ARTIST | APTD | VAL ’Beatles’

Figure 3.28:songResource4 — “Yesterday” by the Beatles

Note that 4 already has several of its slots filled (title and artist). As a short-

cut, human communication often usescompound objectswhich already have several

decisions premade, in this case the identification and adoption of the songTITLE and

ARTIST. Also note that we have omitted the definition of a realartist type here and just

gloss the artist name with a string.

At this point, Agent A decides it likes the idea and completesthe CPS acts:

complete3

complete4

73

csit

PEND {}

PSOBJS

{

’known PS objects’,2 , 4

}

OBJVS| APTD

fill

[

VAL 2

listen-song

[

SONG| APTD | VAL 4

]

]

Figure 3.29: The CPS State after A’s Second Turn

producing the CPS state shown in Figure 3.29.

Note that the changes here were made within thelisten-songobjective itself (2),

where thesongwas wrapped in afiller, and put in theIDED set and was assigned as the

APTD value.

3.4.4 Possible Compatibility with SharedPlans

As we mentioned in Chapter 2, we believe that at a high level, our model is compatible

with the SharedPlan formalism [Grosz and Kraus1996]. In fact, one way of looking at

our model is an elaboration of SharedPlan operators. Adoption, evaluation, etc. ofob-

jectivesactually resides at a level higher than the SharedPlan model, since SharedPlans

assumes that a high-level goal has already been chosen. The adoption, evaluation, etc.

of recipes can be seen as a further elaboration of the SelectRecGR operator. Most

other acts, such as adopting resources, evaluating actions, etc. provide the details of

the ElaborateGroup operator. We leave it as a topic of future research to see if the

approaches can indeed be unified.

3.5 Conclusions and Future Work

In this chapter, we have presented a model of collaborative problem solving for agents

which (1) covers collaboration about a wide range of agent behavior and (2) allows col-

74

laboration using a wide variety of collaborative paradigms, including mixed-initiative

where agents may freely negotiate their decisions.

The model is novel in that it models agent problem solving at the granularity of

communication and can be used for general heterogeneous agent-agent communica-

tion/collaboration. Agents can be heterogeneous in the sense that they implement dif-

ferent behavioral cores, as long as they are able to collaborate within the bounds of the

model. As we show in the next chapter, the model is also general enough to support

human-agent collaboration.

The model is also able to represent a number of problem solving phenomena at

the granularity of the decision-makingprocessand not just the decisions made. We

model the identifications of possible alternatives for a given role, as well as the possible

constraining of values to consider for the role. We also model the contextual evaluation

of values for a given role. In addition, since we model the identification of objects

without attaching commitment to them, we model contingent planning, where agents

may plan before actually intending to execute the plan.

Important future work includes formalization of the model at a level of single-agent

beliefs, intentions and desires, possibly within the SharedPlans model. We would also

like to expand the CPS process to include the step ofteam formation[Wooldridge and

Jennings1999], when agents decide to collaborate in the first place. This would allow

the model to cover such things as requests for help.

Another item that seems to be lacking in the model is a representation of which

agent (or group of agents) is assigned to plan/execute whichobjectives. Right now, such

decisions for execution could be modeled with anACTOR attribute on each objective,

although it may make sense to treat it somehow specially.

Finally, another interesting direction is exploring the use of the single-agent PS

model in (keyhole) agent modeling.

75

4 Modeling Dialogue as

Collaborative Problem Solving

In this chapter,1 we present a dialogue model based on the collaborative problem-

solving model presented in the last chapter. The model, as presented in Chapter 3,

can be used as a language for communication between artificial agents, with interaction

acts serving as “utterances”. There are several things thatmust be done, however, to

make the CPS model usable for modelinghumancommunication.

First, we must provide a link from interaction acts to natural language utterances.

Second, the CPS model makes the assumption that interaction acts are always success-

fully received and understood by the other agent. This, of course, is not the case for

human dialogue,2 where mishearing and misunderstanding is more of a rule thanan

exception. In this chapter, we provide these necessary parts to turn the CPS model into

a dialogue model.

The rest of this chapter is as follows: in Section 4.1, we dealwith the first problem

by forming a link between the CPS model and natural language utterances through a

definition ofcommunicative intentions. In Section 4.2, we deal with the second problem

by tying the model together with a theory ofgrounding. In order to show the coverage of

the model, we show several examples of the model applied to dialogues in Section 4.3.

1Some contents of this chapter were reported in [Blaylock andAllen2005a].
2It also really is not realistically the case for artificial agent communication either.

76

In Section 4.4 we conclude and mention future work.

4.1 Collaborative Problem Solving and Communicative

Intentions

Communicative intentionsdescribe what a speaker wants a hearer tounderstandfrom

an utterance [Grice1969]. In this sense, communicative intentions can be very different

from a speaker’s actual intentions, or what a speaker wants to accomplishby making

an utterance. This can include things such as manipulation and deception, which are

not intended to be perceived by the hearer.

When a speaker has decided on his communicative intentions, he must then encode

them in language (e.g., words and sounds) with which they aretransfered to the hearer,

who then must decode them and (hopefully) recover the original communicative inten-

tions associated with the utterance. No matter what their actual intentions are, speakers

will alway try to encode their communicative intentions in such a way that they are

easily decodable by hearers. This is why communication works, even when one party

wants to deceive the other.

In our agent-based dialogue mode, we represent communicative intentions with in-

teraction acts.3 In other words, each utterance is associated with a set of IntActs. In

this way, we are basically modeling dialogue as negotiationabout changes to a collabo-

rative problem-solving state. Each utterance is a move in this negotiation, as described

with IntActs in the last chapter.

As an example, consider the following utterance with its corresponding interpreta-

tion (in a typical context)

3This definition will be expanded in the next section.

77

1 A: Let’s listen to a song.
begin1(c-identify-objective(STATE | OBJVS| ID, 1 [blank listen-song]))
begin2(c-adopt-objective(STATE | OBJVS| ID, 1 | ID))
begin3(c-focus(STATE | ID, 1 | ID))

where 1 abbreviates an emptylisten-songobjective like the one shown in Figure 3.24.

By assigning these IntActs, we claim that, in the right context, utterance (1) has

three communicative intentions (corresponding to the three IntActs):

1. To propose that listening to a song be considered as a possible top-level objective.

2. To propose that this objective be adopted as a top-level objective.

3. To propose that problem-solving activity be focused on the listen-song objective

(e.g., in order to specify a song, to find a recipe to accomplish it, . . .).

That these are present can be demonstrated by showing possible responses to (1)

which reject some or all of the proposed CPS acts. Consider the following possible

responses to (1), tagged with corresponding communicativeintentions:

2.1 B: OK.
complete1
complete2
complete3

This is a prototypical response, which completes all three acts.

2.2 B: No.
complete1
reject2
reject3

This utterance rejects the last two CPS acts (c-adopt-objectiveandc-focus), but actu-

ally completes the first CPS act (c-identify-objective). This means that B is actually

accepting the fact that this is apossibleobjective, even though B rejectscommittingto

78

it. The next possible response shows this contrast:

2.3 B: I don’t listen to songs with clients.
reject1
reject2
reject3

Here all three CPS acts are rejected. Thec-identify-objectiveis rejected by claiming

that the proposed class of objectives is situationally impossible, or inappropriate. Note

that it is usually quite hard to reject acts from thec-identifyfamily.4

2.4 B: OK, but let’s talk about where to eat first.
complete1
complete2
reject3

This example helps show the existence of theidentify(c-focus)act. Here B completes

the first two CPS acts, accepting the objective as a possibility and also committing itself

to it. However, here the focus move is rejected, and a different focus is proposed (IntAct

not shown).

This method of finding responses to reject certain CPS acts proves to be a useful

way of helping annotate utterances with their communicative intentions, and we have

used it in annotating the examples shown in this chapter.

4.2 Grounding

The account of communicative intentions given in the last section is not quite correct.

It makes the simplifying assumption that utterances are always correctly heard by the

4In our current CPS model, when ac-identify is rejected, the corresponding object then only exists

in the PS-HISTORY attribute of theactual-situation. It is likely that it would be beneficial to record this

somewhere within the corresponding slot as well (e.g., to make sure the same suggestion isn’t made

twice). We leave this question to future research.

79

hearer and that he also correctly interprets them (i.e., properly recovers the commu-

nicative intentions). In human communication, mishearingand misunderstanding can

be the rule, rather than the exception. Because of this, both speaker and hearer need to

collaborativelydetermine the meaning of an utterance (i.e., the communicative inten-

tions). This occurs through a process calledgrounding[Clark1996].

In this section, we expand our definition of communicative intentions to handle

grounding. To do this, we merge our CPS model with a theory of utterance meaning

based on Clark’s work calledConversation Acts Theory. We first introduce Conversa-

tion Acts Theory and then use it to expand our definition of communicative intentions.

4.2.1 Conversation Acts Theory

Traum and Hinkelman [1992] proposed Conversation Acts as an extension to speech

act theory. Similar to our provisional model of communicative acts, theories based

on speech acts typically made the assumption that utterances are always heard and

understood. To overcome this, Traum and Hinkelman defined Conversation Acts on

several levels, which describe different levels of the communicative process. Table 4.1

shows the different levels and acts, which we briefly describe here and then show an

example using Conversation Acts.

Core Speech Acts

A major contribution of Conversation Acts is that it takes traditional speech acts and

changes them into Core Speech Acts, which are multiagent actions requiring efforts

from the speaker and hearer to succeed. To do this, they definea Discourse Unit(DU)

to be the utterances which contribute to the grounding of a Core Speech Act. These are

similar to Clark’scontributions[Clark1996].

80

Discourse Level Act Type Sample Acts

Sub UU Turn-taking take-turn keep-turn

release-turn assign-turn

UU Grounding Initiate Continue Ack

Repair ReqRepair ReqAck

Cancel

DU Core Speech Acts Inform WHQ YNQ Accept

Request Reject Suggest

Eval ReqPerm Offer

Promise

Multiple DUs Argumentation Elaborate Summarize

Clarify Q&A

Convince Find-Plan

Table 4.1: Conversation Act Types [Traum and Hinkelman1992]

Argumentation Acts

Conversation Acts also provides a place for higher-levelArgumentation Actswhich

span multiple DUs. As far as we are aware, this level was neverwell defined. Traum

and Hinkelman give examples of possible Argumentation Acts, including such things

as rhetorical relations (e.g., [Mann and Thompson1987] andplan construction plans

(e.g., [Litman and Allen1990]).

Grounding Acts

The most important part of Conversation Acts for our purposeshere areGrounding Acts

(GAs). These are single-agent actions at theUtterance Unit(UU) level, used for the

grounding process. The GAs are as follows:

81

Initiate The initial part of a DU.

Continue Used when the initiating agent has a turn of several utterances. An utterance

which further expands the meaning of the DU.

Acknowledge Signals understanding of the DU (although not necessarilyagreement,

which is at the Core Speech Act level).

Repair Changes some part of the DU.

ReqRepair A request that the other agent repair the DU.

ReqAck An explicit request for an acknowledgment by the other agent.

Cancel Declares the DU as ’dead’ and ungrounded.

These form part of Traum’s computational theory of grounding [Traum1994], which

uses finite state automata to track the state of grounding forDUs in a dialogue.

Turn-taking Acts

At the lowest level areTurn-taking Acts. These are concerned with the coordination of

speaking turns in a dialogue. A UU can possibly be composed ofseveral Turn-taking

Acts (for example, to take the turn at the start, hold the turnwhile speaking, and then

release it when finished).

Example

As an example, Traum and Hinkelman annotate part of a dialogue from the TRAINS-91

corpus [Gross, Allen, and Traum1992] to illustrate Conversation Acts. In Figures 4.1

and 4.2, we show a section of their example of GA and Core SpeechAct annotations.5

5The original used S for the system and M for ’manager’. We havechanged this to the more typical

U for ’user’.

82

GADU# UU# : Utterance
init1 1.1 U: okay, the problem is we better ship a boxcar of oranges to Bath by 8 AM.
ack1 2.1 S: okay.
init2 3.1 U: now ... umm ... so we need to get a boxcar to Corning, where

: there are oranges.
init3 3.2 : there are oranges at Corning

reqack3 3.3 : right?
ack3 init4 4.1 S: right.
ack4 init5 5.1 M: so we need an engine to move the boxcar

reqack5 5.2 U: right?
ack5 init6 6.1 S: right.

Figure 4.1: Example of Conversation Acts: Grounding Acts [Traum and Hinkel-
man1992]

DU# Core Speech Act types Included UUs
1 informM suggest(goal)M acceptS 1.1 1.2
2 informM suggestM 3.1
3 checkM ?suggestM 3.2 3.3 4.1
4 inform-ifS ?acceptS 4.1 5.1
5 checkM 5.1 5.2 6.1

Figure 4.2: Example of Conversation Acts: Core Speech Acts [Traum and Hinkel-
man1992]

Figure 4.1 shows the GAs associated with each UU (subscripted with the number of

the DU they contribute to). Figure 4.2 shows the Core Speech Acts performed in each

DU (superscripted with the initiating party).

Discussion

One main contribution of Conversation Acts Theory is that it models dialogue with

utterances making simultaneous contributions at several different levels. While we

believe that dialogue should be modeled as several levels, we see several difficulties

with the theory as it now stands.

First, the theory only specifies acttypesat the various levels, but not their content.

This is true even at the interface between levels. For example, GAs are modeled as

83

negotiation about the meaning of a DU, but it is unclear exactly which part the meaning

of DU 1 (if the init1 in the example is initializing (inform, suggest, accept)).

Also, although this model improves on speech act theory by modeling speech acts

as multiagent actions, it still suffers from some of the difficulty of speech acts. In par-

ticular, Conversation Acts Theory does not attempt to define a(closed) set of allowable

Core Speech Acts. It is in fact unclear if such a closed set of domain-independent

speech acts exist (cf. [Clark1996; Di Eugenio et al.1997]). In practice, this fact has

lead to many different proposed taxonomies of speech or dialogue acts, many of which

are domain dependent (e.g., [Allen and Core1997; Alexandersson et al.1998] — also

cf. [Traum2000]).

Finally, as mentioned above, the Argumentation Acts level was never well defined.

In [Traum and Hinkelman1992], Argumentation Acts are described vaguely at a level

higher than Core Speech Acts which can be anything from rhetorical relations to oper-

ations to change a joint plan.

4.2.2 Defining the Dialogue Model

In constructing our agent-based dialogue model, we first take Conversation Acts as a

base. In particular, we model communicative intentions at several simultaneous levels,

which more or less correspond to those used in Conversation Acts. In addition to this,

we expand and concretize several of the levels using the collaborative problem-solving

model discussed in the previous chapter and above. This allows us to overcome several

of the difficulties of Conversation Acts mentioned above.

The levels we model are: Turn-taking Acts, Grounding Acts, Interaction Act, and

CPS Acts. We discuss each in turn and then reinterpret the previous example with our

model.

84

Turn-taking Acts

At the sub-utterance level, we use the turn-taking model as it is in Conversation Acts.

We will not refer to it further in our examples, as it is not thefocus of this thesis.

Grounding Acts

At the utterance unit level (UU), we use the Grounding Acttypesas they are defined

in Conversation Acts. We extend this and definecontentsfor these acts, namely an

Interaction Act.6

Interaction Acts

At the discourse unit level (DU), we depart from ConversationActs. Instead of using

Core Speech Acts, we use IntActs, as described in Section 4.1.Unlike Core Speech

Acts, these are not just labels, but also contain content (instantiated CPS acts).

CPS Acts

Finally, we propose the use of CPS acts at the level of Argumentation Acts. These are

a natural fit, as a number of IntActs need to be executed by different agents in order to

generate a CPS act, which then makes changes to the CPS state. This gives us a natural

segmentation of discourse units.

TRAINS Example Revisited

To show concretely, how these (last three) levels fit together, we revisit Traum and

Hinkelman’s example from above, interpreting it in the agent-based model. Figure 4.3

6A Grounding Act could also theoretically take another Grounding Act as an argument, as in meta-

repairs and so forth [Traum1994]. For simplicity, we have decided to avoid these cases at this stage. We

plan to add support for meta-grounding in the future.

85

1.1 U: okay, the problem is we better ship a boxcar of oranges to Bath by 8 AM.
init1(begin1(c-identify-objective(STATE | OBJVS| ID , 1)))
init2(begin2(c-adopt-objective(STATE | OBJVS| ID , 1 | ID)))
init3(begin3(c-focus(STATE | ID , 1 | ID)))

2.1 S: okay.
ack1
ack2
ack3
init4(complete1)
init5(complete2)
init6(complete3)

3.1 U: now ... umm ... so we need to get a boxcar to Corning, wherethere are oranges.
ack4
ack5
ack6
init7(begin4(c-identify-recipe(1 | REC| ID , 2)))
init8(begin5(c-adopt-recipe(1 | REC| ID , 2 | ID)))
init9(begin6(c-focus(STATE | ID , 2 | ID)))

3.2 U: there are oranges at Corning
init10(begin7(c-identify-constraint(STATE | CONS| ID , 3)))
init11(begin8(c-adopt-constraint(STATE | CONS| ID , 3 | ID)))

3.3 U: right?
reqack10
reqack11

4.1 S: right.
ack10
ack11
init12(complete7)
init13(complete8)

Figure 4.3: The TRAINS Example Interpreted with the Agent-based Model

shows the dialogue marked up with instantiated grounding acts. We first discuss the

dialogue at the grounding level, and then at the problem-solving level.

Grounding Our analysis at the grounding level is basically unchanged from that of

Traum and Hinkelman as shown in Figure 4.1. We therefore onlybriefly describe it.

The main difference between the two accounts is that we associate a GA with each

86

individual IntAct, and therefore have more instances in several cases.

In UU 1.1, the user initiates three IntActs, which the systemacknowledges in UU

2.1. Note that, only at this point are the effects of the IntActs (as described in Chapter 3)

valid. This means that, only after UU 2.1 are, for example, IntActs 1, 2 and 3 placed in

the PS-HISTORY list of the CPS state.

UU 2.1 also initiates the correspondingcompleteIntActs to those initiated in UU

1.1; these are acknowledged in UU 3.1.

UU 3.1 also inits three IntActs (7, 8, and 9), which are never grounded,7 and thus do

not result in any successfully executed IntActs, and thus nochanges to the CPS state.

In UU 3.2, the user inits new IntActs for which he explicitly requests an acknowl-

edgment in UU 3.3. Finally, UU 4.1 inits two completes, whichare acknowledged by

the subsequent utterance by the user (not shown). Note that,again, these completes are

not valid until grounded. Thus the CPS state after UU 4.1 will reflect the state as if

those completes did not yet occur.

Problem Solving At the problem-solving level, the user proposes the adoption (and

identification) of an objective of shipping oranges in UU 1.1. (Again, these do not

become active until grounded in UU 2.1). He also proposes that problem-solving focus

be placed on that objective (i.e., in order to work on accomplishing it). The proposed

objective is shown in Figure 4.4, and deserves some explanation.

The type of the objective isship-by-train, which we have just invented for this

example.8 It introduces two new attributes to theobjectiveclass: an item to be shipped

and a destination. As the abbreviated form of the objective shows, there are three main

components to the objective as it has been introduced by the user. First of all, it has

a pre-adopted destination — Bath (modeled as a location with aNAME). Second, the

7Although see discussion in [Traum and Hinkelman1992].
8In all examples, we invent simple-minded domain-specific object types as we need them.

87

1

ship-by-train

CONS| APTD

{

fill

[

VAL | EXPR ’completion before 8 a.m.’

]

}

ITEM | CONS| APTD

{

fill

[

VAL | EXPR ’type: oranges’

]

}

DEST| APTD
fill

[

VAL | NAME ’Bath’

]

Figure 4.4: Contents ofobjective1

item to be shipped has not yet been determined, but a constraint has been put on possible

values for that slot — they must be of typeoranges.

Recall from the previous chapter that this was one of the motivations for introducing

slots in the model. Notice here that the constraint is not puton a particular instance of

oranges, rather it is put on thesingle-slotitself. Constraints on a slot are adopted to

restrict the values considered (e.g., identified) as possible fillers.

Finally, a constraint has also been placed on the objective itself — that it be com-

pleted by 8 a.m. Note the difference here between placing a constraint on aps-object

versus placing it on aslot, as just discussed. As mentioned in the previous chapter,

objectives and resources are usually extended by the addition of additional resources

(as we did here with the item and destination). However, it isalso possible to further

define an objective or resource by placing a constraint on it.This seems to work well in

cases like this from natural language, where, for example, an adverb is used. Of course,

it would also possible to add an extra attribute to the type for completion time. This

decision must be made by the domain designer.

UU 2.1 completes the CPS acts, and after 3.1, when the completes are grounded,

the CPS acts are generated, resulting in the corresponding changes to the CPS state.

In UU 3.1, the user proposes the adoption of a (partial) recipe for shipping the

oranges, as well as that focus be placed on it. These IntActs are never grounded, and

thus never result in a change in the CPS state. However, as thisutterance gives a good

example of the introduction of a recipe, however, we will still discuss it. The recipe

88

2

rec

ACTS | APTD

fill

VAL

move

ITEM | CONS| APTD

{

fill

[

VAL | EXPR ’type: boxcar’

]

}

DEST| APTD | VAL | NAME ’Corning’

Figure 4.5: Contents ofrecipe 2

3

con

[

EXPR at(
loc

[

NAME ’Corning’

]

,
oranges

[

AOBJ oranges37

]

)

]

Figure 4.6: Contents ofconstraint 3

that the user attempts to introduce is shown in Figure 4.5.

This recipe consists of a single adopted objective — that of moving a boxcar to

Corning. Similar to theship-by-trainobjective above, this also has an adopted value

(the destination is Corning), and a constraint on the slot of the other (that the only

resources to be considered for the move should be of typeboxcar). At this point, the

recipe has noACTION-CONSTRAINTS.

However, this recipe never makes it into the CPS state (even assomething men-

tioned). Instead, the user decides he wants to adopt (confirm) the joint belief that there

are oranges at Corning, as reflected in UU 3.2. Note that no focus change is proposed

by UU 3.2. We model this in this way, as it appears that the userdid not intend for fur-

ther work (beyond adoption) to be done on this constraint, oron finding out the state of

the world. Instead, it was intended as a quick check, but focus was intended to remain

on theship-by-trainobjective.

As discussed in the previous chapter, we model beliefs aboutthe world state as con-

straints on the situation. The mentioned constraint is shown in Figure 4.6. In this thesis,

we do not present a theory of constraint representation, thus we have been glossing con-

straints until now. The only specification we have made is that the EXPRESSIONbe of

typeboolean. In the case of this constraint, however, a simple gloss is not enough, as

this constraint actually introduces a new embeddedresource— the instance of the or-

89

anges that are at Corning. For this reason, we show this constraint as a domain-specific

predicate (at) that takes a location and an item. It is obvious that work needs to be done

on the general specification of constraints, but the representation here is sufficient for

our purposes.

It is important to point out that when thebeginc-identify-constraintis grounded in

UU 4.1, the oranges instance from the constraint is also placed in thePS-OBJECTSset

within the CPS state, making it available for use in further problem solving.

Discussion

Our CPS dialogue model overcomes several of the difficulties with Conversation Acts

we mentioned above. First, it defines act types as well as thecontentof those acts.

Second, it defines a closed set of domain-independent acts atdiscourse unit level (i.e.,

IntActs with CPS acts as arguments). Although the acts are domain-independent, they

can be used with domain-specific content through PS object inheritance and instantia-

tion). Finally, the model introduces CPS acts at the level of Argumentation Acts, which

define intentions for larger chunks of discourse.

As promised above, we are now able expand our definition of communicative in-

tention — this time to a fully-instantiated grounding act. As illustrated in the example

above, we use these to represent the intended meaning of an utterance — both to do

work at the grounding level (e.g., acknowledging previous IntActs) and to introduce

new IntActs to be grounded. This is similar to Clark’s proposed communicationtracks

[Clark1996].

4.3 Coverage of the CPS Dialogue Model

To further illustrate the use of the CPS dialogue model, and asa proof-of-concept eval-

uation, we explore several dialogue fragments in this section, which demonstrate dif-

90

ferent aspects of the dialogue model’s coverage.

4.3.1 Planning and Execution

As discussed in Chapter 2, one of the things lacking in most dialogue models is the

ability to distinguish between dialogue about planning anddialogue about execution.

Because of this, these systems are not able to handle dialogues which include both

planningand execution. We first show examples of the CPS dialogue model in the

context of planning, then in execution, and finally in a dialogue which includes both

planning and execution.

Planning

To demonstrate coverage for planning dialogue, we continuethe example from Traum

and Hinkelman begun in Figure 4.3. In the interest of space and clarity, we have skipped

part of the dialogue (Utterance Units 5.1–13.1) which included mostly grounding inter-

action which has been adequately addressed by Traum and Hinkelman. We have also

at times combined multiple-UU turns into a single UU, where the UUs were tagged

ascontsat the grounding level. Although modeling this is importantat the grounding

level, aninit followed bycontsare just gathered up into a single (group of) IntActs that

are proposed, so at the problem-solving level, this is not animportant difference.

The remainder of the dialogue is shown in Figure 4.7. With UU 13.2, the user

user identifies a possible (partial) recipe for objective1 (shipping oranges to Bath,

from above). The recipe includes a single objective (action) of moving engine E1 to

Dansville.9 Note that the user does not propose to adopt this recipe for the objective,

9We will gloss PS objects with a boxed number,4 in this case, and some description of their con-

tents.

91

13.2 U: or, we could actually move it [Engine E1] to Dansville, to pick up
the boxcar there.
init1(begin1(c-identify-recipe(1 | REC| ID, 4 [move(E1,Dansville)]))
init2(begin2(c-focus(STATE | ID, 4 | ID)))

14.1 S: okay.
ack1−2

init3−4(complete1−2)
15.1 U: um and hook up the boxcar to the engine, move it from Dansville to Corning,

load up some oranges into the boxcar, and then move it on to Bath.
ack3−4

init5(begin3(c-identify-objective(4 | ACTS | ID, 5 [hook(boxcar1,engine1)]))
init6(begin4(c-adopt-objective(4 | ACTS | ID, 5 | ID)))
init7(begin5(c-identify-constraint(4 | ACONS| ID, 6 [before(1 , 2)])))
init8(begin6(c-adopt-constraint(4 | ACONS| ID, 6 | ID))
init9−16(begin7−14) [2 other actions and 2 other ordering constraints]

16.1 S: okay.
ack5−16

init17−28(complete3−14)
17.1 U: how does THAT sound?

ack17−28

init29(begin15(c-identify-evaluation(FILLER(4) | EVALS | ID, 7 [blank evaluation])))
18.1 S: that gets us to Bath at 7 AM, and (inc) so that’s no problem.

ack29
init30(continue15(c-identify-evaluation(FILLER(4) | EVALS | ID, 7 [sufficient])))
init31(begin16(c-adopt-evaluation(FILLER(4) | EVALS | ID, 7 | ID)))

19.1 U: good.
ack30−31

init32−33(complete15−16)
init34(begin17(c-adopt-recipe(1 | REC| ID, 4 | ID))
init35(begin18(c-defocus(STATE | ID, 4 | ID)))

20.1 S: okay.
ack32−35

init36−37(complete17−18)

Figure 4.7: A Planning Dialogue from [Traum and Hinkelman1992] (Continuation of
Figure 4.3)

92

yet; he only proposes considering it as a candidate.10 He also proposes moving the

problem-solving focus to that recipe (in order to work on expanding it).

In 14.1, the system acknowledges these grounding acts and also inits IntActs to

complete them. (Note that, for compactness, we use subscripted ranges to refer to

series of GAs and IntActs.ack1−2 expands toack1 andack2, andinit3−4(complete1−2)

expands toinit3(complete1) andinit4(complete2).)

In 15.1, the user proposes several new actions to add to the recipe as well as order-

ing constraints among them. In UU 17.1, the user then asks forthe system’s evaluation

of the recipe, which is provided in UU 18.1. The surface form of 19.1 is a bit mislead-

ing. With this “good”, the user is acking the system’s last utterance, and accepting the

evaluation. He is also, based on this evaluation, proposingthat the recipe be adopted for

the objective and proposing that the focus be taken off the recipe. The system accepts

these proposals in 20.1.11

Execution

We now give an example of a well-known execution dialogue, which we have taken

from [Grosz and Sidner1986]. This is a so-called expert-apprentice dialogue, where an

expert (E) guides an apprentice (A) in performing a task. Theexample is in Figures 4.8

and 4.9.

The context at the start of this segment is that the expert is specifying a reciperec

to the apprentice for removing a pump. In UU 1.1, she tells theapprentice to remove the

flywheel, which is modeled as not only ac-identify-objectiveand ac-adopt-objectiveas

10However, as mentioned above, the objective within it (moving the engine)is adopted in theAC-

TIONS set of the recipe. This is an example of contingent planning as discussed in [Carberry, Kazi, and

Lambert1992].
11Again here we have modeled the final utterance as an init, which then theoretically needs to be acked

by the user. We assume within the model that, if after a small pause, if there is no evidence of the user

not having heard or understood, the inits (36–37) are automatically considered acked.

93

1.1 E: first you have to remove the flywheel.
init1(begin1(c-identify-objective(rec | ACTS | ID, 1 [remove(flywheel)]))
init2(begin2(c-adopt-objective(rec | ACTS | ID, 1 | ID)))
init3(begin3(c-select-objective(rec | ACTS | ID, 1 | ID)))

2.1 A: how do I remove the flywheel?
ack1−3

init4−6(complete1−3)
init7(begin4(c-focus(STATE | ID, 1 | REC| ID)))
init8(begin5(c-identify-recipe(1 | REC| ID, 2 [blank recipe])))
init9(begin6(c-adopt-recipe(1 | REC| ID, 2 | ID)))

3.1 E: first, loosen the two allen head setscrews holding it tothe shaft, then pull it off.
ack4−9

init10(complete4)
init11(continue5(c-identify-recipe(1 | REC| ID, 2 [loosen(screwsets),pull-off(wheel)])))
init12(continue6(c-adopt-recipe(1 | REC| ID, 2 | ID)))

4.1 A: OK.
ack10−11

init12−13(complete5−6)
...

18.1 A: the two screws are loose,
init14(begin7(c-release-objective(rec | ACTS | ID, loosen | ID))

18.2 A: but I’m having trouble getting the wheel off.
init15(begin8(c-select-objective(rec | ACTS | ID, pull−off | ID)))
init16(begin9(c-focus(STATE | ID, pull−off | REC| ID)))
init17(begin10(c-identify-recipe(pull−off | REC| ID, 3 [blank recipe])))
init18(begin11(c-adopt-recipe(pull−off | REC| ID, 3 | ID)))

19.1 E: use the wheelpuller.
ack14−18

init19−21(complete7−9)
init22(continue10(c-identify-recipe(pull−off | REC| ID, 3 [recipe using wheelpuller])))
init23(continue11(c-adopt-recipe(pull−off | REC| ID, 3 | ID)))

19.2 E: do you know how to use it?
reqack22−23

20.1 A: no.
ack19−21

reqrepair22−23

Figure 4.8: Execution Dialogue from [Grosz and Sidner1986]: Part 1

94

21.1 E: do you know what it looks like?
cancel22−23

init24(begin12(c-identify-resource(STATE | ID, 4 [wheelpuller])))
22.1 A: yes.

ack24
init25(continue12)

23.1 E: show it to me please.
ack25
init26(continue12)
init27(begin13(c-identify-objective(STATE | OBJVS| ID, 5 [show(A,E,4)])))
init28(begin14(c-adopt-objective(STATE | OBJVS| ID, 5 | ID)))
init29(begin15(c-select-objective(STATE | OBJVS| ID, 5 | ID)))

24.1 A: OK.
ack26−29

init30(continue12)
init31−33(complete13−15)

25.1 E: good.
ack30−33

init34(complete12)
init35(begin16(c-release-objective(STATE | OBJVS| ID, 5 | ID)))

25.2 E: loosen the screw in the center and place the jaws around the hub of the wheel. . .
init36(continue10(c-identify-recipe(pull−off | REC| ID, 3 [loosen(screw),. . .])))
init37(continue11(c-adopt-recipe(pull−off | REC| ID, 3 | ID)))

Figure 4.9: Execution Dialogue from [Grosz and Sidner1986]: Part 2

in the planning case, but also as ac-select-objective, as the expectation is that the action

should be executed immediately. In 2.1, the apprentice agrees with these changes to the

CPS state, but does not know a recipe for removing the flywheel.This is modeled as a

c-identify-recipethat contains a blank recipe. The apprentice also seems willing to take

whichever recipe the expert gives him, which is why there is ac-adopt-recipeas well.12

The recipe content is given in 3.1 and the apprentice acceptsit in 4.1.

For brevity, we have skipped part of the dialogue to UU 18.1, where the apprentice

has been working for a bit and now announces that the objective of loosing the screws

12Note that this does not bind the apprentice to whatever recipe is given him, as he can always reject

the recipe once it is given content.

95

has been successfully completed (c-release-objective). In 18.2, the apprentice notes that

he is having problems with the second objective in the recipe— pulling the wheel off.

This is modeled as four proposed CPS acts. First, this presupposes that the apprentice

is actively trying to execute the objective, hence thec-select-objective. It is important

to note here that the execution of the CPS act (and thus the update of the CPS state)

need not, and usually does not, correspond to the point in time that the execution of the

domain action actually begins. Instead, this act can be seenas one agent keeping the

other agent (or actually, the CPS state) up to date about the current state of affairs (cf.

[Levesque, Cohen, and Nunes1990]). The remaining three actscenter around finding

an appropriate recipe for the objective.

In 19.1, the expert intends to adds content to the (blank) proposed recipe, by refer-

ring to a (specific) recipe using a wheelpuller. This introduces an interesting phenomena

seen when using the CPS dialogue model. Often, expressions which refer to PS objects

are found — not just to resources, but also to objectives, to constraints, and as is the

case here, to recipes. Note that this is a much more opaque reference to a recipe than

was given in UU 3.1, where (many of) the steps and constraintswere made explicit.

This kind of problem-solving reference resolution presents an interesting area of fu-

ture work for the interpretation and generation subsystemsof an agent-based dialogue

system.

In 19.2, the expert shows she is not sure if the expert will uniquely identify the recipe

she refers to, and thus requests an acknowledgment. On the surface, this exchange

seems that it could be modeled as a question about knowledge,which indeed it is.

However, at a deeper level, this can really be seen as asking the apprentice if he knows

a recipethat uses a wheelpuller that is appropriate for the objective at hand — which is

presupposed by the recipe reference in 19.1.

Similarly, the negative response in 20.1 is modeled as a request for repair of the

IntActs in 19.1. However, the expert cancels those communicative intentions, and starts

establishing more basic common ground. Notice that, in the end, the recipe that was

96

(presumably) meant in 19.1 is eventually given in 25.2. We donot believe, however,

that this should be modeled as a 6+ turn repair at the grounding level. Instead, we

model it as abandoned communicative intentions at the grounding level, but a continued

proposed act at the CPS level. Note that the acts in 25.2 refer to the CPS acts originally

proposed by the apprentice in 18.2. These CPS acts were never rejected, and thus we

have continuity at the CPS level, although we do not at the grounding level.

At this point, the expert proceeds to try to collaborativelyidentify (in general)

the wheelpuller and only when this is established, does she attempt to specify the

recipe again. In this process, note the execution of an external objective (showing the

wheelpuller to the expert), in order to aid the completion ofa CPS act (the identifica-

tion).

Also note the use ofc-release-objectivein 25.1 to propose that the objective be

considered accomplished and should no longer be pursued.

Interleaved Planning and Execution

The above examples showed how the model handles planning andexecution sepa-

rately. We have annotated in a like manner the dialogue from Figure 1.1 (shown in

Figure 4.10). This dialogue is much richer in that it contains interleaved planning and

execution.

In this example, the speakers decide to jointly pursue an objective of going to the

park (UU 1.1). In 2.2, B introduces 2 possible recipes for doing so — driving or walk-

ing. To be able to plan for this objective, the participants adopt and execute another

objective (looking at the weather on the internet) in order to help them in their planning

decision. Finally, in 9.1 and 10.1, A and B decide to begin executing their high-level

objective of going to the park.

97

1.1 A: let’s go to the park today.
init1(begin1(c-identify-objective(START | OBJVS| ID, 1 [goto(park)]))
init2(begin2(c-adopt-objective(START | OBJVS| ID, 1 | ID))
init3(begin3(c-focus(START | ID, 1 | ID)))

2.1 B: okay
ack1−3 init4−6(complete1−3)

2.2 B: should we walk or drive?
init7(begin4(c-focus(START | ID, 1 | REC| ID)))
init8(begin5(c-identify-recipe(1 | REC| ID, 2 [walk]))))
init9(begin6(c-identify-recipe(1 | REC| ID, 3 [drive])))

3.1 A: what’s the weather going to be like?
ack4−9 init10−11(complete4−6)
init12(begin7(c-identify-constraint(START | CONS| ID, 4 [weather(today,X)])))

4.1 B: I don’t know.
ack10−12 init13(reject7)

4.2 B: let’s watch the weather report.
init14(begin8(c-identify-objective(START | OBJVS| ID, 5 [watch(report)])))
init15(begin9(c-adopt-objective(START | OBJVS| ID, 5 | ID)))
init16(begin10(c-select-objective(START | OBJVS| ID, 5 | ID)))

5.1 A: no, it’s not on until noon.
ack13−16 init17(complete8)
init18(begin11(c-identify-evaluation(START | FILLER(5) | EVALS | ID, 6 [bad idea])))
init19(begin12(c-adopt-evaluation(START | FILLER(5) | EVALS | ID, 6 | ID)))
init20−21(reject9−10)

5.2 A: just look on the internet.
init22(begin13(c-identify-objective(START | OBJVS| ID, 7 [look(internet)])))
init23(begin14(c-adopt-objective(START | OBJVS| ID, 7 | ID)))
init24(begin15(c-select-objective(START | OBJVS| ID, 7 | ID)))

6.1 B: okay. [looks on internet]
ack17−24 init25−29(complete11−15)

6.2 B: it’s supposed to be sunny.
init30(begin16(c-release-objective(START | OBJVS| ID, 7 | ID)))
init31(begin17(c-identify-constraint(START | CONS| ID, 8 [weather(today,sunny)])))
init32(begin18(c-adopt-constraint(START | CONS| ID, 8 | ID)))

7.1 A: then let’s walk.
ack25−32 init33−35(complete16−18)
init36(begin19(c-adopt-recipe(1 | REC| ID, 2 id.)))

8.1 B: okay.
ack33−36 init37(complete19)

9.1 A: do you want to go now?
ack37 init38(begin20(c-select-objective(START | OBJVS| ID, 1 | ID)))

10.1 B: sure.
ack38 init39(complete20)

Figure 4.10: A Planning and Execution Dialogue (from Figure1.1)

98

4.3.2 Collaboration Paradigms

We also mentioned in Chapter 2 that most dialogue systems are not able to handle

the full range of collaboration paradigms, or the respective roles and authority of each

participant during the dialogue. In fact, most dialogue models only handle one type

of collaboration paradigm — master-slave, where one participant has all authority for

decision-making.

The CPS dialogue model does not explicitly model the collaboration paradigm in

use — this needs to be part of the dialogue manager, which decides what to do and say

at each point of the dialogue. However, the CPS model is general enough to be able

to describe dialogues from most collaboration paradigms, as it represents dialogue as

negotiation of changes to the CPS state.

A good example of a mixed-initiative dialogue is the dialogue in Figure 4.10, in

which A and B are more or less equal. For example, in UU 5.1, A rejects B’s proposal

to find out the weather by watching TV and gives a reason for therejection.

At the same time, agents are notrequiredby the model to usereject. The expert-

apprentice dialogue in Figures 4.8 and 4.9 is a good example of a dialogue that is not

mixed-initiative, as the expert has quite a bit more authority.

4.4 Conclusions and Future Work

In this chapter, we have presented a novel dialogue model which is able to account

for a wide range of phenomena needed for agent-based dialogue systems. The model

uses interaction acts from the collaborative problem-solving model, together with a

well-known theory of grounding to describe communicative intentions for utterances.

As was discussed in the chapter, there is still much work to bedone in this area.

First, we have mentioned several areas in which the model needs to be expanded. For

example, we are still lacking a good theory of descriptions of evaluations and con-

99

straints. Also, the model does not take misunderstanding and recovery into account —

where participants must recognize and then repair conflictsin their private understand-

ing of the dialogue model (cf. [McRoy1998]).

Another interesting area of future work is the possible expansion of this model to

be compatible with that proposed by Grosz and Sidner [1986].Their dialogue model

contains three separate but interrelated components: linguistic structure, intentional

structure, and attentional structure. Linguistic structure segments utterances into dis-

course segments, while intentional structure describes the purposes of segments and

their relations to one another. Finally, attentional structure keeps track of entities of

various salience in the discourse.

We believe our model may be compatible with that of Grosz and Sidner. Linguistic

structure can be partially derived from which utterances contribute to a CPS act. Inten-

tional structure is partially recorded in the CPS state (e.g., a recipe being subordinate

to its objective). We also keep track of attentional structure at the problem-solving

level through focus (although it remains to be seen how this corresponds to linguistic

attention and salience).

Another direction of needed future work is annotation and large-scale evaluation.

Our evaluation of the model has thus far been limited to annotating dialogues in order

to show the model’s range of coverage. It is an open question if this kind of information

can be reliably annotated by humans on a large corpus.

Another big challenge will be to create a recognizer that canautomatically recog-

nize communicative intentions (instantiated GAs) from natural language. As mentioned

in Chapter 1, intention recognition algorithms use, at theircore, plan recognition. In the

following chapters, we discuss work on speeding up plan recognition in order to quickly

support the type of recognition we will need to support the CPSdialogue model.

100

5 Plan Recognition: Background

In Chapter 1, we outlined several key areas in which progress must be to support agent-

based dialogue systems. First we mentioned that we needed a dialogue model as well as

a way of describing the communicative intentions associated with utterances. We have

presented solutions to both of these in Chapter 4. Once we havea representation of

communicative intentions for utterances, we need a way of performing intention recog-

nition: the recognition of communicative intentions based on context and the speaker’s

utterance.

Unfortunately, a full model for intention recognition in agent-based dialogue is be-

yond the scope of this thesis. Instead, in the remaining chapters, we make several

contributions to the more general field of plan recognition which we believe are the

first steps towards creating a practical intention recognizer for agent-based dialogue.

Although much work has been done in intention recognition (see [Carberry1990b;

Lochbaum, Grosz, and Sidner2000]) these methods assume a plan-based model of di-

alogue and are not directly applicable to our agent-based model. We do believe, how-

ever, they can be extended to our model, so we do not discount them. Instead, we focus

on several problems with intention recognition and the moregeneral problem of plan

recognition. As plan recognition is a more general form of intention recognition, solu-

tions in the general domain will be applicable to current intention recognizers as well

101

as future work on intention recognition for agent-based dialogue.

In this chapter, we first discuss the relationship between intention recognition and

plan recognition. We then outline some general requirements for plan recognition and

discuss previous work in this field. Finally, we conclude andintroduce the solutions

presented in the coming chapters.

5.1 Intention Recognition and Plan Recognition

Intention recognition is a special case ofplan recognition: the general task of inferring

an agent’s goals and plans based on observed actions. In intention recognition, observed

actions are speaker utterances and the goals are the speaker’s communicative intentions.

Plan recognition is typically divided into two types. Inkeyhole recognition, the

agent being observed is unaware of (or does not care about) the observation. Inintended

recognition, on the other hand, the agent knows it is being observed and chooses its

actions in a way such to make its plan clear to the observer.1 Intention recognition is

a type ofintended recognition, as the speaker forms his actions (utterances) in such a

way to make his communicative intentions clear to the hearer.2

Despite the fact that intention recognition is a type of intended recognition, and that

the speaker forms his utterances intentions so as to make hiscommunicative intentions

“easy” to recognize, intention recognition remains a hard problem for the community,

both in terms of domain-independence, as well as runtime efficiency. All intention

recognizers that we are aware of use at their core a plan recognizer. Thus any problems

1A third type of plan recognition occurs when the agent is trying to thwart recognition of its plans.

Pollack [1986] calls this anactively non-cooperating actor. Very little research has been done for this

third type of recognition (although cf. [Azarewicz et al.1986]), which may be why it is frequently not

included in the typology.
2Note, that this is the case even in deceptive conversation, as the speaker forms his utterances so as

to make his feigned intentions clear.

102

with plan recognizers in general have been inherited also byintention recognizers. We

now turn our attention to plan recognition in general.

5.2 Requirements for Plan Recognition

Plan recognition has not only been used in dialogue systems,but also in a number of

other applications, including including intelligent userinterfaces [Bauer and Paul1993;

Horvitz and Paek1999; Rich, Sidner, and Lesh2001], traffic monitoring [Pynadath and

Wellman1995], and hacker intrusion detection [Geib and Goldman2001]. All of these

applications (including dialogue) have a common set of requirements they place on a

plan recognizer:

1. Speed:Most applications use plan recognition “online,” meaning they use recog-

nition results before the observed agent has completed its activity. Ideally, plan

recognition should take a fraction of the time it takes for the observed agent to

execute its next action.

2. Early prediction: In a similar vein, applications need accurate plan prediction

as early as possible in the observed agent’s task execution.Even if a recognizer

is fast computationally, if it is unable to predict the plan until after it has seen the

last action in the agent’s task, it will not be suitable for online applications, which

need recognition resultsduring task execution.

3. Partial prediction: If full recognition is not immediately available, applications

can often make use of partial information. For example, if the parameter values

are not known, just knowing the goal schema may be enough for an application

to notice that a hacker is trying to break into a network.

As we discuss below, previous work in plan recognition does not provide these

needed features. Typically, systems will sacrifice one attribute for another.

103

5.3 Previous Work in Plan Recognition

In this section, we discuss previous work in plan recognition. This can be divided

into two different types. The first is plan recognition basedon logic, while the second

includes probabilities.

5.3.1 Logic-based Plan Recognition

Most plan recognizers use a plan library, which represents goals in the domain, and

the (typically hierarchical) plans associated with them. Logic-based recognizers can be

characterized by the use of logical methods to exclude goalsand plans in the hierarchy

made impossible given the observed actions.

There have been several types of logic-based plan recognizers. We first discuss

work that bases plan recognition on chaining. Then we discuss plan recognition as

circumscription, and finally, plan recognition based on parsing algorithms.

Plan Recognition as Chaining

Allen and Perrault [1980] created one of the earliest plan recognizers. Given a single

observed action, the recognizer used various rules to either forward chain from the ac-

tion to a goal, or backwards chain from an expected goal to theaction. Rules supported

not only chaining on preconditions and effects, but also hierarchically to higher levels

of recipes. Heuristics were used to control and focus rule application for chaining.

Carberry [1983; 1990b] extended Allen and Perrault’s work tocover multiple suc-

cessive action observations. Each new action is independently upwards chained until

further chaining would create ambiguity. Then, the new action is merged into the plan

recognized so far based on previous observations. Ambiguity of where a plan “attaches”

is resolved by the use of focusing heuristics, which assume that action observations are

often coherently clustered together.

104

Plan Recognition as Circumscription

The seminal work on plan recognition was done by Kautz [1987;1990; 1991][Kautz

and Allen1986], who casts plan recognition as the logical inference process of circum-

scription. This provided a rich plan representation — essentially that of first order logic

and a temporal logic to represent actions and time.

Kautz represented the space of possible plans as a plan library called the event

hierarchy, which included both abstraction and decomposition (subaction) relations.

Goals and actions were represented as complex schemas that included parameter val-

ues. Certain actions were labeled asendactions, meaning that they were an end unto

themselves, or a possible ultimate goal of an agent.

Kautz showed that by assuming that the event hierarchy is complete and that all

events are disjoint, plan recognition becomes a problem of logical circumscription.

Given a certain set of observations (also represented in first order logic) a set ofcovering

modelsis computed which are somewhat like possible worlds in whichthe observations

are true, and each contains a separate possible goal and planfor the agent.

Runtime of the recognizer is exponential in the size of the event hierarchy (e.g., all

goals and subgoals), which means it is not scalable to larger, more realistic domains.

However, it does have several other features, including a rich representational power

(including interleaved plans, partially-ordered recipes, and goal and action parameters,

to name a few). It also supports partial prediction through the ability to predict just a

goal schema as well as to predict an abstract goal. As discussed below, it also suffered

from the general inability of logic-based systems to deal with ambiguity.

Plan Recognition as Parsing

To make plan recognition more tractable, Vilain [1990] describes a method of con-

verting a subset of Kautz’s plan hierarchy into a grammar. Plan recognition is then

performed by running a chart parser over observed actions. Byusing this approach,

105

runtime complexity becomesO(|H|2n3) whereH is the set of goals and subgoals in

the plan library andn is the number of observed actions.

This vast improvement over exponential runtime comes at a cost: the grammar ap-

proach decreases the representational power substantially; it requires totally-ordered

recipes; and does not handle goal and action parameters. (Vilain suggests that param-

eters could be handled as a feature grammar, although this would make the algorithm

NP-Complete.) The lack of goal parameters means a possible explosion in the number

of goals in certain domains, since each instance of a goal schema must be modeled as a

separate goal.

In addition, it is not entirely clear if online predictions can be made by the recog-

nizer. Vilain suggests that this could be done by looking at dotted rules on the chart,

but it is not clear how much predictive power this would give the recognizer.

General Shortcomings of Logic-based Recognizers

A general problem with logic-based recognizers (as noted in[Charniak and Gold-

man1993]) is their inability to deal with ambiguity. This comes from the fact that,

upon each new observed action, they prune away only the predictions which become

logically impossible. Unfortunately, this impacts early prediction substantially, as most

plan recognition domains are highly ambiguous, especiallywhen only the first few

actions from a plan have been observed. In order to disambiguate further, uncertain

reasoning is often used.

5.3.2 Probabilistic Plan Recognition

Several lines of probabilistic plan recognition have been explored. We discuss here the

use of Dempster-Shafer theory, probabilistic abduction and belief networks.

106

Dempster-Shafer Theory

Two systems use Dempster-Shafer theory (DST) to add probabilistic reasoning to plan

recognition. Carberry [1990a] used DST to her logic-based recognizer (see above) to

do default inferencing when further upwards chaining was ambiguous.

Bauer [1995] uses DST to represent and combine the probability of goals given

observed actions. He uses a subset of Kautz’ plan library which includes an abstrac-

tion hierarchy and a single level partially ordered recipes. He uses results of previous

recognition sessions to learn a DSTbasic probability assignment(bpa) which roughly

corresponds to the a priori goal probability (an abstract goal is defined a the set of its

base goals).

In addition, he uses the plan library itself (and a corpus if available [Bauer1994]) to

train another set of bpas which roughly correspond to the probability of a goal given an

observed action. A bpa is defined for each action in the domain, and gives probability

mass to each goal in which it is part of a recipe.

The recognition algorithm is as follows: the prediction bpais initialized to the a

priori goal probabilities. Then, for each observed action,the precomputed bpa for

that action is retrieved, and then each of the possible goalsis logically checked with

respect to constraints (e.g., ordering constraints). If all constraints for all goals hold,

the bpa remains the same. Otherwise, probability mass is taken away from logically

impossible goals and redistributed. Then, this bpa is combined with the prediction bpa

by Dempster’s rule of combination resulting in the new prediction bpa.

It is unclear if this algorithm is scalable, however. DST is known to be exponential

in the general case, and although Bauer mentions some possible solutions (like restrict-

ing bpa subsets to be only abstract goals) it is unclear how this restriction would be

handled by Dempster’s rule of combination and what the effect on recognition would

be. Also, the approach does not support a decomposition hierarchy, and thus is unable

to make predictions about intermediate subgoals and plans.

107

Probabilistic Abduction

Appelt and Pollack [1991] designed a framework in which planrecognition3 could be

modeled as weighted abduction. The framework allows inferences to be encoded as

prolog-like rules with a weight attached to them. If the consequent of the rule can be

logically proven, there is no cost. However, if it is assumed, then the algorithm incurs

the cost of the weight of that step. Out of all possible solutions, the one with the lowest

weight is then chosen.

Appelt and Pollack mention several drawbacks to their work.First, in the general

case, the algorithm is intractable (NP-hard). Also, weights assigned to abduction rules

are not probabilities and must be assigned by hand. They report that local changes in

these rules can affect global recognition in subtle ways.

Goldman et al. [1999] also model plan recognition as an abduction problem. They

model the process of plan execution, and then reverse the decisions to make an abduc-

tive model. In addition, three parts of the execution process are made probabilistic:

the agent’s choice of a top goal, the agent’s choice between competing recipes for a

goal (or subgoal), and the agent’s choice of what action to execute next (from the set of

currently executable actions).

This framework is the first of which we are aware to model plan recognition with

the fact in mind that the agent is executing the action, as opposed to other work which

just works on a plan library data structure. Because of this, they are able to model many

things with other systems could not, including multiple, interleaved plans and evidence

from failure to observe an action.

Like Appelt and Pollack, however, Goldman et al. define a theoretical framework,

but do not deal with the problem of tractability. Although they do not analyze complex-

3Actually, they do what they callplan ascription, which is the (more difficult) process of attributing

mental states to an agent, the combination of which can then signal that the agent has a mental plan of

the form described in [Pollack1986].

108

ity, it is likely that this framework suffers from the same intractability problems that

Appelt and Pollack’s abduction framework had.

Belief Networks

Charniak and Goldman [1993] use a belief network (BN) to encodethe plan recognition

problem. Nodes in their BN include propositions such as the existence of an object or

event, its type, and its role within some plan. As actions areobserved, they are added to

the network in this kind of encoding (with the appropriate arcs between them), and new

nodes are generated which explain possible connections between them and the possible

plans encoded in the network. After these nodes (and connections) have been added,

the posteriori probabilities of other nodes (especially goals) can be computed to predict

the plan.

Huber et al. [1994] propose a method to automatically convert a plan execution

library into a BN, albeit one with a different structure. Their BNs include only events

(not parameters) and directly encode the links between them(not through intermediary

role nodes like Charniak and Goldman).

Unfortunately, reasoning with BNs is exponential in the sizeof the network. To

attempt to deal with this, Charniak and Goldman use a message-passing algorithm to

keep the number of nodes restricted, although the size of thenetwork grows with each

new observation (and the likely goals chained from it). The system of Huber et al. has

a static BN and is likely not scalable to large plan libraries.

5.4 Goal Recognition

In the last section, we discussed previous work in plan recognition. We now discuss

work on a special case of plan recognition:goal recognition. Whereas the task of plan

109

recognition is the recognition of an agent’s goal and plan, goal recognition attempts

only to recognize the goal.

Although not as informative as full plan recognition, goal recognition has been an

active research area of late, partially because it has been noticed that many applications

simply do not need full plan recognition results. For example, Horvitz and Paek [1999]

built an AI receptionist which observed actions (includingnatural language utterances)

to determine the user’s goal, which the receptionist then did for them. Here, the goal

was something only the receptionist itself could accomplish, thus the users typically

did not have a plan.

Additionally, goal recognition naturally removes some of the ambiguity present in

plan recognition. It is still the case that a set of observed actions could be accounted

for by any number of goals, but plan recognition has the additional ambiguity that,

even if the agent’s goal can be unambiguously identified, it could be associated with a

large number of plans, all consistent with the observed actions. For this reason, in fact,

most of the plan recognizers mentioned above do not predict afully-specified, fully-

disambiguated plan at each timestep, but rather apartial plan that includes only those

parts which are disambiguated. We believe that a fast goal recognizer could be used in

a hybrid system to focus the search in a slower plan recognizer (although we leave this

to future work).

Goal recognizers can be classified by the goal structure theytry to recognize.Flat

goal recognizers attempt to recognize goals at just one level, typically the top-level goal.

Hierarchical goal recognizers, on the other hand, attempt to recognize active subgoals

in addition to the top-level goal. Note that hierarchical goal recognition is different

from general plan recognition in that in plan recognition, the attempt is to recognize

the entire plan tree, whereas with hierarchical goal recognition, one only attempts to

recognize the chain of the active subgoals, i.e., the line ofsubgoals which trace the last

observed action to the top-level goal.

We first discuss previous work on flat goal recognizers, and then hierarchical goal

110

recognizers.

5.4.1 Flat Goal Recognizers

Logic-based Systems

Following recent successful work on using graph analysis indoing planning synthesis

[Blum and Furst1997], Hong [2001] uses graph analysis for goal recognition. His

system incrementally constructs agoal graphconsisting of nodes representing state

predicates and observed actions. Each observed action has incoming edges from state

predicates that fulfill its preconditions, and outgoing edges to predicates that are its

effects. Predicates which remain true across actions are also connected. Predicates also

connect to goal nodes whose goal state they contribute to. This provides a list of all

goal states partially or fully fulfilled by the actions up until the last observation. The

algorithm then uses the graph to compute which goals were causally linked to which

actions. If a majority of observed actions contributed to a certain goal, it is reported as

a recognized goal.

The algorithm does not require a hand-built plan library, but rather just uses descrip-

tions of base-level actions and high-level goal states. As Hong points out, however, this

algorithm is only appropriate for post hoc goal analysis, and not online goal recogni-

tion, as it does not quickly converge on a single goal. The reason for this is that the

effects of an action may contribute to any number of goals, and it only becomes clear

near the end of the agent’s execution which of these is reallybeing focused on.

Lesh’s RIGS-L system [Lesh and Etzioni1995b; Lesh and Etzioni1995a; Lesh and

Etzioni1996; Lesh1998] uses analysis of a different kind ofgraph to do goal recogni-

tion. RIGS is initialized with a fully-connectedconsistency graphof action and goal

schemas and instantiated actions observed thus far. Edges between action schema nodes

are used to signifysupportbetween them, and edges to goal schema nodes signifycom-

pletion. Given this graph, the algorithm uses rules to remove graph elements while

111

still keeping the graph correct. For example, thematchingrule removes an edgeex,y

where no effect ofx matches a precontidion ofy (and thus does not directly support it).

The goal connectionrule deletes goal schemas which are no longer connected to the

graph. After the algorithm has run, any goal schema that is not connected is no longer

consistent with the evidence, and any remaining goal schemas are instantiated by the

algorithm and predicted as possible goals.

The runtime complexity of RIGS-L isO(|G| + (|A| + |L|)6) whereG is the set of

goal schemas,A is the set of action schemas, andL is the set of observed actions. Note

that, although this is linear in the number of goal schemas, it is only polynomial overall,

unless|G| >> |A|, which we do not believe is the case in most domains.

Lesh then uses RIGS-L as a component of the BOCES goal recognizer, which uses

version spacesfrom the machine learning field to represent the set of possible goals

and mark which are consistent (without, however, actuallyenumeratingthe goals). The

set of goals are defined and then based on this definition, the goal recognizer keeps

track of boundaries between those goals which are consistent and which are not. Lesh

shows that BOCES has a runtime complexity ofO(log(|G|)) for a certain subclass of

goals calleddecomposable goals, goals in which adding a conjunct makes them more

specific (like searching for an item with a set of features). Runtime for other classes of

goals is the same as that of RIGS-L.

For decomposable goals, BOCES has been shown to run quickly foreven hundreds

of thousands of goals. However, these goals are defined in a certain way, namely the

combination of conjuncted domain predicates, which is typically the case in decom-

posable goals such as constrained searching. However, manytypical goal recogni-

tion domains do not exclusively include decomposable goals. For decomposable goals,

however, BOCES is probably unbeatable.

Logic-based goal recognizers in general also have the same drawbacks mentioned

for logical plan recognizers above, namely, that they are unable to distinguish between

logically consistent goals, which leads us to probabilistic flat goal recognizers.

112

Probabilistic Systems

Horvitz and Paek [1999] use a 3-layered Belief Network to recognize users’ goals in a

secretarial setting. The system not only uses observed actions in the network, but also

other factors like world state. The top layer network tries to recognize an abstract goal.

When confidence in a single goal at this level is high enough, control passes to the next

level, which attempts to recognize a more concrete goal, andso on. The system is able

to perform partial recognition because it can return just anabstract goal when it is not

certain enough about a more specific version. As the system uses a Belief Network, its

worst-case complexity is exponential in the size of the network. Also, as is the case for

probabilistic systems, probability distributions must somehow be estimated for each of

the nodes and it is unclear this would be done.

Albrecht et al. [1998] use a dynamic belief network (DBN) to predict the top-level

goal and next action in a multi-user dungeon (MUD) game. Theyestimate probabilities

from logs of actual game sessions, where a user attempts to complete one of 20 quests

(goals). Although not reported, the runtime complexity of the recognizer appears to

be linear in the number of goals, and is quite similar to the statistical goal schema

recognizer we present in Chapter 7 (although see Section 7.2.1 for a discussion of

differences). Their recognizer, however only recognizes atomic goals and is not able to

handle parameters. It also does not support partial prediction. However, it was the first

goal recognizer of which we are aware which used a large corpus to learn probabilities

as well as to evaluate the recognizer.

5.4.2 Hierarchical Goal Recognizers

The last section discussed flat goal recognizers, which onlyrecognize the agent’s top-

level goal. In this section, we report on several recent recognizers which recognize all

of an agent’s active subgoals, as well as the top-level goal.

Pynadath [1999][Pynadath and Wellman2000] uses probabilistic state-dependent

113

grammars (PSDGs) to do plan recognition. PSDGs are probabilistic context-free gram-

mars (PCFGs) in which the probability of a production is a function of the current state.

This allows, for example, the probability of a recipe (production) to become zero if one

of its preconditions does not hold. Subgoals are modeled as non-terminals in the gram-

mar, and recipes are productions which map those non-terminals into an ordered list of

non-terminals or terminals. During recognition, the recognizer keeps track of only the

current productions and the state variables as a DBN with a special update algorithm.

The most likely string of current productions is predicted as the current hierarchical

goal structure.

If the total state is observable, Pynadath claims the complexity of the update algo-

rithm to be linear in the size of the plan hierarchy (number ofproductions).4 However,

if the state is only partially observable, the runtime complexity is quadratic in the num-

ber of states consistent with observation, which grows exponentially with the number

of unobservable state nodes.

Additionally, the recognizer only recognizes atomic goalsand does not take param-

eters into account. Finally, although the PSDG allows fine probability differences for

productions depending on the state, it is unclear how such probability functions could

be learned from a corpus, as the state space can be quite large.

Bui [2002][Bui, Venkatesh, and West2002] performs hierarchical recognition of

Markov Decision Processes. He models these using an Abstract Hidden Markov Model

(AHMM) which are multi-level Hidden Markov Models where a policy at a higher

level transfers control to a lower level until the lower level ’terminates.’ The addition

of memory to these models [Bui2003] makes them very similar tothe PSDGs used

by Pynadath in that each policy invokes a ’recipe’ of lower-level policy and does not

continue until the lower level terminates.

Recognition is done using a DBN, but because this is intractable, Bui uses a method

called Rao-Blackwellization (RB) to split network variables into two groups. The first

4This claim is disputed in [Bui2002].

114

group (which includes the state variables as well as a variable which describes the high-

est terminating state in the hierarchy) is estimated using sampling methods. Then, using

those estimates, exact inference is performed on the secondpart (the policy variables).

The separation is such that exact inference on the second group becomes tractable,

given that the first group is known.

The recognizer was used in a system which tracked human behavior in an office

building at three abstract levels, representing individual offices at the bottom level,

then office groups, then finally the entire building. Policies at each level were defined

specific to each region (for example the policy (behavior) ofusing the printer in the

printer room). In this model, only certain policies are valid in a given state (location),

which helps reduce the ambiguity. Typically, the domain is modeled such that lower-

level policies become impossible as the agent moves to another room, which makes it

fairly clear when they then terminate.

Although the algorithm was successful for this tracking task, it is unclear, however,

how effective estimation of policy termination would be in general (e.g., when most

policies are valid in most states). Also, similar to Pynadath, this method only recognizes

atomic goals and does not support parameters.

5.5 Towards Statistical Goal Recognition

As mentioned above, we need goal recognizers which are fast,and make early (and

possibly partial) predictions. However, most current recognizers are either not scalable

or severely limit the representation of the domain.

In the following chapters, we present astatistical goal recognizerwhich uses ma-

chine learning techniques to train the recognizer on a particular domain given a corpus.

As it learns domain behavior from the corpus, it does not utilize a plan library and does

not therefore limit plan representation in that respect. Inaddition, it supports parame-

terized goal and action schemas and can make partial predictions if not all parameter

115

values are known. We will show that it is scalable and can makequick and early pre-

dictions.

The remainder of the thesis is as follows. As the recognizer needs a corpus to be

trained on, in Chapter 6 we present the two corpora which we usein our experiments.

The first was gathered from human users in the Linux domain. However, as many

domains do not lend themselves to easy observation, we present a general method for

stochastically producing artificial corpora for plan recognition and use this method to

produce a corpus in the emergency planning domain.

In Chapter 7, we present a flat goal recognizer which is linear in the number of

goals and present its performance on the two corpora described above. Finally, in

Chapter 8, we extend this flat recognizer into a hierarchical goal recognizer and present

experimental results for it as well.

Finally, in Chapter 9, we conclude the thesis and discuss directions of future work.

116

6 Obtaining Corpora for Statistical

Goal Recognition

Over the past 10+ years, many fields in AI have started to employ corpus-based machine

learning techniques. Plan recognition, however, seems to have lagged behind. We

are only aware of a few plan/goal recognizers [Bauer1996a; Albrecht, Zukerman, and

Nicholson1998; Blaylock and Allen2003; Blaylock and Allen2004] (one of which is

our own) that are trained on corpora. We believe a major reason for this is the lack of

appropriate corpora for plan recognition (which we will term plan corpora).

It is not that the field could not make use of plan corpora. Besides the machine-

learning based systems mentioned above, many of the plan/goal recognizers described

in Chapter 5 make use of probabilities, but only briefly mention (if at all) how such

probabilities could be learned.1 In addition to providing training data, corpora could

also be used to evaluate the performance of recognizers, or even as benchmarks to

compare performance across recognizers (something which,as far as we are aware, has

never been done).

In this chapter,2 we describe our efforts in creating two plan corpora — the Linux

corpus and the Monroe corpus — which are used in later chapters to train and test

our goal recognizer. Associated with the latter, we also introduce a novel method for

1A notable exception is Bauer [1994].
2Some contents of this chapter were reported in [Blaylock andAllen2005b].

117

artificially creating plan corpora.

The remainder of the chapter is as follows: In Section 6.1, weintroduce a termi-

nology for describing plan corpora. In Section 6.2, we describe previous work in the

creation of plan corpora. Then in Section 6.3, we describe the creation of the Linux

corpus from human users. In many domains, data collection from humans may be dif-

ficult. Section 6.4 describes several challenges for gathering plan corpora based on

human data. As an alternative to data collection from humans, Section 6.5 introduces

a general method for stochastically creating artificial plan corpora. In Section 6.6, we

describe our use of this method in creating the Monroe corpus. In Section 6.7, we dis-

cuss the advantages and disadvantages of human and artificial corpora and finally, in

Section 6.8, we conclude and mention future work.

6.1 Definitions

We briefly present a few definitions that will be used in the next few chapters. We define

a plan sessionto be a single session in which an agent is observed. Aplan corpusis a

collection of plan sessions which are minimally annotated with the sequence of actions

observed. Agoal-labeled plan corpusis a plan corpus in which action sequences are

labeled with the agent’s top-level goal(s), and aplan-labeled plan corpusis addition-

ally labeled with the agent’s plan(s). Note that a corpus labeled with hierarchical goal

information is nearly equivalent to a plan-labeled corpus,so we do not include it in our

taxonomy.

6.2 Existing Plan Corpora

In this section, we mention some previously gathered plan corpora. We first present

corpora that are unlabeled, and then goal-labeled corpora.We are not aware of the

118

existence of any plan-labeled corpora3 besides the Monroe corpus which we introduce

in Section 6.6.

6.2.1 Unlabeled Data

Several projects in ubiquitous computing [Ashbrook and Starner2003; Patterson et

al.2003] have gathered raw data of a user’s state over time (location and speed from

GPS data) which they use to predict user activity. However, this data is not directly

usable by most plan/goal recognizers which expect a sequence of actions as input.

Davison and Hirsh [1997; 1998] collected a corpus of over 168,000 Unix com-

mands from 77 users over a period of 2-6 months. The corpus consists of timestamped

sequences of commands (stripped of arguments) as recorded by the history mechanism

of tcsh. They then use this for training and testing algorithms for next command pre-

diction.

It is unclear how useful such data would be by itself for plan recognition (although

Bauer [1998] has done work on using such to automatically construct recipe libraries).

6.2.2 Goal-labeled Data

The MUD Corpus

Albrecht et al. [1998] extracted a plan corpus from logs froma Multi-User Dungeon

(MUD) game (which we will term theMUD corpus). A single log includes a sequence

of both player location (within the game world) as well as thesequence of commands

executed in the session. In addition, the MUD records each successful quest comple-

tion, which is used to automatically tag plan sessions with atop-level goal. The corpus

3Although Bauer [1996b; 1996a] introduces a method for creating such. This is described in more

detail in Section 6.4.2.

119

consists of 20 quests, 4,700 locations, and 7,200 observed actions. This corpus was

used to train and test the flat goal recognizer described in Section 5.4.1.

Albrecht et al. report that the corpus data is quite noisy: First because of player

errors and typos, and also because players in MUDs often interleave social interaction

and other activities. It is also important to note that the goals in the corpus are atomic,

as opposed to being parameterized goal schemas.

The Unix Corpus

Lesh [1998] created a goal-labeled corpus in a more controlled setting. He gathered the

Unix corpus using test subjects (users) at the University ofWashington Department of

Computer Science. Users were given an English description ofa task (goal) (such as

“Find a file that contains the word ‘motivating’”) which theythen attempted to com-

plete using a subset of Unix commands.4 The users then indicated success or failure

by a special command which terminated the plan session. Leshthen post-processed

the corpus by converting raw command strings into a parameterized action representa-

tion for Unix commands. The corpus is rather small and contains only 59 successful

sessions with 11 distinct goals.5

6.3 The Linux Corpus

In Chapter 7, we will present a flat goal recognizer that can recognize both a goal

schema and its parameter values, which is trained on a goal-labeled corpus. Because

the MUD corpus does not include parameterized goal schemas,it was not ideal for

training and testing the recognizer. The Unix corpus, on theother hand, does include

4Subjects were not allowed to use a number of constructs such as pipes or scripting languages like

awk.
5Although Lesh used these as parameterized goal schemas, thesame parameters were used for each

goal each time, so these could be thought of as simply 11 distinct atomic goals as well.

120

goal schemas and parameters, but was very small. We created the Linux corpus as an

extension to the Unix corpus.

The goals of the Linux corpus collection were threefold. First, we wanted to in-

crease the size (i.e., number of plan sessions) of the Unix corpus. Second, we wanted

to increase the complexity of the recognition task by addingmore goal schemas. And fi-

nally, we wanted to increase the variety of goals by allowingmultiple parameter values

for each goal schema.

We first describe how the Linux corpus was gathered and then how it was post-

processed. We then make some general observations on the resulting corpus.

6.3.1 Data Collection

Data for the Linux corpus was gathered from volunteer students, faculty and staff in the

University of Rochester’s Department of Computer Science. Volunteers were instructed

to run a program installed on the local network, which led them through a collection

session. This was advantageous, as it required no human supervision and could be

run by users at their own convenience. Multiple concurrent users were also supported.

Users were able to run the script as many times as they wished,in order to contribute

more plan sessions.

User-Specific Data

On a first run by a user, the program gathered general data about him (as detailed below)

and created an account for him. The user was then shown a set ofgeneral instructions

about what the experiment was about and how the plan session should proceed. In

particular, users were told that they would be given a task inLinux to perform, and that

they should perform it using only the command line of the shell they were currently in.

In addition, they were asked to avoid using certain constructs such as pipes or scripting

121

languages, as we wanted to keep the mapping of one command string to one actual

domain action. The actual instructions given can be found inAppendix A.

Goal and Start State Generation

At the start of each session, a goal and start state were stochastically created. Each goal

schema in the domain was given an a priori probability, and the program used these to

stochastically choose a goal schema for the session. Each goal schema had associated

with it a list of possible parameter values for each parameter position, and one of these

was chosen randomly for each parameter position, giving us an instantiated goal.

Goals were similar to those used in the Unix corpus, including goals like “find a file

that ends in ‘.txt’” and “find out how much filespace is free on filesystem /users.” A list

the goal schemas found in the Linux corpus can be found in Appendix B.

For each session, we generated a new start state — a new directory structure and

the files within it.6 A particular challenge was to ensure that the generated goalwas

achievable. Instead of trying to do this on a case-by-case basis given a generated goal,

we decided to guarantee that any generated goal would be possible in any start state.

To do this, we first settled on a static set of files and directory names from which

all start states were generated. The set was carefully coordinated with the set of goal

schemas and possible parameters. For example, one of the possible instantiated goals

was “delete all files which contain more than 40,000 bytes.” To make this achievable,

our static file set included several files which were larger than 40,000 bytes.

For a given session, we first created a small subset of the directory tree which en-

sured that all goals were possible. The remaining part of thetree was then generated

6It appears that the Unix corpus used a static start state for each session. We chose to generate

random start states to avoid a possible learning effect in the corpus. Users who participated in multiple

plan sessions may have learned the directory structure, which could have made certain tasks e.g., finding

files, much easier. Eventually, one may want to model a user’sknowledge of the environment, but we

chose to leave this to future research.

122

randomly given the set of remaining directory names and files.

The Plan Session

Once the goal and start state were generated, the user was to be presented with the

goal. We followed Lesh in presenting the goal as natural language text to the user. We

associated a template with each goal schema which was instantiated by substituting

variables with the values of the corresponding schema parameter values. Appendix B

shows the Linux goal schemas and their corresponding English templates.

The goal was displayed to the user and he was given a shell-like prompt in which to

input commands. The user’s commands as well as their results(the output tostdout

andstderr) were recorded and stored in the corpus. In addition, the system supported

several meta-commands which were not directly recorded in the corpus:

• success — used to indicate that the user believes that they have successfully
completed the task.

• fail — used to end the session without successful task completion.

• task — used to redisplay the session goal at any time.

• instruct — used to redisplay the general instructions at any time.

• help — used to display general help with the system.

The system continued recording commands and results until the user used thesuccess

or thefail command.

Data Recorded

For each plan session, the following data was recorded and isavailable in the raw

version of the corpus:

• Time: date and time the session began.

123

• User ID: a unique number that identifies the user.

• Linux level: the user’s reported proficiency in Linux between 1 (lowest)and 5
(highest).

• User status: whether the user was an undergraduate student, graduate student, or
other.

• Goal: the instantiated goal schema for the session.

• Goal text: the actual text that was presented to the user.

• Reported result: whether the user reported success or failure for the session.

• Directory structure: the directory tree generated for the session (actual files used
were static for each session and are also available).

• Commands and results: each issued command along with its result (from a merged
stdout andstderr stream).

6.3.2 Corpus Post-processing

After the experiments, we performed various operations in order to transform the raw

corpus into something we could use for training and testing our goal recognizer.

First, we excluded all sessions which were reported as failures, as well as sessions

with no valid commands. Although such data could possibly beuseful for training a

recognizer to recognize goals which will not be accomplished by the user alone, we

decided to leave such research for future work.

We also converted issued Linux commands into parameterizedactions. Unlike ac-

tions in many domains used in plan recognition, Linux commands do not nicely map

onto a simple set of schemas and parameters. To do the mapping, we defined action

schemas for the 43 valid Linux command types appearing in thecorpus. This allowed

us to discard mistyped commands as well as many commands thatresulted in errors.

More details about this conversion process as well as the list of action schemas them-

selves can be found in Appendix C.

124

Original Post-processed

Total Sessions 547 457

Failed Sessions 86 0

Goal Schemas 19 19

Command Types 122 43

Command Instances 3530 2799

Ave Commands/Session 6.5 6.1

Table 6.1: Contents of the Linux Corpus

Table 6.1 gives a comparison of the original and post-processed versions of the

corpus.

The post-processed corpus had 90 less plan sessions (86 failed and 4 where the user

reported success but did not execute any successful commands!) The drastic reduction

in command types (from 122 to 43) is mostly due to mistyped commands which either

did not exist or which were not the intended command (and therefore not used with the

right parameters).7 The removal of unsuccessful commands was the main contributor

to the drop in average commands per session.

6.3.3 General Comments

As discussed above, the Linux corpus was gathered semi-automatically from humans.

As a consequence, it contains mistakes. A frequent mistake was typographical errors.

The post-processing step described above helped ameliorate this somewhat — as it

was able to detect incorrectly typed commands (at least in cases where the mistyped

command wasn’t also a successful command). However, it onlychecked the command

itself, and not its parameters. This lead to cases of the userusing unintended parameters

(e.g.,ls flie instead ofls file).

7A frequent example was using the commandld instead of the (supposedly) intendedls.

125

Another phenomenon that we were not able to automatically detect was the user’s

lack of knowledge about commands. For example, one user, upon getting the task of

finding a file with a certain name tried several times in vain touse the commandgrep

to do so, where the command he was likely looking for wasfind.8

Finally, another source of noise in the corpus is that the users themselves reported

whether they had accomplished the task successfully. We have seen several cases in the

corpus where a user apparently misunderstood the task and reported success where he

had actually failed. Overall, however, this does not appearto have happened very often.

6.4 General Challenges for Plan Corpora Collection

As discussed above, several plan corpora have been created.As we discuss in this

section, however, there remain significant challenges to making more corpora available.

To highlight these, we first present a basic model of corpus collection, using natural

language corpora as an example.

A corpus can be seen as consisting of two general parts: (1) one or more sequences

of base data, and (2)annotationson that data. The first is what is required for a minimal

unlabeled corpus, while the annotations can provide labeling of various sorts. Prototyp-

ically, a natural language corpus has base data which is a sequence of words. Many dif-

ferent annotations can then be built on top of this (using thewords as building blocks),

including parse trees, dialogue acts, and so forth. Similarly, a plan corpus can be seen

as having base data which is a sequence of actions which can then be annotated, e.g.,

with plans and high-level goals.

It is important to note that the base data is often not directly observable. For natural

language texts, base words are often directly available,9 but this is not the case for

speech. In this case the raw data (the speech signal) must be converted into the base

8The commandgrep is used to find text in a file or set of files, not to find a file in a directory tree.
9Although this is not the case for languages such as Japanese which do not break words in text.

126

data (typically done by human transcription, although speech recognition can be used

as well).

Based on this classification, we can now divide the challengesfor gathering new

plan corpora into two categories: getting the base data (e.g., the unlabeled corpus) and

then getting various labels for it. We discuss each of these challenges in turn.

6.4.1 Getting Base Data

We have now discussed several types of existing plan corpora, including our own contri-

bution: the Linux corpus. It is interesting to note that mostof these are in the computer

domain. We do not believe that this is a coincidence. These are domains were the raw

observed data is very close to the form of the desired base data (e.g., the action rep-

resentation). Although some processing is usually necessary (e.g., our conversion of

command strings to a parameterized actions in the Linux corpus), it can be typically be

automated.

In many plan recognition domains, however, this is not the case. Take for example

Kautz’ famous cooking domain which includes actions likeBoil andMakeNoodles.

Unless these are asserted in language (e.g., talking about the domain), they would likely

need to be observed visually. Of course, if actions are not easily observable in corpus

collection, it also means they are likely not easily observable by the plan recognizer

itself, which then begs the question of why we would need suchdata in the first place.

We believe that it is at least important to keep this point in mind, however.

6.4.2 Getting Labeled Data

Oftentimes, base data is not enough, especially for doing supervised machine learning.

Often, some sort of labels on the data are needed: e.g., goals, plans, and so forth.

In the labeled corpora discussed above, the MUD corpus was ina domain with the

special property that the system could notice when a top-level goal had been reached

127

and record it (although it was not apparent at which point theplayer began pursuing that

goal). In many domains, however, the agent’s goal is not always readily observable.

For the Unix and Linux corpora, subjects were given a top-level goal and had to

report their own success or failure in achieving it. This, ofcourse, made the top-level

goal labeling easy, but it was also prone to errors in successreporting, as are described

above. This kind corpus gathering is also potentially expensive, as subjects must be

recruited to perform tasks.

Probably a bigger challenge is getting plan-labeled data. This is likely the most

valuable type of corpus for plan recognizers, yet as mentioned above, we are not aware

of the existence of such a corpus.

An obvious, yet expensive way of obtaining labeled data is manual annotation. In

natural language processing, this is done frequently when no automatic algorithm can

be found for the task. However, manual annotation is time-consuming and can be

prone to human errors. Special care must also be taken, when the annotation task is

divided among annotators, that things are annotated in the same way (cf. [Carletta et

al.1997]). We are not aware of any such human annotation effort in the field of plan

recognition and it is difficult to predict how difficult the task of plan corpus annotation

would be. We would venture that top-level goal annotation might be fairly simple, but

that hierarchical plan annotation would be much more time-consuming and error prone.

However, such a hypothesis would have to be tested.

An alternative solution for plan annotation has been proposed by Bauer [1996b;

1996a], who gathered recorded user action sequences and corresponding system state)

from an email program and then used a plan recognizer to labelthem with the appro-

priate goal and plan post hoc. This post hoc recognition can be much more accurate

than online prediction, because it is able to look at the whole execution sequence and

needs only to make one prediction per session. Bauer used thisapproach to tailor the

recognizer to particular users, but it could serve as the starting point for some sort of

(semi)automatic labeling. Of course, the success of such anapproach depends on the

128

quality of the recognizer used to produce the labels. A potential problem with this kind

of automatic labeling, of course, is that recognition errors in the labeling plan recog-

nizer will be propagated in the corpus.

6.5 Generating Artificial Corpora

In contrast to human data collection, we propose the use of anAI planner and Monte-

Carlo simulation to stochastically generateartificial plan corpora. This method can

potentially be used for any domain and can provide a corpus accurately labeled with

goal and hierarchical plan structure. It also provides a cheap way to produce the kind

of large corpora needed for machine learning. The general method is as follows:

1. We modify an AI planner to search for valid plans non-deterministically.

2. We model the desired domain for the planner.

3. The algorithm does the following to generate each item in the corpus:

(a) Stochastically generates a goal.

(b) Stochastically generates a start state.

(c) Uses the planner to find a valid plan for generated goal andstart state.

We first describe our modifications to an AI planner. Then we discuss issues of

domain modeling. We then discuss stochastic generation of the goal and then of the

start state. Finally, we discuss the characteristics of corpora generated by this process.

6.5.1 Planner Modification

For plan recognition, we want to create corpora which model all possible plans in the

domain a user may have. Typical AI planners do not support this, as most return the

129

same plan for a given goal and start state. Many planners alsotry to optimize some plan

property (like length or cost) and therefore would seldom output longer, less optimal

plans. We want to include all valid plans for a goal in our corpus so that we have

broader coverage of the domain.

We, therefore, modified the SHOP2 planner [Nau et al.2003] torandomly generate

one of the set of all possible plans for a given goal and start state.10 We did this by

identifying key decisions points in the planner and randomizing the order that they

were searched.

SHOP2 [Nau et al.2003] is a sound and complete hierarchical transition network

(HTN) planner. SHOP2 is novel in that it searches plan steps in the order they will be

executed, which allows it to handle complex reasoning capabilities like axiomatic infer-

ence and calls to external programs. It also allows partially ordered subtasks. The plan-

ning model in SHOP2 consists ofmethods(decomposable goals),operators(atomic

actions), andaxioms(facts about the state).

In searching the state space, there are three types of applicable decisions points,

which represent branches in the search space:11

• Which (sub)goal to work on next.

• Which method to use for a goal.

• Which value to bind to a parameter.

In order to provide for completeness, SHOP2 keeps lists of all possibilities for a

decision point so that it may backtrack if necessary. We modified the planner so that

10In principle, the corpus generation technique described here is possible using any planner. The only

caveat is that the planner must be randomized, which may or may not be a straightforward thing to do.

One of the reasons we chose SHOP2 was its small code base and a modular design that was amenable to

randomization.
11There is also a fourth which deals with:immediate tasks, but that is beyond the scope of this

discussion.

130

these lists are randomized after they are populated but before they are used. This one-

time randomization guarantees that we search in a random order but also allows us to

preserve the soundness and completeness of the algorithm. We believe our randomized

version is equivalent to computing all valid plans and randomly choosing one.

6.5.2 Domain Modeling

Each new domain must be modeled for the planner, just as it would if the intent were

to use the planner for its usual purpose. As opposed to modeling for plan generation,

however, care should be taken to model the domain such that itcan encompass all

anticipated user plans.

Usually the planning model must be written by hand, althoughwork has been done

on (semi-)automating the process (e.g., [Bauer1998]). Notethat, in addition to the

model of the plan library, which is also used in many plan recognizers, it is also neces-

sary to model state information for the planner.

6.5.3 Goal Generation

With a randomized planner and a domain model, the corpus generator can generate a

random plan sessions given a goal and start state. We stochastically generate both of

these. In this section, we discuss both the process of generating goals and the addi-

tional domain information that is needed for it. The following session gives a parallel

discussion about start states.

We separate goal generation into two steps: generating the goal schema and gener-

ating parameter values for the schema.12

12Note, these steps are very similar to how we stochastically generated goals for users in the Linux

corpus, as discussed above.

131

Goal Schema Generation

In addition to the domain model for the planner, the domain modeler needs to provide

a list of possible top-level goals in the domain, together with their a priori probability.

A priori probabilities of goals are usually not known, but they could be estimated by

the domain modeler’s intuitions (or perhaps by a small humancorpus). The algorithm

uses this list to stochastically pick one of the goal schemas.

Goal Parameter Value Generation

In domains where goals are modeled with parameters, the values of the parameters

must also be generated. Goal parameter values can be generated by using one of two

techniques. For goal schemas where the parameter values aremore or less independent,

the domain modeler can give a list of possible parameter values for each slot, along with

their a priori probabilities. For schemas where parameter values are not independent,

each possible set of parameters is given, along with their probabilities.

Once the goal schema has been chosen, the algorithm uses these lists to stochasti-

cally generate values for each parameter in the schema. At this point, a fully-instantiated

goal has been generated.

6.5.4 Start State Generation

In addition to a top-level goal, planners also need to know the state of the world —

the start state. In order to model agent behavior correctly,we need to stochastically

generate start states, as these can have a big effect on the plan an agent chooses.

Generating the start state is not as straightforward as goalgeneration for several

reasons. First, in all but the simplest domains, it will not be feasible to enumerate all

possible start states (let alone assign them a priori probabilities). Second, in order to

make the planning fast, we need to generate a start state fromwhich the generated goal

132

is achievable. Practically, most planners (including SHOP2) arevery slow when given

an impossible goal, as they must search through the entire search space before they

notice that the goal is impossible.

For these reasons, only a start state which makes the generated goal achievable

should be generated. Unfortunately, we know of no general way of doing this.13 We do

believe, however, that some general techniques can be used for start state generation.

We discuss these here.

The approach we have chosen is to separate the state model into two parts: fixed and

variable. In thefixedpart, we represent all facts about the state that should be constant

across sessions. This includes such things as fixed properties of objects and fixed facts

about the state (for example, the existence of certain objects, the location of cities, and

so on).

Thevariablepart of the state contains facts which should be stochastically gener-

ated. Even with the fixed/variable separation, this part will probably not be a set of

independent stochastically generated facts. Instead, thedomain modeler must come up

with code to do this, taking into account, among other things, domain objects, their

attributes, and other facts in the state. It is likely that values of sets of facts will need to

be fixed simultaneously, especially in cases where they are mutually exclusive, or one

implies another, etc. This process will also likely need to be closely linked to the actual

goal which has been generated to ensure achievability. In Section 6.6, we describe in

more detail how we generated goals and start states for the Monroe corpus.

6.5.5 The Resulting Corpus

A corpus generated by the process described above will contain a complex distribution

of plan sessions. This distribution results from the interaction between (a) the a priori

probabilities of top-level goals, (b) the probabilities oftop-level goal parameter values,

13One possibility might be backchaining from the goal state, although we have not explored this.

133

(c) the algorithm for generating start states, and (d) information encoded in the plan

library itself. Thus, although it cannot be used to compute the a priori probabilities of

top-level goals and parameter values (which are given as input to the generator), it can

be used to e.g., model the probabilities of subgoals and atomic actions in the domain.

This is information which cannot be learned directly from the plan library, since the

recipes and variable fillers used are also dependent on e.g.,the start state.

6.5.6 Related Corpus Generation Work

Conceptually, this method for artificial corpus generation is based on work in NLP

which uses grammars to stochastically generate artificial corpora for training language

models for speech recognition [Kellner1998]. Of course, there are many differences in

methodology. Surface string generation from a stochastic grammar typically assumes

no context (state), whereas state is very important in plan recognition. Also, in surface

string generation, there is no “goal” which restricts acceptable output.

Probably the closest work to this from the plan recognition field was done by Lesh

[1998], who used the Toast reactive planer [Agre and Horswill1992] to generate action

sequences given a goal. However, none of the generation process was stochastic. It

appears that goals were hand-generated, the state was constant, and the planner was not

modified to make decisions non-deterministically, meaningthat it always produced the

same action sequence given the same set of goals.

6.6 The Monroe Corpus

The Monroe corpus is in an emergency response domain set in Monroe County, New

York, based roughly on the domain described in [Stent2000].We created a plan li-

brary with top-level goals such as setting up a temporary shelter and providing medical

attention to victims — all top-level goal schemas can be found in Appendix D.

134

Linux Monroe

Total Sessions 457 5000

Goal Schemas 19 10

Action Schemas 43 30

Ave Actions/Session 6.1 9.5

Subgoal Schemas N/A 28

Ave Subgoal Depth N/A 3.8

Max Subgoal Depth N/A 9

Table 6.2: Comparison of the Linux and Monroe Corpora

Table 6.2 shows a comparison of the contents of the Monroe corpus and the (post-

processed) Linux corpus. The Monroe corpus consists of 5000plan sessions with an

average of 9.5 actions per session. The number of total sessions was, of course, artifi-

cially set and could have easily been changed. The 5000 sessions were generated on a

high-end desktop computer in under 10 minutes.

In addition to the information we gave earlier about Linux (agoal-labeled corpus),

we add several fields here particular to hierarchical corpora. The Monroe corpus has, in

addition to the 10 top-level goal schemas, 38 subgoal schemas. The plans in the corpus

were on average 3.8 subgoals deep. This measures how many nodes away each atomic

action is from the top-level goal. The deepest atomic actionin the corpus was 9 levels

away from the top-level goal.

In the rest of this section, we discuss the generation of goals and start states in order

to illustrate what may be needed in moving to a new domain (in addition to the creation

of a plan library).

135

6.6.1 Goal and Start State Generation

As mentioned above, the plan library includes 10 goal schemas which are specially

marked as top-level goals (the difference is not specified inSHOP2 itself). In addition,

we added a priori probabilities to each of the goal schemas.

The goal schema was chosen based on those probabilities as discussed above. The

schema is then passed to a function which generates the parameter values and the start

state simultaneously. In particular, we start with the fixedstart state, then stochastically

generate locations for movable objects, and then generate other domain facts based on

goal schema specific code. We mention these in order here.

Fixed State

The fixed state consists mostly of fixed locations (such as towns and hospitals), ob-

jects and their properties. It also includes inference rules supported in SHOP2 which

represent things like object types and properties (e.g., adult(x)⇒ can-drive(x)).

Object Locations

As part of the variable state, we define a set ofmovableobjects. They are movable in

the sense that we can randomly choose where they were located(such as ambulances

and workers). We define a list ofsetsof objects, for which it is not importantwhere

they are located, but only that all objects in the set are in the same location (such as

a vehicle and its driver). We also define a list of possible locations, which is used to

generate a random location for each object set. (Note, we ensure in the fixed state that

locations are fully connected so we do not have to worry aboutgoal impossibility at

this step.)

136

Goal Schema Specific

The rest of the state is created, together with parameter values, in goal schema specific

functions. In the emergency domain these were typically very simple, usually just

determining which object to use for parameter values.

An example of a more complicated example is that of the goal schema of clearing

a road wreck, which takes a wrecked car as a parameter. As we donot model the

set of all possible cars in the world, we automatically generate a unique car object as

well as its necessary properties (e.g., that it’s wrecked, its location). Note that in cases

where extra properties are generated, these are also stochastically generated from a

priori probabilities (e.g., whether or not the roads are snowy).

6.7 Plan Corpora: Human vs. Artificial

In this section, we raise several issues about the utility ofartificial generation of plan

corpora versus the collection of human plan corpora. As we have just begun to generate

and use such corpora, we do not believe we are in a position to definitively answer these

questions. Rather, we raise the questions and give some initial thoughts, which we hope

can lead to a discussion in the plan recognition community. The questions treat three

general areas: The effort needed to generate artificial corpora; the accuracy of such

corpora; and the general power of the technique.

Effort Obviously, the technique we describe above requires a certain amount of work.

Minimally, one needs to create a plan library as well as an algorithm for generating start

states. Plan library creation is known to be difficult and is aproblem for the planning

community in general (cf. [Bauer1998]). This may not be a unique problem to artificial

corpora, however, as a plan library would likely be necessary anyway in hand-labeling

human corpora (at least for plan-labeled corpora). Start state generation is also not

trivial, although in our experience, it was much less work than building the plan library.

137

The main question which needs to be answered here is how the effort to create

the machinery for generating an artificial plan corpus compares to the effort needed to

gather and annotate a human corpus. Before we can answer this,we not only need more

experience in generating artificial corpora, but also experience in producing human

corpora — especially plan-labeled corpora.

Accuracy Another point is how accurately an artificial corpus can model human be-

havior. Ideally, to test this, one would want to gather a human corpus and independently

generate an artificial corpus in the same domain and then makesome sort of compari-

son. Of course, care must be taken here, as we suspect that theaccuracy of an artificial

corpus will be highly-dependent on the plan library as well as the algorithm for gener-

ating start states. Another, more practical, evaluation would be the comparison of the

performance of a plan recognizer on human data when it has been trained on artificial

data versus human data.

Power Another question is in which situations an artificial corpuscould be success-

fully used to approximate human behavior. The technique presented here makes the

simplifying assumption (which is also present in most plan recognizers) that an agent

first creates an entire plan and then executes it, and that each action is successfully exe-

cuted. This obviously will not work well in domains where actions fail and replanning

is necessary. In future work, we would like to adapt this technique to use an artificial

agent, instead of a planner, to plan and simulate execution of the plan in creating a

corpus. This would allow us to simulate such phenomena as action failure, replanning,

and so forth. In general, we believe that the techniques reported here can build on ex-

isting work in agents in modeling human behavior and can be useful in most domains

of interest in plan recognition.

138

6.8 Conclusions and Future Work

There is a shortage of corpora which could be used for plan recognition. However, such

corpora could be used both to train probabilistic recognizers as well as to evaluate and

compare performance of different recognizers.

We first described a human corpus we created: the Linux corpus. This corpus was

gathered from real users and contains action sequences labeled with a top-level goal.

As human data can be expensive and difficult to collect, we also presented a new

technique for generating plan-labeled plan corpora using arandomized AI planner and

stochastically generated world states. We also presented the Monroe corpus, which was

generated using this technique.

In future work, we want to move beyond just plans, and model anactual agent.

We believe this would allow us to more closely model agents that we would want to

perform plan recognition on, and would include phenomena such as plan failure and

replanning. This corpus generation method would allow us tohave access to this addi-

tional information (when an action failed, when replanningoccurs), which would not

be readily available from human collection.

139

7 Flat Goal Recognition

In this chapter,1 we describe our statistical flat goal recognizer and report its perfor-

mance on the Linux and Monroe corpora. In Section 7.1, we set up the problem of flat

goal recognition mathematically. We split the problem of recognition into two prob-

lems: recognition of the goal schema (Section 7.2), and recognition of its parameter

values (Section 7.3). We then put the two parts together in Section 7.4 to form anin-

stantiatedgoal recognizer — which recognizes a goal schema along with its parameter

values. We give some concluding comments in Section 7.5.

7.1 Problem Formulation

In this section, we set up the problem of flat goal recognitionstatistically. Before we

do that, however, we need to make a few preliminary definitions.

7.1.1 Preliminary Definitions

For a given domain, we define a set of goal schemas, each takingq parameters, and a

set of action schemas, each takingr parameters. If actual goal and action schemas do

1Some contents of this chapter were reported in [Blaylock andAllen2003; Blaylock and Allen2004;

Blaylock and Allen2005c].

140

not have the same number of parameters as the others, we can easily pad with ’dummy’

parameters which always take the same value.2

Given an instantiated goal or action, it is convenient to refer to the schema of which

it is an instance as well as each of its individual parameter values. We define a function

Schema that, for any instantiated action or goal, returns the corresponding schema. As

a shorthand, we useXS ≡ Schema(X), whereX is an instantiated action or goal.

To refer to parameter values, we define a functionParam which returns the value

of the kth parameter value of an instantiated goal or action. As a shorthand we use

Xk ≡ Param(X, k), whereX is again an instantiated action or goal.

As another shorthand, we refer to number sequences by their endpoints:

1, n ≡ 1, 2, . . . , n

This allows us to shorten definitions in the following ways:

A1,n ≡ A1, A2, . . . , An

A1,r
1,n ≡ A1

1, A
2
1, . . . , A

r
1, A

1
2, A

2
2, . . . , A

r
n−1, A

1
n, . . . , A

r
n

7.1.2 Statistical Goal Recognition

We define flat goal recognition as a classification task: givenan observed sequence of

n instantiated actions observed thus far (A1,n), find the most likely instantiated goalg:

g = argmaxG P (G|A1,n) (7.1)

2The requirement that goal and action schemas have the same number of parameters is for conve-

nience in the mathematical analysis. Below we report how this is circumstance is handled within the

recognizer itself.

141

Using the notation introduced above for referencing schemas and parameter values,

we can expand goal and actions into their schema and parameter components:3

g = argmaxGS ,G1,q P (GS, G1,q|AS
1,n, A

1,r
1,n) (7.2)

HereGS refers to the goal schema ofG andG1 . . . Gq refer toG’s q parameter

values. Each action is similarly decomposed into an action schema andr parameter

values. Note that, for now, we assume that each goal has exactly q parameters, and

each action hasr parameters.

Independence Assumptions

We make two simplifying assumptions at this point, in order to make recognition more

tractable. First, we assume that goal parameters are independent of one another, and

second, that goal schemas are independent from action parameters (given their action

schemas). We now discuss each in more detail.

Goal Parameter Independence We make the simplifying assumption that all goal

parameters are independent of one another. This allowed us to separate the probability

of each parameter value into independent terms in Equation 7.3. This is, of course, not

always the case — an obvious example from the Linux domain is that the source and

destination parameters for a copy goal should not have the same value. However, in

many cases it appears that they are fairly independent.

Goal Schema and Action Parameter IndependenceWe also assume that a goal

schema is independent from an action’s parameter values, given the action schema,

which allows us to simplify the first term in Equation 7.3. This is also admittedly not

always the case. In the Monroe domain, thecall action describes a telephone call,

3From now on we drop the argmax subscript when context makes itobvious.

142

with one parameter: the recipient of the call. This is used inthe domain to turn off

power to a particular location or to declare a curfew, as wellas other things. The first

use always has a power company as a parameter value whereas the second use includes

a call to the local police chief.

Although conditioning on parameter values could be informative, it is likely that it

would introduce sparsity problems because of the large number of possible parameter

values.

Given these two assumptions, Equation 7.2 can be rewritten as:

g = argmaxP (GS|AS
1,n)

q
∏

j=1

P (Gj|GS, AS
1,n, A

1,r
1,n) (7.3)

Here, the first term describes the probability of the goal schemaGS, which we use

for goal schema recognition (Section 7.2). The other terms describe the probability of

each individual goal parameterGj, which we estimate with our goal parameter recog-

nizer (Section 7.3).

7.2 Goal Schema Recognition

We model goal schema recognition on the first term from Equation 7.3 above:

gS = argmaxP (GS|AS
1,n) (7.4)

This gives us a goal schema recognizer, which predicts a top-level goal schema given

a list of observed action schemas. In the remainder of this section, we first describe

the algorithm used for goal schema recognition and then report the results on test cases

from the Monroe and Linux.

143

7.2.1 Algorithm

Using Bayes’ Rule, Equation 7.4 becomes:

gS = argmax
P (AS

1,n|G
S)P (GS)

P (AS
1,n)

(7.5)

SinceP (AS
1,n) is constant in the argmax, we can drop it:

gS = argmaxP (AS
1,n|G

S)P (GS) (7.6)

Using the Chain Rule, we can rewrite this as:

gS = argmax P (AS
n|A

S
1,n−1, G

S)P (AS
n−1|A

S
1,n−2, G

S) . . . P (AS
1 |G

S)P (GS) (7.7)

These conditional distributions are very large and difficult to estimate, therefore,

we make an n-gram assumption, i.e., we assume that an action schemaAS
i is only

dependent on the goal schemaGS and thej action schemas preceding it (AS
i−j,i−1).

For example, if we assume thatAS
i is independent of everything butGS andAS

i−1,

we get a bigram model:

gS = argmaxP (GS)
n

∏

i=2

P (AS
i |A

S
i−1, G

S) (7.8)

We use data from a plan corpus to estimate the a priori goal schema probabilities as

well as the n-gram action probabilities.

We have created a goal schema recognizer based on this n-grammodel. We describe

it here in three phases: First the setup phase, which is run atthe start of the recognition

session. The update and prediction phases are then run aftereach action observation.

Setup Phase At the beginning of a recognition session, we create a probability dis-

tribution for each of the possible goal schemas in the domain. Each goal schema is

assigned its a priori probability (P (GS)), as computed learned from the training cor-

pus.

144

Update Phase Upon each action observation, we calculate the corresponding bigram

probability for each goal schema (for the bigram modelP (AS
i |A

S
i−1, G

S)). For smooth-

ing, we use an n-gram backoff strategy when the n-gram was notseen in the training

data. If an n-gram probability is not found in the model, we use then− 1-gram proba-

bility multiplied by some discount factorγ. This process is recursive: if then−1-gram

probability is not found, then we back off to then − 2-gram probability, with an ad-

ditional penalty factor ofγ (the total penalty would now beγ2). This recurses until a

probability is found, or until it goes past the unigram probability. In the latter case, we

return a very low probability instead of zero so that we do notever exclude any goal

schema from consideration.

The schema probability distribution is updated calculatedby multiplying each goal

schema by the corresponding n-gram probability.

Prediction Phase Once the goal schema distribution has been updated, the recognizer

now has the option of making a prediction. Unlike other (planor goal) recognizers of

which we are aware, our recognizer supportsselective prediction, which means that

it only makes predictions when it has achieved a certain degree of confidence in the

prediction.

We believe this is an important feature for a recognizer. In all but the most trivial do-

mains, it is likely not possible to achieve correct prediction after every observed action,

even for humans (cf. [Schmidt, Sridharan, and Goodson1978]). Perfect performance

would mean that we would immediately know what the agent was doing after seeing

just one action. Things are not always that clear. In the Linux domain, for example, a

first action ofpwd, which has very little predictive power, was not uncommon. Also,

for goals likemove-files-by-name it was not always clear that the goal was a

move (as opposed to a copy) until the very last action had beenperformed (which was

then typically themv command).

Instead of having the recognizer make a prediction after each observed action, we

145

Action move-file know-usage Prediction

(init) a priori probabilities .30 .70 N/A

pwd P(G| init, pwd) .50 .50

new probabilities .30 .70 (no prediction)

ls P(G| pwd,ls) .30 .70

new probabilities .16 .84 know-usage

mv P(G| ls,mv) .97 .03

new probabilities .86 .14 move-file

ls P(G| mv,ls) .80 .20

new probabilities .96 .04 move-file

Figure 7.1: Schema Recognition Example:τ = 0.8

set a confidence thresholdτ , which allows the recognizer to decide whether or not it

is confident enough to make a prediction. If the probability of the prediction is greater

thanτ , the recognizer predicts. Otherwise, it predicts “don’t know.”

Another feature supported by the recognizer is n-best prediction. For some appli-

cations where the result of goal recognition is used for further reasoning (e.g., natural

language understanding), we do not necessarily need a single prediction, but instead

can predict then best goal schemas. In the case of an n-best prediction, the probability

of the prediction is taken to be the sum of the probabilities of the n individual goals,

and that is then compared againstτ in deciding whether to make a prediction.

Example To illustrate the algorithm, we give a short (contrived) example here. In

this example domain, there are just two possible goal schemas: know-usage (know

the disk usage of a particular file) andmove-file (move a file to a certain directory).

Figure 7.1 shows the observed actions and resulting calculations and predictions in an

example plan session.

146

The first line (labeled ’init’) shows the a priori probabilities for the goal schemas

before any action has been observed. Upon observing the firstaction (pwd), the rec-

ognizer looks up the bigram probabilities of each of the goalschemas (shown by

P (G| init,pwd)). In this case, both of these probabilities is0.5, as shown in the fig-

ure. For each goal schema, the bigram probabilities are thenmultiplied by the previous

prediction probabilities (i.e., the a priori probabilities) and then normalized to a prob-

ability distribution, shown on the line labeled ’new probabilities’. The recognize then

chooses the goal schema with the highest probability (know-usage) and then com-

pares the probability to the prediction thresholdτ . In this case, the probability of the

prediction (0.7) is not greater than the threshold (0.8) andthus, no prediction is made.

For the next observed action (ls), the procedure is the same, except this time, the

recently calculated prediction probabilities are used instead of the a priori probabilities.

Here, the probability ofknow-usage is greater than the threshold, and thus, this

schema is predicted by the recognizer.

The final two predictions occur in much the same way. Bigram probabilities are

looked up and new prediction probabilities are calculated.In both cases, the correct

schema (move-file) is predicted.

Complexity

As discussed in Chapter 5, prediction speed and scalability with respect to number of

goals is a needed feature for goal recognizers. For this reason, we measure complexity

in terms of the number of possible goal schemas (|G|).

At a prediction opportunity (i.e., after an action has been observed), the update

of a single goal schema can be done in constant time (it is a probability lookup with

possible n-gram backoff). The entire update phase, then, islinear in the number of goal

schemasO(|G|). We do the prediction phase during this pass over the goal schemas

as well, keeping track of then schemas with the highest probabilities. Thus the entire

147

prediction algorithm isO(|G|), or linear with respect to the number of possible goal

schemas.

Comparison with Albrecht et al.

In Chapter 5, we described the goal recognizer developed by Albrecht et al. [1998]

and mentioned it is similar to our own flat goal schema recognizer. Now that we have

described our schema recognizer, we are in a position to discuss similarities and differ-

ences.

At a conceptual level, our recognizer is almost identical totheir actionModel rec-

ognizer, with the exception that they also condition the probability of the current goal

schema on the previous goal schema. (We assume that there is only one goal schema

per session.) They, however, also introduce other models which also incorporate the

current state in the form of player location and condition the goal schema probability

on that as well. They also use their models to predict next player action and next player

location, whereas we only predict the goal schema.

Our recognizer uses ann− 1 backoff strategy for unseen action/goal combinations,

whereas they do not. Also, our recognizer uses a threshold toselectively make predic-

tions.

7.2.2 Experiments

We tested our goal schema recognizer on both Monroe and Linuxcorpora. We first we

discuss the general metrics we use for evaluating results ofgoal schema recognition

and then we discuss the experimental results on the two corpora.

Evaluation Metrics

As Lesh [1998] has pointed out, there is a lack of agreed-uponbenchmarks and metrics

for reporting results in the plan and goal recognition community. This makes it diffi-

148

cult if not impossible to compare performance across recognizers. As we mention in

Chapter 6, one of the contributions of this thesis is a pair of new corpora (Linux and

Monroe) which can be used as benchmarks for the community. Inthis chapter and the

next, we also contribute several new evaluation metrics which are designed to measure

the desired features of recognizers discussed in Chapter 5.

In reporting results for goal schema recognition, we use thefollowing metrics:

• Precision: the number of correct predictions divided by the total number of pre-

dictions made.

• Recall: the number of correct predictions divided by the total number of actions

observed.

• Convergence:whether or not the final prediction was correct (i.e., whether the

recognizerfinishedthe session with the correct answer).

• Convergence point:if the recognizer converged, at which point in the input it

started giving only the correct answer. This is reported as aquotient of the action

number (i.e., after observingx actions) over the total number of actions for that

case.4 This is similar to Lesh’s measurement of work saved [Lesh1998].

Precisionandrecall are used to measure overall accuracy of the recognizer, both

in predicting and deciding when to predict. It is important to remember that here the

predictions are ’online’, i.e., that they occur after each observed action, and not post

hoc, after all observations have been seen.

Convergenceandconvergence pointare an attempt to measure early prediction, i.e.,

how far into the plan session does the recognizer zero in on the correct prediction. We

4It is necessary to report the total number of actions as well.Because this statistic is only for the

test cases which converged, it is possible that the average actions per session is different from that of the

entire corpus.

149

Precision (2/3) 66.7%

Recall (2/4) 50.0%

Convergence yes

Convergence Point 3.0/4.0

Figure 7.2: Evaluation Metrics for Example in Figure 7.1

use the term convergence here, as it is often the case that therecognizer is unsure at the

start of a session, but that at some point it has seen enough evidence to converge on a

particular prediction, which it then begins predicting andpredicts from that point on (cf.

[Albrecht, Zukerman, and Nicholson1998]). Note that, for the purposes of calculating

theconvergence pointif the recognizer does not make a prediction (i.e., predicts“don’t

know”), it is considered an incorrect prediction and the convergence point is reset, even

if the correct prediction was made beforehand.

To illustrate, we refer to the short example given above in Figure 7.1. Each of the

above metrics for this example are shown in Figure 7.2. To calculate precision, we see

that three predictions were made and two of them were correct, giving us 66.7 percent.

For recall, we note there were four possible prediction points (one after each observed

action), and again, two correct predictions were made, giving us 50.0 percent.

The example does converge, since the last prediction was correct, therefore we can

calculate a convergence point for it. After the third observed action, the recognizer

made the right prediction, and it kept making this prediction throughout the rest of the

plan session. Thus, we have a convergence point of 3.0 observed actions, over the total

of 4.0 observed actions. Note that for a group of results, thedenominator will be the

average of total observed actions per each converged plan session.

150

n-best(τ) 1 (0.7) 2 (0.9) 3 (0.9)

Precision 95.6% 99.4% 98.9%

Recall 55.2% 58.7% 69.6%

Convergence 96.4% 99.8% 100.0%

Convergence Point 5.4/10.2 5.4/10.3 4.1/10.2

Table 7.1: Goal Schema Recognition Results on the Monroe Corpus

Monroe Experiments

In our experiments with the Monroe corpus, we randomly selected 500 plan sessions

as a test set and trained a bigram model over actions (as discussed above) using the

remaining 4500 sessions.

Table 7.1 shows results for different n-best prediction values.5 We get a precision of

95.6 percent for 1-best prediction, which can be raised to 99.4 percent by predicting the

2 best schemas. In 2-best prediction, the correct schema is eventually predicted for 99.8

percent of sessions. For 1-best, the recognizer converges on the correct schema after

seeing an average of 5.4 of 10.2 actions (for those cases which converge). This means

that, on average, the recognizer zeros in on the prediction alittle more than halfway

through the session.

Recall for 1-best is 55.2 percent, which increases to 69.6 percent for 3-best pre-

diction. Although this may seem poor in comparison to precision and convergence

numbers in the 90’s, it is important to keep in mind that, as wemention above, a recall

of 100 percent is usually out of the question, as that would mean that we can always

predict the right goal after seeing just one action. We believe 56.2 percent recall (or

70.1 percent for 3-best) to be a very good result.

5The threshold valueτ needs to be individually set for each n-best value. Theτ values here were

chosen experimentally.

151

n-best(τ) 1 (0.4) 2 (0.6) 3 (0.9)

Precision 37.6% 64.1% 73.7%

Recall 22.9% 40.6% 41.4%

Convergence 37.4% 56.5% 59.7%

Convergence Point 3.5/5.9 4.0/7.2 4.1/7.2

Table 7.2: Goal Schema Recognition Results on the Linux Corpus

Linux Experiments

Because of the smaller size of the Linux corpus, we used cross-validation, testing on

sets of 5 plan sessions at a time and training a bigram model onthe remaining 452.

Table 7.2 shows results for different n-best values. This isa much different picture

than in the Monroe domain. Precision in the 1-best case is only 37.6 percent, with 22.9

percent recall and 37.4 percent of sessions converging. Interestingly, the convergence

point for 1-best is comparable to that in Monroe.

Although still not near the performance in the Monroe domain, the 2 and 3-best

results on the Linux corpus are much better than 1-best, withprecision jumping to 64.1

percent for 2-best and 73.7 percent in 3-best, with recall increasing to 40.6 percent and

then 41.4 percent. These results are much more reasonable than the 1-best case.

Still, performance on the Linux corpus is much worse than that on the Monroe

corpus. We believe there are several contributing factors:

First, the corpora have very different properties. Most prominently, the Monroe

corpus has only 10 goal schemas, whereas Linux has almost double that amount (19).

In addition, the average session length in Monroe is 9.5 actions whereas in Linux it

is only 6.1. Longer sessions can give more evidence to the recognizer, giving more

opportunities to make predictions with more evidence. Also, in the Monroe tests, the

recognizer was trained on a factor of magnitude more data (4500 sessions) than in the

Linux tests (452 sessions).

152

In addition, as discussed in Chapter 6, the Linux corpus is data from real humans,

whereas Monroe is artificially generated. Although we did some automatic cleanup of

the Linux corpus (as described in Appendix C), many human “errors” still survived. In

one example, a user used the commandgrep to try to search for a file in a directory

tree (grep is for searching for text in files, not files in a directory). Such mistakes

served as a kind of red herring for the recognizer, pointing it strongly in the wrong

direction (in this case a text search), and often ruining results for an entire session.

Another factor seems to be goal similarity. Some of the goal schemas used in the

Linux corpus are very similar (e.g.,find-file-by-ext andfind-file-by-name).

The recognizer often confused these (and other similar setsof goals). This is one of the

reasons for the big performance increase in the 2 and 3-best prediction results.

7.3 Goal Parameter Recognition

In order to recognize instantiated goals, we need to recognize goal parameter values

as well as goal schemas. One straightforward way of doing this would be to treat

instantiated goal schemas as atomic goals and then use the goal schema recognition

algorithm from above. Thus, instead of estimatingP (move-files-by-name|ls,cd), we

would estimateP (move-files-by-name(a.txt,bdir)|ls(papers),cd(progs)).

This solution has several problems. First, this would result in an exponential in-

crease in the number of goals, as we would have to consider allpossible ground in-

stances. This would seriously impact the speed of the algorithm. It would also affect

data sparseness, as the likelihood to have seen any n-gram inthe training data will

decrease substantially.

For this reason, we perform goal schema and parameter recognition separately, as

described in Equation 7.3 above. From the last term of the equation, we get the follow-

ing for a single parametergj:

153

gj = argmaxP (Gj|GS, AS
1,n, A

1,r
1,n) (7.9)

We could estimate this with an n-gram assumption as we did above. However, there

are several problems here as well. First, this would make updates at least linear in the

number of objects in the world (the domain ofgj), which may be expensive in domains

with many objects. Second, even without a large object space, we may run into data

sparsity problems, since we are including both the action schemas and their parameter

values. In addition, this model would not work for domains (like Linux) where domain

objects (e.g., files) can be created or destroyed during a plan session.

The solutions above also miss out on the generalization that, oftentimes, theposi-

tionsof parameters are more important than their values. For example, the first param-

eter (i.e., thesource file) of the actionmv is usually thefilename parameter of the

goalmove-files-by-name, whereas the second parameter (i.e., thedestination)

almost never is, regardless of the parameter’s actual value.

For our parameter recognizer, we learn probability distributions of equality over

goal and action parameter positions. During recognition, we use these distributions

along with a special, tractable case of Dempster-Shafer Theory to dynamically create a

set of possible parameter values and our confidence of them, which we use to estimate

Equation 7.9.

In this section we first describe this model and then report onexperiments using it

on the Monroe and Linux corpora.

7.3.1 Algorithm

Formally, we want to base our recognizer on the following probability distribution:

P ((Gj = Ak
i)|G

S, AS
i), which represents the probability that the value of thekth pa-

rameter of actionAi is equal to thejth parameter of the goalG, given both the goal and

action schemas as well as the two parameter positions. Note that in this distribution,

154

thevalueof the parameter is not considered, only itsposition. We can easily compute

this conditional probability distribution from our training corpus.

To use the above model to predict the value of each goal schemaparameter as we

observe actions, we need to be able to combine probabilitiesfor each parameter in

the observed action, as well as probabilities from action toaction. In order to do this

tractably, we have introduce a special subset of Dempster-Shafer Theory (DST) which

we callsingleton Dempster-Schafer Theory(sDST). We first give a short introduction

to DST, and then describe sDST. Then we describe the recognition algorithm and its

computational complexity.

Dempster-Shafer Theory

Dempster-Shafer Theory (DST)6 is a generalization of probability theory which allows

for incomplete knowledge. Given a domainΩ, a probability mass is assigned to each

subset ofΩ, as opposed to each element, as in classical probability theory. Such an

assignment is called abasic probability assignment(bpa).

Assigning a probability mass to a subset in a bpa means that weplace that level

of confidence in the subset, but cannot be any more specific. For example, suppose

we are considering the outcome of a die roll (Ω = {1, 2, 3, 4, 5, 6}).7 If we have no

information, we have a bpa ofm(Ω = 1), i.e., all our probability mass is onΩ. This is

because, although we have no information, we are 100 percentcertain thatoneof the

elements inΩ is the right answer; we just cannot be more specific.

Now suppose we are told that the answer is an even number. In this case, our bpa

would bem({2, 4, 6}) = 1; we have more information, but we still cannot distinguish

between the even numbers. A bpa ofm({2, 4, 6}) = 0.5 andm({1}) = 0.5 would

intuitively mean that there is a 50 percent chance that the number is even, and a 50

6See [Bauer1995] for a good introduction.
7This example is taken from [Bauer1995].

155

percent chance that it is 1. The subsets ofΩ that are assigned non-zero probability

mass are called thefocal elementsof the bpa.

An often-cited problem of DST is that the number of possible focal elements of

Ω is the number of its subsets, or2|Ω|. This can be a problem both for storage and

computation time.

Evidence Combination Two bpasm andm′ representing different evidence can be

combined into a new bpa using Dempster’s rule of combination:

(m⊕m′)(A) =

∑

B∩B′=A

m(B)m′(B′)

∑

B∩B′ 6=∅

m(B)m′(B′)
(7.10)

The complexity of computing this isO(lmlm′ |Ω|), wherelm andlm′ are the number

of focal elements inm andm′, respectively. Basically, the algorithm does set inter-

section (the|Ω| term) on each combination of focal elements fromm andm′.8 As the

number of focal elements of a bpa can be2|Ω|, the worst case complexity of Dempster’s

rule of combination isO(exp(|Ω|)), whereΩ is the set of objects in the domain.

Singleton Dempster-Schafer Theory

In our goal parameter recognizer, we use a special case of Dempster-Schafer Theory

which we termsingleton Dempster-Schafer Theory(sDST), in which we only allow

focal points in a bpa to either be singleton sets, orΩ (the full set). sDST has several

nice properties:

First, because we only allow singleton sets andΩ as focal elements, a bpa can have

maximally |Ω| + 1 elements. Not only are there a decreased number of possible focal

elements in sDST bpas, but set intersection for evidence combining becomes simpler as

8We only need consider the focal elements here, since non-focal elements have a probability mass 0,

which will always make(m⊕m′)(A) = 0.

156

well. As mentioned above, Dempster’s rule of combination performs a set intersection

of each combination of focal elements fromm andm′. With sDST focal terms, set

intersection can be done in constant time. We show this by exploring each possible

combination of focal element setsa andb from sDST bpas:

1. Both a and b are singleton sets:In this case the single values are compared in

constant time. If they are the same, the intersection is a copy of a. If they are

different, the intersection is∅.

2. One ofa and b is a singleton set and the other isΩ: In representingΩ in the

system, we do not need to actually store each individual value in a set. Rather,

we can just use a special variable that marks this focal element as beingΩ. In

the case that one focal element isΩ, the intersection will always be a copy of the

other focal element. No inspection of set contents is necessary, thus this can be

done in constant time as well.

3. Botha andb are Ω: Actually, this is a special case of the preceding case. When

both elements areΩ, then the intersection isΩ, which does not require any special

inspection of set contents and can also be done in constant time.

These three cases exhaust the possible focal element combinations in combining

two sDST bpas. Thus, the complexity of Dempster’s rule of combination of two sDST

bpas isO(lmlm′) orO(|Ω|2) in the worst case.

sDST is also closed under Dempster’s rule of combination. The proof actually

follows from the three cases intersection we enumerate above. In all three cases, the

resulting set is either: the empty set (in which case it is no longer a focal element), a

singleton set, orΩ.

157

Representing the Model with sDST

As stated above, we estimateP ((Gj = Ak
i)|G

S, AS
i) from the corpus. For a given goal

schemaGS and theith action schemaAS
i , we define alocal bpamj

i,k for each goal

and action parameter positionsj andk s.t. mj
i,k({A

k
i }) = P ((Gj = Ak

i)|G
S, AS

i) and

mj
i,k(Ω) = P ((Gj 6= Ak

i)|G
S, AS

i). This local bpa intuitively describes the evidence

of a single goal parameter value from looking at just one parameter position in just

one observed action. The bpa has two focal elements:{Ak
i }, which is a singleton set

of the actual action parameter value, andΩ. The probability mass of the singleton set

describes our confidence that that value9 is the goal parameter value. The probability

mass ofΩ expresses our ignorance, as it did in the die roll example above.10

In order to smooth the distribution, we always make sure thatelementsΩ andAk
i

are given a small probability mass. If either one is has probability mass of 1, a very

small value is taken from that and given to the other.

There are several things worth noting here. First, if a goal schema has more than one

parameter, we keep track of these and make predictions aboutthem separately. Also,

we do not need to represent, enumerate or evenknowthe elements ofΩ. This means

that we can handle domains where the set of possible values isvery large, or in which

values can be created or destroyed. (Both of these are properties of the Linux domain.)

Combining evidence As mentioned above, we maintain a separateprediction bpamj

for each goal parameter positionj. Each of these are initialized asmj(Ω) = 1, which

indicates complete ignorance about the parameter values.

9Note that this is the actual instantiated value and not just the position. Two instances of the same

action schema with different parameter values will create different bpas.
10Note here thatΩ is the set ofall possible domain values and still includesAk

i
. The reason for

this is that just because we may not have seen much evidence for Ak

i
given the action schema doesn’t

necessarily mean thatAk

i
is not the goal parameter value. It just means that we don’t yet havemuch

evidence that itis the value. We actually ran experiments in whichΩ did not include any of the values in

the singleton focal elements and, while precision went up, recall dropped significantly.

158

As we observe actions, we combine evidence within a single action and then among

single actions. First, within a single actioni, we combine each of the local bpasmj
i,k

for each parameter positionk, which gives us anaction bpamj
i . This describes the

evidence the entire action has given us. Then, we combine theevidence from each

observed action to give us an overallprediction bpathat describes our confidence in

goal parameter values given all observed actions so far. We then use this prediction bpa

to make (or not make) predictions.

When we observe an actionAi(p1, p2, . . . , pr) we create local bpas for each action

parameter positionmj
i,1 . . .m

j
i,r. The action bpamj

i is the combination of all of these:

mj
i = mj

i,1 ⊕m
j
i,2 ⊕ . . . ⊕m

j
i,r. The prediction bpa is similarly calculated from all of

the action bpas from observed actions:mj = mj
1 ⊕m

j
2 ⊕ . . . ⊕m

j
i . However, we can

calculate this incrementally by calculatingm′j = mj ⊕mj
i at each action observation.

This allows us to only do 1 action-bpa combination per observed action.

It is worth nothing here that only values that we have seen as an action parameter

value will be part of the prediction bpa. Thus, the maximum number of focal elements

for a bpamj will be the total number of unique action parameters seen, plus one (for

Ω). As a corollary, this means that our method will not be able to correctly predict

a goal parameter unless its value has been seen as an action parameter value in the

current plan session. On the other hand, it means that we can predict parameter values

that were never seen in the training data, as long as they appear in the observed actions.

In the reported results below, we report results of total recall and also ‘recall/feasible’,

which restricts recall to the prediction points at which thealgorithmhad access tothe

right answer. Admittedly, there are cases in which the correct parameter value could

be learned directly from the training corpus, without having been seen in the current

session, although it is unclear how often this occurs. In future work, we would like to

investigate ways of learning both parameter values and positions.

159

Prediction At some level, we are using the prediction bpa as an estimation of the term

P (Gj|GS, AS
1,n, A

1,r
1,n) from Equation 7.9 above. However, because the bpa containsΩ,

it is not a true probability distribution and cannot providea direct estimation. Instead,

we useΩ as a measure of confidence in deciding whether to make a prediction.

To make an n-best prediction, we take then singleton sets with the highest proba-

bility mass and compare their combined mass with that ofΩ. If their mass is greater,

we make that prediction. IfΩ has a greater mass, we are still too ignorant about the

parameter value and hence make no prediction.

In order to more finely control prediction, we add a factor to this comparison which

we call ignorance weight(ψ). In deciding whether or not to make a prediction,Ω is

multiplied byψ before it is compared with the probability of the prediction. Values

of ψ greater than 1 will cause the recognizer only to predict whenmore sure of the

prediction, whereas values between 0 and 1 will cause the recognizer to predict more

profusely.

Complexity

The other thing to mention is computational complexity of updating the prediction bpa

for a single goal parameterGj. We first describe the complexity of computing theith

action bpamj
i , and then the complexity of combining it with the previous prediction

bpamj.

To computemj
i , we combiner 2-focal-element local bpas, one for each action pa-

rameter position. If we do a serial combination of the local bpas (i.e.,mj
i = ((mj

i,1 ⊕

mj
i,2)⊕m

j
i,3)⊕ . . .⊕m

j
i,r), this results inr− 1 combinations, where the first bpa is an

intermediate composite bpâmj
i and the second is always a 2-element local bpa. Each

combination (maximally) adds just 1 subset tom̂j
i (the other subset isΩ which is always

shared). The(k−1)th combination result̂mj
i,k−1 will have maximum lengthk+1. The

combination of that with a local bpa is O(2(k+1)). Thus, the overall complexity of the

160

combination of the action bpa is
r−1
∑

k=1

O(2(k + 1)) ≈ O(r2), wherer is the arity of the

observed action.

The action bpamj
i is then combined with the previous prediction bpa, which hasa

maximum size ofr(i − 1) + 1 (from the number of possible unique action parameter

values seen). The combination of the two bpas isO(ir2), which, together with the

complexity of the computation of the action bpa becomesO(ir2 + r2) ≈ O(ir2). r

is actually constant here (and should be reasonably small),so we get a complexity of

O(i). This is done for each of theq goal parameters, butq is also constant, so we still

haveO(i). This gives us a fast parameter recognition algorithm whichis linear in the

number of actions observed so far, and is not dependent on thenumber of objects in the

domain.

7.3.2 Experiments

We tested the goal parameter recognizer on the Monroe and Linux corpora as we did

the schema recognizer. We discuss each corpus in turn, afterbriefly mentioning the

metrics we use in reporting results.

Evaluation Metrics

In evaluating the parameter recognizer, we use the same metrics we did for the schema

recognizer. We also report two new metrics:recall/feasibleandconvergence/feasible,

which measure how much recall/convergence the recognizer got from what it could

feasiblyget. As mentioned above, the recognizer can only predict values that it has

seen as action parameter values within the current session.Thusrecall/feasibleis the

number of correct predictions divided by the number of feasible prediction points, i.e.,

points at which the goal parameter value had already appeared as an action parameter

value.Convergence/feasiblemeasures the number of correct last predictions in a similar

fashion.

161

n-best(ψ) 1 (2.0) 2 (2.0) 3 (2.0)

Precision 94.3% 97.6% 98.8%

Recall 27.8% 39.2% 40.0%

Recall/Feasible 55.9% 78.9% 80.6%

Convergence 46.9% 76.2% 76.7%

Conv./Feasible 59.1% 96.1% 96.7%

Convergence Point 5.1/10.0 4.8/9.0 4.7/9.0

Table 7.3: Goal Parameter Recognition Results on the Monroe Corpus

Monroe Experiments

We tested the parameter recognizer on the Monroe corpus in the same way we did the

schema recognizer, training the probability model on 4500 sessions and testing on the

remaining 500. The results of the tests are shown in Table 7.3.

Here the recognition results are quite good, with high precision even in the 1-best

case. Recall and convergence, as can be expected, are lower, with only 27.8 percent

recall for 1-best. Looking at the measures of recall/feasible and conv./feasible, however,

shows that the algorithm is doing quite good for the cases that it can. In only 49.6

percent of parameter prediction points had the parameter value actually appeared as an

action parameter value. In fact, in only 79.4 percent of cases did the parameter value

appear as an action parameter value at all. Thus the adjustedrecall and convergence

measures are much higher.

Convergence point performance is also very encouraging, being at less than half-

way through the session, even in the 1-best case. In fact, thefeasible convergence

point (i.e., the average point in the action stream when the parameter value appears) is

3.8/9.1, which means that the recognizer is converging on the right prediction around

only one action after the parameter value appears in the action stream.

162

n-best(ψ) 1 (2.0) 2 (2.0) 3 (2.0)

Precision 90.9% 93.2% 91.4%

Recall 32.1% 35.8% 37.0%

Recall/Feasible 57.1% 63.8% 65.9%

Convergence 54.4% 60.3% 62.1%

Conv./Feasible 66.2% 73.5% 75.6%

Convergence Point 3.5/6.2 3.4/6.2 3.6/6.4

Table 7.4: Goal Parameter Recognition Results on the Linux Corpus

Linux Experiments

The Linux corpus was tested using cross-validation with theidentical test set used for

schema recognition. The results are shown in Table 7.4 for various n-best values.

Performance for Linux is also quite good, and is only slightly worse than that for

Monroe. Precision starts at 90.9 percent and rises to 93.2 percent in the 2-best case.

Interestingly, precision goes down in the 3-best case. Thisis because the recognizer

makes more predictions, as it is more sure of the 3-best prediction, but it appears that

the third best value tends not to be the right value, and thus it over-predicts.

Recall, convergence, and convergence point are comparable to performance in Mon-

roe. In the Linux corpus, feasible recall is 56.1 percent andfeasible convergence is 82.1

percent. The feasible convergence point is 2.8/6.2, thus the recognizer is recognizing

parameter values soon after it sees them.

Some errors in Linux are attributable to typographical errors from the user similar

to those described above. For example, when a user typesls flie instead ofls

file, this causes the recognizer to considerflie as a possible parameter value.

163

7.4 Instantiated Goal Recognition

We now turn our attention to building aninstantiatedgoal recognizer using the schema

and parameter recognizers. This brings us back to our original formulation of goal

recognition above, particularly to Equation 7.3. We have a goal schema recognizer

which estimates the first term, and a goal parameter recognizer which estimates the

each of the terms for each parameter position in a goal schema. Mathematically, we

simply need to compute the argmax to get the most likely instantiated goal, although,

as we will see, this is not so straightforward, especially ifwe want to support n-best

and partial prediction.

The argmax in Equation 7.3 is an optimization problem over several (q + 1) vari-

ables (GS, G1,q), whereq is the arity of the goal schema. Although this could mean a

big search space, it remains tractable in the 1-best case because of an assumption made

above: namely, that goal parameter values are independent of one another (given the

goal schema). This means that, given a goal schemagS, the set of individual argmax re-

sults for each goal parametergj is guaranteed to be the maximum for that goal schema.

This now becomes an optimization problem over just two variables: the goal schema

and its parameters.

Although computing the argmax works well in theory, there are several problems

with using it in practice. First, it only gives us the 1-best prediction. The search space

gets larger if we want an n-best prediction. Second is the problem mentioned earlier

about goal schema arity. Straight probability comparisonswill not work for goals with

different arities, as lower-arity goals will tend to be favored.

Partial prediction is also a problem. We want to support partial predictions by al-

lowing the recognizer to predict a (possible empty) subset of the parameter values for

a goal schema. This will allow us to make predictions even in cases where the param-

eter recognizer is unsure about a specific parameter, and capitalizes on the ability of

the stand-alone parameter recognizer to not make a prediction in cases where it is not

164

certain.

In doing partial predictions, however, we encounter a natural tension. On one hand,

we want the predictions to be as specific as possible (e.g., predict as many parameter

values as possible). On the other hand, we want high precision and recall for predic-

tions.11 A recognizer which made only full predictions would give us specific predic-

tions (with all parameters predicted), but would likely have low precision/recall. At

the other extreme, we could just predict the goal schema which would give us the best

chance for high precision/recall, but no parameter information. Yet another dilemma

is how to compare two predictions when one has more predictedparameters than the

other.

Because of these problems, we have decided to take a slightly different approach to

building our instantiated goal recognizer which capitalizes on the prediction ability of

the schema and parameter recognizers as they are.

7.4.1 Algorithm

Our instantiated goal recognizer works as follows: at each observed action, we first run

the goal schema recognizer. This makes an n-best predictionof schemas (or does not

if the confidence threshold is not reached). If no predictionis made by the schema rec-

ognizer, the instantiated recognizer also makes no prediction. If the schema recognizer

does make a prediction, we use the parameter recognizer to make (or not make) 1-best

predictions for each of the parameter positions for each of the n-best schemas. This

automatically gives us partial prediction if a prediction is not made for one or more pa-

rameter positions in a schema. The combined results then form the n-best instantiated

prediction.

Note that this algorithm does not give us true n-best resultsfor the search space.

It instead chooses the n-best goal schemas, and then (selectively) predicts parameters

11In a way, specificity adds a third dimension to the existing tension between precision and recall.

165

for them. A true n-best result would include the possibilityof having a goal schema

twice, with different predictions for parameters. However, as mentioned above, we

did not see an obvious way of deciding between, for example, agoal schema with no

parameters predicted, and that same goal schema with one parameter predicted. The

latter is guaranteed to not have a lower probability, but it is a more specific prediction.

Although we do not provide true n-best prediction, we believe our algorithm provides

a natural way of deciding between such cases by appealing to the parameter recognizer

itself.

Complexity

For an observed action, the recognizer first runs the schema recognizer (O(|G|)) and

then runs the parameter recognizer (O(i)) for each parameter position (q) of each goal

schema (|G|).12 This gives us an overall complexity ofO(|G|+ |G|iq) orO(|G|iq). As

q is constant and small, this becomesO(|G|i), which is linear in the number of goal

schemas and the number of actions observed so far. Which is exactly what we need for

speed and scalability.

7.4.2 Experiments

We tested the instantiated goal recognizer on the Monroe andLinux test sets using the

same procedure as outlined above. On average, the recognition time for Monroe was

0.2 seconds per action, and 0.4 seconds per action for Linux with unoptimized Perl

code on a high-end desktop PC.

12Note that, although we only need run the parameter recognizer on the n-best schemas to get immedi-

ate results, we need to run it for all schemas to keep the probability assignments for the other parameters

up to date.

166

n-best(τ/ψ) 1 (0.7/2.0) 2 (0.9/2.0) 3 (0.9/2.0)

Precision 93.1% 95.8% 96.4%

Recall 53.7% 56.6% 67.8%

ParamPctg 20.6% 21.8% 22.3%

Convergence 94.2% 97.4% 98.6%

ConvParamPctg 40.6% 41.1% 48.4%

Convergence Point 5.4/10.0 5.5/10.1 4.4/10.2

Table 7.5: Instantiated Goal Recognition Results for the Monroe Corpus

Evaluation Metrics

We use the same evaluation metrics for the instantiated recognizer as well did the

schema recognizer above. In addition, we use two new measures, designed to mea-

sure the specificity of prediction.ParamPctgreports, for all correct predictions, the

percentage of the parameter values for that goal that were predicted.ConvParamPctg

reports the same for all sessions which converged.

Monroe Experiments

Results on the Monroe test set are shown in Table 7.5. Performance followed schema

recognizer performance quite closely, being slightly lower with the addition of param-

eter recognition.

The specificity measures of ParamPctg and ConvParamPctg were20.6 percent and

40.6 percent respectively for the 1-best case,13 meaning that, on average, a correct pre-

diction had just over a fifth of its parameter values predicted, whereas a correct final

prediction had under half predicted. These reflect the recall and convergence perfor-

13They also remained fairly constant over the n-best values, although this is likely a reflection of the

fact that the recognizer only uses the 1-best prediction from the parameter recognizer, regardless of the

n-best value for the overall instantiated recognizer.

167

n-best(τ/ψ) 1 (0.4/2.0) 2 (0.6/2.0) 3 (0.9/2.0)

Precision 36.3% 60.2% 68.8%

Recall 22.1% 38.1% 38.7%

ParamPctg 51.5% 50.0% 51.6%

Convergence 36.1% 53.8% 56.5%

ConvParamPctg 51.8% 49.0% 49.4%

Convergence Point 3.6/5.8 4.0/7.0 4.1/7.0

Table 7.6: Instantiated Goal Recognition Results for the Linux Corpus

mance of the parameter recognizer (30.5 percent and 49.6 percent, respectively for

1-best).

Linux Experiments

Results on the Linux test set are shown in Table 7.6. These alsofollowed the schema

recognizer results fairly closely, being lower with the addition of the parameter predic-

tions.

In the Linux corpus, correct predictions had around half of their parameters in-

stantiated, while the Monroe corpus had just over a fifth. Although both corpora had

fairly comparable performance in (stand-alone) parameterrecognition, it appears that a

greater portion of the correctly predicted goals in the Monroe domain happened to be

goals for which the parameter recognizer did not have as highof recall.

7.5 Conclusion

In this chapter, we have presented a statistical recognizerof top-level instantiated goals

and presented results on the Linux and Monroe corpora. The recognizer is fast and scal-

able (linear in the number of goal schemas and actions observed so far), and supports

168

partial prediction. The recognizer does very well on the Monroe domain and decently

for 2 and 3-best prediction on the Linux corpus.

In addition, we have presented a set of metrics for evaluating the accuracy, early

prediction, and prediction specificity of recognizers. We hope these will be adopted by

the community to facilitate easier comparison of goal recognizers.

169

8 Hierarchical Goal Recognition

In the previous chapter, we introduced an algorithm for flat goal recognition, or recog-

nition of a agent’s top-level goal given observed actions. In this chapter, we move to the

case ofhierarchical goal recognition — recognition of the chain of an agent’s active

subgoals within a hierarchical plan.

Recognizing such chains of active subgoals (henceforthgoal chains) can provide

valuable information not available from a flat recognizer. First, though not a full plan,

a goal chain not only provides information about which goal and agent is pursuing, but

also a partial description ofhow.

Additionally, the prediction of subgoals can be seen as a type of partial prediction.

As mentioned in previous chapters, when a full prediction isnot available, a recognizing

agent can often make use of partial predictions. In our flat recognizer, we allowed

partial prediction through the possible omission of predictions of parameter values. A

hierarchical recognizer can additionally predict an agent’s subgoals, even when it is still

not clear what the top-level goal is. This can allow a recognizer to make predictions

much earlier than it can predict top-level goals. We suspectthat the longer (in actions)

and more involved a plan is, the longer, on average, it will take to recognize the top-

level goal. In fact, there is evidence that humans use subgoal prediction as a type of

partial prediction [Schmidt, Sridharan, and Goodson1978], especially in interpreting

170

language [Carberry1990b].

In building our hierarchical goal recognizer, we take the same basic approach we

did to flat goal recognition. In Section 8.1, we present a hierarchical goal schema

recognizer and in Section 8.2, a hierarchical goal parameter recognizer. We then discuss

how the two are combined into a hierarchical instantiated goal recognizer in Section 8.3.

We then conclude in Section 8.4.

8.1 Goal Schema Recognition

Hierarchical goal schema recognition can be described as the following problem: Given

a set of observed atomic actions (A1,n) determine the agent’s top-level goal (G) as well

as the chain of subgoals (S1,D−1) from G to the last observed action (An) (whereS1 is

the subgoal immediately beneath G andSD−1 is the subgoal immediately aboveAn).

Note that for each subgoal, we indicate itsdepthby how many steps it is away from

the top-level goal. We can therefore consider the top-levelgoal G to actually beS0,

although we will frequently refer to it as G.

As an example, consider the plan tree shown in Figure 8.1. After observing action

A1:5, the goal chain to be recognized would be (G : S1:1 : S2:3), the (sub)goal nodes

which lead from the top-level goal to the latest observed action. After observing the

next action (A6), we would want to recognize (G : S1:2 : S2:4).

In moving to hierarchical recognition, it was our hope to be able to be able to reuse

our flat schema recognizer, recognizing immediate subgoalsat each level and then us-

ing those results to predict subgoals at the next level up. This was unfortunately not

possible. The flat schema recognizer is basically a classifier — given an ordered list of

observed actions, it labels the plan session with a top-level goal. However, consider the

bottom level of the plan tree from Figure 8.1:

171

G

S1:1

S2:1

A1 A2 A3

S2:2

A4

S2:3

A5

S1:2

S2:4

A6 A7

S2:5

A8 A9

Figure 8.1: An Example Plan Tree

S2,1

A1 A2 A3

S2,2

A4

S2,3

A5

S2,4

A6 A7

S2,5

A8 A9

At this level, instead of having a single goal to predict, as we did in flat recognition,

we have five. Still worse, we do not know in general how many subgoals we have at

the next level, or at which point one ends and the next begins.

When we consider the next level up, things only get worse. Consider recognition of

subgoals at level 1:

S1:1

S2:1 S2:2 S2:3

S1:2

S2:4 S2:5

If we are cascading recognition results up, we would now be treating level 2 as input

(i.e., observed actions). At the atomic action level (levelD), we know that there is a

172

new action at each timestep. At this middle level, we do not know when each subgoal

at level 2 (S2) ends, as well as not knowing when each subgoal at level 1 (S1) ends. In

addition, we are also uncertain of our observed output (S2), whereas the flat recognizer

assumed that we observedA with certainty.

As we discussed in Chapter 5, other hierarchical goal recognizers (e.g., [Pynadath

and Wellman2000; Bui, Venkatesh, and West2002]) deal with these problems by taking

an approach similar to parsing. In both approaches, the equivalent of productions are

used to define legal sequences of nodes at the level below eachsubgoal. We have chosen

to take a different approach, based on the forward algorithmin Hidden Markov Models,

which allows us to perform recognition without the need of specified production rules.

In the remainder of this section, we first discuss a new type ofgraphical model used

in our recognition algorithm and how we use it to represent plans. We then describe

the schema recognition algorithm itself and then report experimental results using the

recognizer.

8.1.1 Cascading Hidden Markov Models

In our hierarchical schema recognizer, we utilize a type of graphical model we have

termed aCascading Hidden Markov Model (CHMM), which consists ofD stacked

state-emission HMMs (H0,D−1). Each HMM1 (Hd) is defined by a 5-tuple

(σd, κd,Πd, Ad, Bd) whereσd is the set of possible hidden states;κd is the set of possible

output states;Πd = {πd:i}, i ∈ σd is the initial state probability distribution;Ad =

{ad:ij}, i, j ∈ σd is the set of state transition probabilities; andBd = {bd:ik}, i ∈ σd, k ∈

κd is the set of output probabilities.

The HMMs are stacked such that for each HMM (Hd), the output state is the hidden

state of the HMM below it (Hd+1). For the lowest level (HD−1), the output state is the

1We use here a similar notation to that in [Jurafsky and Martin2000], although they define an arc-

emission HMM.

173

X0:1 X0:2 X0:3 · · · X0:n

X1:1 X1:2 X1:3 · · · X1:n

...
...

...
...

Xd:1 Xd:2 Xd:3 · · · Xd:n

O1 O2 O3 · · · On

Figure 8.2: A Cascading Hidden Markov Model (CHMM)

actual observed output. In essence, at each timestept, we have a chain of hidden state

variables (X0,D−1:t) connected to a single observed outputOt at the bottom level. An

example of a CHMM is shown in Figure 8.2.

Here, thedth HMM (i.e., the HMM which starts with the hidden stateXd:1) is a

normal HMM with the output sequenceO1,n. As we go up a CHMM, the hidden level

becomes the output level for the level above it, and so forth.

We will now discuss the differences between CHMMs and other hierarchical HMMs.

We then discuss how inference is done with CHMMs, in particular, how the forward

probability is calculated, as this is a key part of our recognition algorithm.

Comparison to Hierarchical HMMs

Hierarchical HMMs (HHMMs) [Fine, Singer, and Tishby1998] and the closely related

Abstract HMMs (AHMMs) [Bui, Venkatesh, and West2002] represent hierarchical in-

formation using a limited-depth stack of HMMs. In these models, an hidden state can

output either a single observation, or a string of observations. Each observation can also

be associated with a hidden state at the next level down, which can also output observa-

tions, and so forth. When a hidden state outputs an observation, control is transferred

174

to that observation, which can also output and pass control.Control is only returned

to the upper-level when the output observation has finished its output. This is similar

in function to a push-down automaton although it is not equivalent, as HHMMs only

support a finite depth.

In contrast, a CHMM is much simpler. Here, each hidden state can only output a

single observation, thus keeping the HMMs at each level in lock-step. In other words,

in CHMMs, each level transitions at each timestep, whereas only a subset transitions in

HHMMs.

Below, we use CHMMs to represent an agent’s execution of a hierarchical plan.

As we will discuss there, mapping a hierarchical plan onto a CHMM results in a loss

of information which could be retained by using an HHMM (cf. [Bui, Venkatesh, and

West2002]). However, using CHMMs allows us to do tractable online inference in

terms of the number of possible states (subgoals). Exact reasoning in HHMMs has been

shown to be exponential in the number of possible states [Murphy and Paskin2001].

Computing the Forward Probability in CHMMs

An analysis of the various kinds of inference possible with CHMMs is beyond the

scope of this thesis. Here we only focus on the forward algorithm, which is used in our

schema recognition algorithm below.

Normal HMMs In an HMM, the forward probability

αi(t) = P (o1,t, Xt = i|Π, A,B)

describes the probability of the sequence of outputs observed up until timet (o1,t) and

that the current stateXt is i, given an HMM model (Π, A,B).

The set of forward probabilities for a given timestepT , (α(T) = {αi(T), i ∈ σ})

can be efficiently computed using the so-called forward algorithm. The forward algo-

175

rithm uses a state lattice (over time) to compute the forwardprobability of all inter-

mediate states. This allows it to efficiently compute forward probabilities for the next

timestep by simply using those from the previous timestep, using dynamic program-

ming. The algorithm works as follows:

First,α(0) is initialized with the initial state probabilities (Π). Then, for each sub-

sequent timestept, individual forward probabilities are computed using the following

formula:

αj(t) =

[

∑

i∈σ

αi(t− 1)aij

]

bjot
(8.1)

The complexity of computing the forward probabilities for asequence ofT obser-

vations is O(|σ|2T) (whereσ is the set of possible hidden states). However, as we will

be using the forward probability in making online predictions in the next section, we

are more interested in the complexity forextendingthe forward probabilities to a new

timestep (i.e., calculatingα(t + 1) givenα(t)). For extending to a new timestep, the

runtime complexity is O(|σ|2), or quadratic in the number of possible hidden states.

Algorithm Overview In a CHMM, we want to calculate the forward probabilities for

each depth within a given timestep:α(t) = {αd(t)}, d ∈ 0, D − 1, whereαd(t) =

{αd:i(t)}, i ∈ σd. This can be done a timestep at a time, cascading results up from the

lowest level (D − 1). The basic form of the algorithm is shown in Figure 8.3.

Initialization of each level occurs as normal — as if it were anormal HMM —

using the start state probabilities inΠd. For each observation newot, the new forward

probabilities for the chain are computed a bottom-up fashion, starting withαD−1(t). At

this level, the new forward probabilities can be computed asfor a normal HMM using

the formula in Equation 8.1.

We then move up the chain, computing one forward probabilityset at a time, using

the results of the lower chain as observed output. However, we cannot use Equation 8.1

176

1: t = 0
2: initialize eachαd(0) as usual (usingΠd)
3: loop
4: t = t+ 1
5: ot = new observation
6: calculateαD−1(t) givenαD−1(t− 1) and usingot as observed output
7: for d = D − 2 downto0 do
8: calculateαd(t) givenαd(t− 1) and usingαd+1(t) as observed output
9: end for

10: end loop

Figure 8.3: Algorithm for Calculating Forward Algorithm forCHMMs

to calculate these forward probability sets (αd(t)). This is because the normal forward

algorithm assumes that output is observed with certainty. While this was the case for

level D − 1 (where the output variable isot), for all other levels, the output state is

actually also a hidden state (Xd+1:t), and is thus uncertain.

We overcome this by first observing that, although we do not know the value of

Xd+1:t with certainty, if we have the forward probability set for that node (αd+1(t)), we

can use it as a probability distribution over possible values for the state. As discussed

above, we can compute the forward probability set at the bottom levelαD−1(t), which

gives us a probability distribution over possible values ofXD−1:t. In order to calculate

the forward probability at the next level upαD−2(t) (as well as higher levels), we need

to augment the forward algorithm to work for HMMs with uncertain output, which we

discuss now.

Computing the Forward Probability with Uncertain Observat ion The forward

algorithm for a single HMM can easily be adjusted to handle the case where the output

state is uncertain (i.e., we have a probability distribution over possible values). The

initialization step remains the same. We calculate forwardprobabilities for subsequent

timesteps using the following equation (instead of Equation 8.1):

177

αd:j(t) =

[

∑

i∈σd

αd:i(t− 1)aij

]

∑

k∈σd+1

αd+1:k(t)bjk

 (8.2)

As in Equation 8.1, the forward probability is calculated asthe product of two terms,

corresponding to the probability of transition to that state and the probability of the

output from the new state. In calculating with uncertain observation, the state transition

term remains the same (the sum of all weighted transition probabilities). We change the

output probability term to be a weighted sum over all possible outputs (k) multiplied

by their output probabilities (bjk). This sum gives us the total probability that whatever

was output was output when the HMM was in statej.

Algorithm Complexity The complexity of computing the forward probability with

uncertain output at a leveld for T timesteps isO(T (|σd|
2 + |σd||σd+1|)) where the term

|σd||σd+1| comes from the summing over output probabilities. If we assume that the

set of possible states is roughly the same at each level (|σd+1| ≈ |σd|), the complexity

becomesO(T |σd|
2), which is unchanged from the complexity of the forward algorithm

with certain output.

As mentioned above, because we are making online predictions, we are also in-

terested in the complexity ofextendingforward probabilities to the next timestep. In

this case, this also remains the same as that for the normal forward algorithm, and is

O(|σd|
2), or quadratic in the number of possible states at each level.

In a CHMM, calculating the next chain of forward probabilities, as described in

Figure 8.3, simply calculates the next forward probabilities for each level. Thus the

overall complexity of extending the chain given a new observation isO(D|σmax|
2),

whereσmax is the level with the most possible states, andD is the depth of the CHMM.

178

G G G G G G G G G

S1:1 S1:1 S1:1 S1:1 S1:1 S1:2 S1:2 S1:2 S1:2

S2:1 S2:1 S2:1 S2:2 S2:3 S2:4 S2:4 S2:5 S2:5

A1 A2 A3 A4 A5 A6 A7 A8 A9

Figure 8.4: The Sequence of Goal Chains Corresponding to the Plan Tree in Figure 8.1

8.1.2 Mapping Plan Trees onto CHMMs

Our basic approach to hierarchical goal schema recognitionis to model a plan tree as

a CHMM and to use forward probabilities to make predictions ateach subgoal level.

Given a plan-labeled corpus, we convert it to a sequence of goal chains, which we can

then use to learn transition and output probabilities for the schema recognizer.

Up until now, we have modeled plans as trees (e.g., as shown inFigure 8.1). In

hierarchical goal recognition, however, we do not try to recognize the entire tree (which

would beplan recognition), but rather thegoal chain, or sequence of subgoals from the

last observed action to the top-level goal. We can, in this way, convert a plan tree into

a sequence of these goal chains, one for each observed atomicaction. For example, the

results of converting the plan tree in Figure 8.1 into a list of goal chains is shown in

Figure 8.4.

Note that subgoals which span more than one timestep are simply duplicated across

all timesteps in that span. Below, we will discuss the ramifications of this expansion,

including the fact that, at upper levels, sequence information is lost. First, however, we

must discuss one more issue that must be dealt with. The goal chains in the plan tree

in Figure 8.1 are all the same depth. This, however, may not always be the case. A

CHMM, however, is required to be of uniform depth. We now discuss how this case is

179

G

S1:1

A1 S2:1

A2 A3

A4

Figure 8.5: A Plan Tree with Varying Depth

handled.

Handling Differences in Plan Tree Depth

Paths in a plan tree need not necessarily be of the same depth.We model plan de-

composition through recipes which can include subgoals as well as atomic actions, at

any level. As an example, consider the plan tree in Figure 8.5. Here, observed actions

(A1,4) exist at various depths in the tree. ActionsA2 andA3 are the deepest at depth 3,

whereasA1 is at depth 2 (it is the child of subgoalS1:1). Note the case ofA4, which is

a direct child of the top-level goalG.

As mentioned above, in order to convert trees to CHMMs, we needto have leaves

all be at the same depth. To do this, we expand each leaf which is too shallow by

copying the node which is its immediate parent and insertingit between the parent and

the leaf. We repeat this until the leaf node is at the proper depth. We refer to these

copies of subgoals asghostnodes. The result of expanding the tree in Figure 8.5 is

shown in Figure 8.6, which can then be converted into the CHMM shown in Figure 8.7.

Note that by doing this expansion, we make each possible subgoal at a particular depth

Sd a possible subgoal at each subsequent depth, as it can be copied to lower levels as a

ghost. As a simplification below, we will just assume that each subgoal is possible at

180

G

S1:1

S1:1

A1

S2:1

A2 A3

G

G

A4

Figure 8.6: The Expanded Version of the Plan Tree in Figure 8.5: (ghost nodes are

shown as rectangles.)

G G G G

S1:1 S1:1 S1:1 G

S1:1 S2:1 S2:1 G

A1 A2 A3 A4

Figure 8.7: The Sequence of Goal Chains Corresponding to the Expanded Plan Tree in

Figure 8.6

each depth. Thus, we will simply useS to refer to the set of all possible subgoals (at

any level, including top level goals).

Discussion

In mapping plan trees to CHMMs, we lose certain information about tree structure,

which is retained in approaches which do goal schema recognition using a tree-like

181

structure (e.g., Abstract HMMs [Bui, Venkatesh, and West2002] or grammars [Pyna-

dath and Wellman2000]). Consider again the plan tree from Figure 8.1 along with its

corresponding CHMM (in Figure 8.4). At depth 1 (i.e., the firstlevel below the top-level

goal), two subgoals are executed:S1:1 andS1:2. This transition occurs after timestep

5, and the information that the preceding subgoal wasS1:1 can be used in making pre-

dictions at timestep 6. In subsequent timesteps, however, we loose this information

because of the Markovian assumption. Thus, at timestep 7, the HMM at level 1 thinks

that the previous subgoal wasS1:2, although the lastactualsubgoal wasS1:1. Further-

more, for cases where a subgoal of a certain type is followed by a subgoal of the same

type, it becomes impossible to determine if these comprise one or two instances of the

subgoal in the original tree.

As we discussed briefly above, the advantage to making this simplification is im-

proved runtime complexity. Exact inference in hierarchical HMMs has been shown to

be exponential in the number of possible states [Murphy and Paskin2001], while we

have shown that computing forward probabilities in CHMMs is only quadratic in the

number of possible states.

8.1.3 Recognition Algorithm

Schema recognition is performed by constructing a CHMM and using the forward prob-

abilities to make predictions at each subgoal depth. We firstdescribe how the CHMM

is trained, and then how predictions are made. We then analyze the runtime complexity

of the recognition algorithm.

Training the CHMM

As a CHMM is really just a stack of HMMs, we need to learn transition probabilities

(Ad), output probabilities (Bd) and start state probabilities (Πd) for each depthd. These

182

are estimated from a plan-labeled corpus in which each session is converted into a

sequence of goal chains, as described above.

Predictions

At the start of a recognition session, a CHMM of appropriate depth for the domain is

initialized with start state probabilities from the model.Upon observing a new action,

we calculate the new forward probabilities for each depth using the CHMM forward

algorithm described in Figure 8.3.

Using the forward probabilities, n-best predictions are made separately for each

depth, using the same prediction method used in our flat schema recognizer (as de-

scribed in Section 7.2). Then most likely schemas are chosen, and their combined

probability is compared against a confidence thresholdτ .2 If the n-best probability is

greater thanτ , a prediction is made. Otherwise, the recognizer does not predict at that

level for that timestep.

It is important to note that using this prediction algorithmmeans that it is possible

that, for a given timestep, subgoal schemas may not be predicted at all depths. It is

even possible (and actually occurs in our experiments described below) that the depths

at which predictions occur can be discontinuous, e.g., a prediction could occur at levels

4, 3, and 1, but not 2 or 0. We believe this to be a valuable feature as subgoals at

different levels may be more certain than levels below, depending on the domain.

Complexity

The runtime complexity of the recognizer for each new observed timestep is the same

as that of forward probability extension in the CHMM:O(D|S|2), whereD is depth of

the deepest possible goal chain in the domain (not includingthe observed action), and

2Although it would be possible to set a separate threshold foreach depth, our results below are based

on using a single threshold for all levels.

183

S is the set of possible subgoals (at any level). Thus the algorithm is linear in the depth

of the domain and quadratic in the number of possible subgoals in the domain.

8.1.4 Experiments

We now report on two sets of experiments using the hierarchical goal schema recog-

nizer. For both experiments, we used the Monroe corpus, divided into the same set

of training and testing data as used for the experiments on flat recognition described

in Chapter 7. Note that we did not perform experiments on the Linux corpus, as our

algorithm requires a plan-labeled corpus for learning the CHMM, and the Linux corpus

is only top-level goal labeled.

Before we describe the experiments and their results, however, we describe how we

report results.

Result Reporting

We report results for individual subgoal depths, as well as totals. For each depth, we use

the same metrics we used for flat schema recognition in Chapter7: precision, recall,

convergence, andconvergence point. However, as there are some differences with flat

recognition, we make two changes to how these are counted.

First, as described above, in modeling goal recognition, when a plan tree has leaf

nodes at differing depths, we insertghost nodesabove the shallow leaves. When we are

performing goal recognition, the assumption is that each goal chain is the same length,

and predictions are potentially made at each level. Upon observing a new action, it

is unknown at which depth of the plan tree it was before extending occurred — the

recognizer simply makes predictions for the entire goal chain, possibly including ghost

nodes.

In reporting results for each level (and in the total), wedo not count predictions

when the correct answer was a ghost node. Ghost node prediction tends to be correct,

184

and thus resulted in heavily inflated results, especially atlower depths. The introduction

of ghost nodes is a product of our use of CHMMs, and thus it is unfair to credit these

as correct predictions.

The second change we make to result reporting involves convergence and conver-

gence point. Subgoals may only correspond to one timestep (e.g., they only result in one

executed atomic action), in which case, it does not make sense to report convergence or

a convergence point. For all levels, we only report convergence and convergence point

for subgoals which correspond to at least 2 timesteps.

The Pure Forward Algorithm

We first tested the algorithm as described above on the same training and testing data

from the Monroe corpus as used in the experiments in Chapter 7.The results of the test

are shown in Table 8.1. We first look at the results for predicting top-level goal schemas

(level 0) and then explore the other levels.

Top-level Results In interpreting the results, we first refer back to the results of flat

schema recognition reported in Chapter 7, on the same data set. For convenience, we

show the results of flat recognition again in Table 8.2.

Of course, flat recognition was only concerned with predicting the top-level goal,

which is the same as level 0 for the hierarchical recognizer.For recall, convergence, and

convergence point, the two recognizers perform fairly equivalently, both in 1-best and

2-best prediction. Precision, however, is markedly lower in the hierarchical recognizer,

for both the 1-best and 2-best cases. Whereas precision is 95.6 percent for 1-best in the

flat recognizer, it drops to 85.7 percent for the hierarchical recognizer. A similar drop

in precision from 99.4 percent to 91.5 percent is shown in the2-best case.

Although there seem to be several factors involved in this drop, it is perhaps most

important to mention two. First is, as we mention above, the loss of true bigram infor-

mation within the hierarchical recognizer. In the hierarchical recognizer, the top-level

185

1-best(τ = 0.7) 2-best(τ = 0.95)

level prec. recall conv. conv. pt prec. recall conv. conv. pt

0 85.7% 55.7% 97.0% 5.3/10.2 91.5% 57.4% 97.0% 5.1/10.2

1 87.1% 42.4% 61.2% 3.7/6.5 99.7% 51.4% 72.1% 3.2/6.1

2 69.1% 35.3% 45.3% 3.5/4.8 100% 24.3% 45.7% 4.1/4.8

3 70.2% 32.6% 30.1% 2.1/3.1 95.9% 79.2% 86.8% 3.2/4.5

4 66.0% 54.7% 61.8% 3.3/3.7 92.3% 79.1% 87.3% 2.4/3.7

5 59.0% 45.9% 6.2% 3.8/4.2 98.8% 98.8% 100% 1.2/3.9

6 69.3% 69.3% 0.0% N/A 100% 100% 100% 1.0/4.0

7 95.2% 95.2% N/A N/A 100% 100% N/A N/A

8 100% 100% N/A N/A 100% 100% N/A N/A

Total 76.6% 45.1% 59.4% 4.1/7.0 95.7% 57.8% 74.4% 3.7/6.5

Table 8.1: Results of Schema Recognition using the CHMM

1-best(τ = 0.7) 2-best(τ = 0.95)

level prec. recall conv. conv. pt prec. recall conv. conv. pt

top 95.6% 55.2% 96.4% 5.4/10.2 99.4% 58.7% 99.8% 5.4/10.3

Table 8.2: Results of Flat Schema Recognition on the Monroe Corpus (from Chapter 7)

goal is predicted based on predictions at the next immediatesubgoal level (level 1) as

opposed to directly from the action observation level as is the flat recognizer. As men-

tioned above, converting a plan tree into a sequence of goal chains can loose explicit

information about the actual previous subgoal.

Secondly, and most importantly, a direct comparison of algorithm performance is

difficult because the hierarchical is doing much more than simple top-level goal clas-

sification as was done in the flat recognizer. As we discuss at the beginning of this

chapter, direct application of the flat algorithm was not possible for hierarchical goal

186

recognition. The hierarchical recognizer presented here not only recognizes goals at

the top level, but at every subgoal level as well. The top-level goal is a special case

because there was only one per session. Arguably, we could improve performance by

using the hierarchical recognizer for the subgoal levels and then the flat recognizer for

top-level recognition, although this then looses the generalization that the hierarchical

recognizer can also handle cases where several top-level goals are pursued serially.

Other Levels Results at lower levels are not as good as those at the top level. The

foremost reason is that there is actually more competition at lower levels. At lower

levels, many more subgoals are possible (even top-level goals, through ghost extend-

ing), whereas only the 10 top-level schemas are possible at level 0. Also, there are

several lower-level subgoals per level throughout a goal session. Only one top-level

goal makes the transition probabilities much simpler at thetop level as well (basically

transition probabilities are 1 between the same schemas and0 between any others).

That said, in the 1-best case, recognition results are fairly good for levels 1 and

7, and 8, although there is a trough between them. A partial explanation is that, at

higher levels, there are less competitors (because of higher-level subgoals can appear

as ghosts at lower levels, but not vice versa). Thus, as we move to lower levels, things

become harder to predict. At the same time, the lower we go, the closer to the observed

output, and thus closer to certain information. Thus the last two levels have very good

precision and recall because they are so closely related to the observed action. (Levels

7 and 8 contained no subgoals which span more than one timestep, hence convergence

and convergence point are not reported.)

It appears that in the middle (e.g., levels 2-6), the recognizer tends to not be able

to distinguish well among competitors. That this is the casecan be shown by looking

at the 2-best case, where all levels move to the 90’s or 100 percent for precision and

also improve dramatically in recall.3 Thus, for the middle levels, the next best com-

3Except for level 2 recall, which seems to be a quirk in the data. This irregularity disappears in our

187

petitor seems to often be the right one. However, as information is cascaded up the

CHMM, middle levels only have the level immediately below them as context for up-

dating probabilities. In a followup set of experiments, we tried to make the recognizer

more predictive by adding more information.

Adding Observation Information

In order to try to improve performance, we added observation-level information to the

calculations at each level. We did this by making both transition and output proba-

bilities context dependent on the current and last observedaction (bigram). The idea

was that this would tie upper-level predictions to possiblesignals present only in the

actual actions executed (as opposed to just some higher-level, generic subgoal). This is

often done in probabilistic parsing [Charniak1997], where lexical items are included in

production probabilities to provide better context.

The only change we made was to the transition probabilities (Ad) and output prob-

abilities (Bd) at each level. Thus, instead of the transition probabilityad:ij being

P (Xd:t = j|Xd:t−1 = i), we expand it to be conditioned on the observed actions as

well:

ad:ij = P (Xd:t = j|Xd:t−1 = i, Ot, Ot−1)

Similarly, we added bigram information to the output probabilities (bd:ik):

bd:ik = P (Xd:t = i|Xd+1:t = k,Ot, Ot−1)

These distributions were learned from the corpus. We also used the corpus to es-

timate the corresponding unigram (over observed action) distributions as well as the

original transition and output distributions from the lastexperiments. In the case that

a bigram context with the transition or output context had not been seen in the corpus,

next experiment.

188

1-best(τ = 0.7) 2-best(τ = 0.95)

level prec. recall conv. conv. pt prec. recall conv. conv. pt

0 85.6% 58.6% 100% 5.2/10.2 90.7% 62.0% 100% 4.9/10.2

1 84.3% 54.8% 71.8% 2.9/6.1 96.1% 77.3% 99.0% 2.3/5.6

2 89.3% 46.3% 45.8% 3.4/4.7 93.0% 64.3% 84.4% 3.5/4.8

3 74.8% 42.8% 41.2% 2.7/3.5 97.6% 80.1% 99.0% 3.5/4.5

4 78.7% 53.5% 61.8% 3.3/3.7 97.0% 73.2% 100% 3.2/3.8

5 59.3% 46.1% 6.2% 3.8/4.2 99.1% 77.1% 100% 2.0/3.9

6 69.3% 69.3% 0.0% N/A 100% 100% 100% 1.0/4.0

7 95.2% 95.2% N/A N/A 100% 100% N/A N/A

8 100% 100% N/A N/A 100% 100% N/A N/A

Total 81.9% 52.3% 65.0% 3.8/6.8 94.9% 71.4% 95.7% 3.3/6.1

Table 8.3: Results of Schema Recognition using the CHMM and Observation Informa-

tion

we used the unigram and then original distributions as backoff probabilities. At each

backoff step, we multiplied the resulting probability by a penalty of 0.5.

The results of using this modified recognizer are shown in Table 8.3.

The addition of observation context resulted in a slight drop in top-level precision,

although it did result in an increase in recall.

The real improvement, however, can be seen in the middle levels, where both preci-

sion and recall went up in most cases. For example, precisionat level 4 rose from 66.0

percent to 78.7 percent and recall at level 2 went from 35.5 percent to 46.3 percent.

That there was an overall improvement in both the 1-best an 2-best cases can be seen

in comparing the level totals. For 1-best, total precision rose from 76.6 percent to 81.9

percent, and recall rose from 45.1 percent to 52.3 percent.

189

8.2 Goal Parameter Recognition

In this section, we describe a hierarchical goal parameter recognizer which (selectively)

predicts parameter values for each depth in a goal chain. Forstand-alone parameter

recognition, we make the same assumption we did in Chapter 7, namely, that we know

a priori the goal schemas in the chain. We also make the assumption that we know

when each subgoal begins and ends. We remove these assumptions when we move to

full instantiated recognition in the next section. We also assume a CHMM model of

plan execution, where each subgoal level transitions at each timestep.

We first describe the recognition algorithm, and then the results of tests on the

Monroe corpus.

8.2.1 Recognition Algorithm

Parameter recognition is performed separately at each depth, with the same basic al-

gorithm used for flat recognition. For each leveld, we define aprediction bpasmd:j,

j ∈ 1, q for each subgoal parameter positionj.4 These prediction bpas are then updated

and used to make predictions after each new observed action.We first discuss the ini-

tialization phase of the algorithm, then how updates occur at the bottom level. We then

discuss updates at upper levels and finally, we analyze the algorithm’s complexity.

Initialization

At each depthd, we initialize a set ofq prediction bpasmd:j
0 , j ∈ 1, q s.t.md:j

0 (Ω) = 1.

As parameter recognition is necessarily tied to the corresponding goal schema, each set

of prediction bpas is associated with the beginning goal schema at each levelSd:1. This

is similar to what was done in the flat parameter recognizer.

4For clarity of discussion, we assume that all goal schemas (and action schemas) have the same

number of parameter positionsq. In the algorithm itself, this is dealt with in a similar way to that in

Chapter 7.

190

As we will describe below, each of these prediction bpas are recomputed at each

timestep and are used to make predictions. As opposed to the flat recognizer, however,

in all but the top level, subgoal instances may change duringthe session. When a new

observation corresponds to the start of a new subgoal at a certain level, we reinitialize

the prediction bpas at that level before integrating the newevidence. The reasons for

this are twofold. First, as mentioned above, parameter recognizers are specific to a

certain goal schema. Thus, a parameter recognizer for subgoal schemaX cannot be

used to recognize parameters for subgoal schemaY . Also, even if the two subgoals

instances have the same schema, they will likely have different parameter values. Thus

keeping the prediction bpas from the previous recognizer would possibly cause the

recognizer to keep predicting theold parameter values. What we want to do in either

case is start out with a blank slate. We discuss below how to deal with this problem in

instantiated recognition, where subgoal changes are not known with certainty.

Updates at the Bottom Level

At the bottom level (D−1), we are dealing with certain output (i.e., the observed action)

and thus can perform parameter recognition as we did for the flat case. Upon observing

actionAt, we calculate a set of local bpasmD−1:j
t,k , which represent the evidence that the

kth action parameter provides for thejth goal parameter. This local bpa is calculated by

using the probability that the action parameter value is thesame as the goal parameter

value given the context, i.e., the following probability:P ((Sj
D−1 = Ak

t)|S
S
D−1, A

S
t).

For the observed action, each of theq local bpas (one for each action parameter

position) are combined (using Dempster’s rule of combination) to create an action bpa

mD−1:j
t , which holds the evidence for goal parameterj from actionAt. The predic-

tion bpamD−1:j is then updated through combination with this action bpa. This is

unchanged from the flat recognition algorithm.

191

Updates at Upper Levels

At higher levels, we need to modify the recognition algorithm because of two compli-

cations: uncertain output and multiple output instances which belong to the same event.

We discuss each in turn.

Dealing with Uncertain Output As we move up the goal chain, the subgoal schema

at leveld + 1 becomes the output action at leveld. The parameter recognizer expects

an instantiated action as input, and thus we integrate the parameter probabilities from

the recognizer at leveld + 1 to form a goal schema with uncertain parameter values.

Instead of integrating just the predicted n-best parametervalues for each position, we

include each prediction bpa for each parameter position forthe schema from the level

below: (md+1:j).

To handle uncertain parameter values, we change the way eachlocal bpamd:j
t,k is

calculated. We first initialize the local bpa to be a copy of the parameter prediction bpa

from the level belowmd+1:j. This is then weighted by the positional equality probability

used above:P ((Sj
D−1 = Ak

t)|S
S
D−1, A

S
t). Bpa weighting is done using Wu’s weighting

formula [Wu2003]:

m′(A) =

wm(A) : for all A : A ⊂ Ω, andA 6= Ω

wm(A) + 1− w : A = Ω
(8.3)

wherem is the bpa to be weighted andw is the weight. This equation basically weights

each of the focal points of the bpa and redistributes lost probability toΩ.

The resulting weighted bpa is then used as the local bpa in further processing.

Dealing with Multiple Output Instances A more subtle change in the algorithm at

upper levels arises from the fact that subgoals at the level below may correspond to

more than one timestep. As an example, consider again the goal chain sequence shown

192

in Figure 8.7. At level 2, the subgoalS2:1 lasts for 2 timesteps. At the lowest level, we

are assured that each observed action is a separate instanceof an action.

This becomes a problem because Dempster’s rule of combination makes the as-

sumption that combined evidence bpas come from independentevents. For the case

in Figure 8.7, when predicting parameters for the level 1 subgoal, we would combine

output evidence fromS2:1 two separate times (as two separate action bpas), as if two

separate events had occurred.

The parameter distributions forS2:1 will of course likely be different at each of the

timesteps, reflecting the progression of the parameter recognizer at that level. However,

instead of being two independent events, they actually reflect two estimates of the same

event, with the last estimate presumably being the most accurate (because it itself has

considered more evidence at the output level).

Thus, we need to change the update algorithm to additionallykeep track of the

prediction bpa formed with evidence from the last timestep of the most recentlyended

subgoal at the level below, which we will call thelast subgoal prediction (lsp) bpa. At

a new timestep, the prediction bpa is formed by combining theaction bpa with this lsp

bpa. If this timestep does not end the subgoal at the level below, then this prediction bpa

is only used to make predictions at this timestep and then is discarded. If the subgoal

below does end, then we save this prediction bpa as the new lspbpa. In this way, we

treat evidence from continuing subgoals as updates, instead of new events.

Prediction

Prediction is done separately at each level in the same way itwas in the flat recognizer.

The n-best parameter values for a given position are chosen,and their combined weight

is compared against the ignorance measureΩ multiplied by the specified ignorance

weightψ.

193

Complexity

To calculate a new prediction bpa for a given parameter position at a given depth, we

combineq local bpas (one for each output parameter position) to make an action bpa.

This action bpa is then combined with the lsp bpa. This results in q total combinations.

As discussed in Chapter 7, the complexity of combination of 2 sDST bpas is the

product of their sizes. In the flat recognizer, local bpas were guaranteed to only have

2 elements, however, this is not the case in hierarchical recognition. Local bpas at

upper levels will have the number of elements as the prediction bpa at the level below.

As an upper bound for local bpa size, we note that, at timestept, local bpas can only

contain parameter values which have been seen in the observed actions up to that point

A1, t. Thus the maximum number of unique parameter values seen istq, whereq is the

maximum arity of observed actions. Thus the complexity of theseq combinations is

O(t2q3).

For a single timestep, we computeq new prediction bpas atD levels, giving us an

overall complexity ofO(Dt2q4). As q is constant (and likely small), we drop the term,

making the complexityO(Dt2) or quadratic in the number of actions observed thus far.

8.2.2 Experimental Results

We tested the recognizer on the Monroe corpus in the same way as the flat recognizer

in Chapter 7. The results of the tests are shown in Table 8.4. Results are given using the

same metrics used for the flat recognizer and using the same per-level counting scheme

used for reporting results for the hierarchical schema recognizer above. We first look at

the results at the top level (i.e., level 0) and then the otherlevels.

Top-level Results

To help interpret the results, we compare performance at thetop level to that of the flat

recognizer (which only made predictions at the top level). For convenience, the results

194

1-best(ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt

0 98.6% 25.8% 52.0% 44.7% 56.3% 5.0/9.9

1 99.7% 26.4% 52.0% 39.9% 55.2% 4.1/6.3

2 96.7% 53.0% 76.4% 51.6% 57.7% 2.5/4.8

3 98.7% 73.8% 89.4% 73.8% 74.1% 3.1/4.1

4 99.3% 80.0% 94.6% 80.9% 80.9% 3.3/3.8

5 97.5% 82.6% 91.1% 53.1% 53.1% 2.2/3.9

6 99.9% 98.3% 99.3% 50.0% 50.0% 2.0/4.0

7 100% 100% 100% N/A N/A N/A

8 100% 100% 100% N/A N/A N/A

total 98.5% 51.7% 76.5% 51.6% 61.2% 3.5/5.7

2-best(ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt

0 97.7% 40.1% 80.8% 76.0% 95.8% 4.7/9.0

1 99.9% 41.3% 81.2% 63.6% 88.0% 3.5/5.7

2 99.6% 65.9% 95.1% 82.9% 92.8% 2.8/4.7

3 99.8% 81.0% 98.2% 97.6% 97.9% 3.4/4.5

4 100% 83.3% 98.5% 97.6% 97.6% 3.3/3.9

5 100% 89.7% 99.0% 93.0% 93.0% 2.5/3.9

6 100% 99.1% 100% 100% 100% 2.5/4.0

7 100% 100% 100% N/A N/A N/A

8 100% 100% 100% N/A N/A N/A

total 99.5% 62.4% 92.4% 78.6% 93.2% 3.5/5.6

Table 8.4: Results of Parameter Recognition

195

1-best(ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt

top 94.3% 27.8% 55.9% 46.9% 59.1% 5.1/10.0

2-best(ψ = 2.0)

level prec. recall recall/feas. conv. conv./feas. conv. pt

top 97.6% 39.2% 78.9% 76.2% 96.1% 4.8/9.0

Table 8.5: Results of Flat Parameter Recognition on the MonroeCorpus (from Chap-

ter 7)

of the flat parameter recognizer on the same data set are shownin Table 8.5.

The hierarchical recognizer performed slightly better in both the 1-best and 2-best

cases. In 1-best, precision moved from 94.3 percent to 98.6 percent, although there was

a drop in recall from 27.8 percent to 25.8 percent. In the 2-best recognizer, results were

slightly better all around.

The reason for the improvement in performance is likely attributable to the fact that

(perfect) subgoal schema information was present in the hierarchical recognizer. This

allowed parameter values to be considered given the immediate child subgoal, giving

better context for predictions.

Other Levels

The hierarchical recognizer performed well at other levelsas well, with precision stay-

ing (for the 1-best case) in the high 90’s and even up to 100 percent for levels 7 and 8.

This performance inched up for the 2-best case (with 100 percent precision for levels

4–8).

It is interesting to note that recall begins quite low (25.8 percent for level 0) and then

climbs as we go down levels, reaching 100 percent for levels 7and 8. As mentioned in

196

Chapter 7, high absolute recall is not to be expected in plan recognition, as ambiguity

is almost always present. The closer we move to the actual observed action, however,

the higher precision gets. This can be attributed to two factors. First, subgoals at lower

levels are closer to the observed input, and thus deal with less uncertainty about what

the parameter values are.

Second, and probably most important, is that lower-level subgoals span fewer timesteps

than those at higher levels, meaning that, if parameter values are available, they will be

seen after a shorter number of actions. In the case of levels 7and 8, all subgoals only

spanned one timestep, and thus only had one chance to get the right parameter values.

It turns out that parameter values at these levels always directly corresponded to the

action parameters, which is why precision and recall reach 100 percent here.

Overall, the performance of the parameter recognizer was very encouraging, es-

pecially the performance at lower levels which had high recall. This is an important

factor in our ability to do specific and accurate partial prediction in the instantiated goal

recognizer, which we move to now.

8.3 Instantiated Goal Recognition

In this section, we describe how we integrate the schema and parameter recognizers

to create a hierarchical instantiated goal recognizer, which can recognize a chain of

subgoal schemas and their parameter values. We first describe the recognition algorithm

and then test results on the Monroe corpus.

8.3.1 Recognition Algorithm

The recognition algorithm for the hierarchical recognizeris similar to that of the flat

recognizer. Upon observing a new action, we first update the schema recognizer and

use it to (selectively) make preliminary predictions. For each of the predicted subgoals

197

(at each level), we then use the corresponding parameter recognizers to (selectively)

make predictions for each of the parameter positions.

We discuss the stages of initialization, update, and prediction, and then present an

analysis of the runtime complexity of the algorithm.

Initialization

We initialize the schema recognizer as described above. Foreach depth, we also initial-

ize a parameter recognizer for each possible subgoal schema. Note that this is different

from the stand-alone parameter recognition done above, which assumed a knowledge

of subgoals (and their beginning and ending times) and thus had for each level only one

active parameter recognizer at a time. Here we will basically be updating|S| parameter

recognizers per level per timestep. We describe how updatesare handled in the next

section. Also, unlike the stand-alone parameter recognizer, these parameter recognizers

will run for the entire session. As we do not know when subgoals begin and end, we do

not initialize new recognizers during the session.

Update

Given a new observed action, we first update the schema recognizer and use it to make

preliminary predictions (as will be discussed in the next section). We then update each

of the parameter recognizers. (Note that, as was the case forflat recognition, we need

to update each parameter recognizer at each timestep, even if it is not used to make a

prediction at that timestep.)

However, we need to modify the parameter recognizer update algorithm to make it

work for instantiated recognition. We make three changes which correspond to each of

the following issues: uncertain output schemas, uncertaintransitions at the prediction

level, and uncertain transitions at the output level. We discuss each in turn.

198

Uncertain Output Schemas In the stand-alone parameter recognizer, we made the

assumption that the goal schema was known. At higher levels,this meant that output

consisted of a goal schema and uncertain parameter values. At higher levels in the in-

stantiated recognizer, however, we additionally have uncertain goal schemas as output.

In a nutshell, we now need to model output as a set of uncertaingoal schemas, each

having a set of uncertain parameters.

Modifying the update algorithm for this case follows the same principle we used

in handling uncertain parameters. To handle uncertain goalschemas, we compute an

action bpa for each possible goal schema as described for thestand-alone recognizer.

We then introduce a new intermediate result called anobservation bpawhich repre-

sents the evidence for a parameter position given an entire observation (i.e., a set of

uncertain goal schemas each associated with uncertain parameter values). To compute

the observation bpa, first each action bpa in the observationis weighted according to

the probability of its goal schema (using Equation 8.3). Theobservation bpa is then

computed as the combination of all of the action bpas. This effectively weights the

contributed evidence of each uncertain goal schema according to its probability (as

computed by the schema recognizer).

Uncertain Transitions at the Prediction Level In the stand-alone parameter recog-

nizer, we knew a priori when goal schemas at the prediction level began and ended.

This information was used to reset prediction bpas to ignoreevidence gathered from

observed actions corresponding to previous subgoals. To reset the prediction bpas, they

were set toΩ = 1, or total ignorance.

In instantiated recognition, we do not know the when goal schemas begin or end.

We can, however, provide a rough estimation by using the transition probabilities es-

timated for the schema recognizer. We use this probability (i.e., the probability that a

new schema does not begin at this timestep) to weight the lastsubgoal prediction (lsp)

bpa at each new timestep.

199

Basically, this provides a type of decay function for evidence gathered from pre-

vious timesteps. Assuming we could perfectly predict schema start times, if a new

schema started, we would have a 0 probability, and thus weighting would result in a

totally ignorant lsp bpa. On the other hand, if a new subgoal did not start, then we

would have a weight of 1 and thus use the evidence as it stands.

Uncertain Transitions at the Output Level Not knowing schema start and end times

gives us a similar problem at the output level. As we discussed for the stand-alone pa-

rameter recognizer, we need a way of distinguishing which observed output represents

a new event versus which represents an updated view of the same event.

We handle this case in a similar way to that above. We calculate the probability that

the new observation starts a new timestep by the weighted sumof all same transition

probabilities at the level below. This estimate is then usedto weight the prediction bpa

from the last timestep and then combine it with the lsp bpa to form a new lsp bpa. In

cases that there is high probability that a new subgoal was begun, the prediction bpa

will have a large contribution to the lsp bpa, whereas it willnot if the probability is low.

Prediction

Prediction is performed as it was for the flat recognizer. First, the goal schema recog-

nizer is used to (selectively) make an n-best prediction of goal schemas for each depth.

If the schema recognizer does not make a prediction at a certain depth, the instantiated

recognizer also does not predict for that depth.

If the schema recognizer does make a prediction, we use the corresponding param-

eter recognizers to predict parameter values for each of then-best goal schemas. The

instantiated prediction then consists of the chain of predicted goal schemas with the

instantiated parameters for those values for which the parameter recognizers made a

prediction.

200

Complexity

First, we must analyze the complexity of the modified parameter recognizer (which

deals with output with uncertain goal schemas). The modifiedalgorithm computes the

observation bpa by combining (worst case)|S| action bpas — each with a maximum

size ofiq (limited by the number of unique parameter values seen, as described above).

Thus, the total complexity for the update of a single parameter position isO(|S|t2q3)

and for the parameter recognizer of a single goal schema (with q parameter positions),

this becomesO(|S|t2q4). Again, we dropq as it is constant and small, which gives us

O(|S|t2).

The complexity of an update for the instantiated recognizercan be calculated from

the runtime of the schema recognizer plus the runtime of eachof theD|S| parameter

recognizers (one per each goal schema per level). Thus the total runtime complexity

is O(D|S|2 + D|S|2t2) = O(D|S|2t2), or quadratic in the number of possible goal

schemas and the number of actions observed so far.

8.3.2 Experimental Results

We tested the recognizer on the Monroe corpus in the same way done for the flat rec-

ognizer in Chapter 7. The results of the tests are shown in Table 8.6. Results are given

using the same metrics used for the flat recognizer and using the per-level counting

scheme used for the other hierarchical recognizers. We firstlook at the results at the

top level (i.e., level 0) and then the other levels.

Top-level Results

To help interpret the results, we compare performance at thetop level to that of the flat

recognizer (which only made predictions at the top level). For convenience, the results

of the flat instantiated recognizer on the same data set are shown in Table 8.7.

201

1-best(τ = 0.7, ψ = 2.0)

level prec. recall param% conv. conv. param% conv. pt

0 82.5% 56.4% 24.0% 90.8% 49.8% 5.6/10.3

1 81.3% 52.8% 23.5% 67.6% 26.5% 3.1/6.1

2 85.4% 44.3% 22.5% 45.8% 38.5% 3.4/4.7

3 72.9% 41.7% 82.4% 41.2% 90.6% 3.0/3.5

4 73.6% 50.0% 99.9% 61.8% 100% 3.7/3.7

5 58.8% 45.7% 100% 6.2% 100% 4.2/4.2

6 69.3% 69.3% 100% 0.0% N/A N/A

7 95.2% 95.2% 100% N/A N/A N/A

8 100% 100% 100% N/A N/A N/A

total 79.0% 50.4% 44.1% 61.7% 46.4% 3.9/6.8

2-best(τ = 0.95, ψ = 2.0)

level prec. recall param% conv. conv. param% conv. pt

0 88.2% 60.2% 23.2% 91.0% 49.9% 5.2/10.3

1 93.8% 75.4% 16.6% 94.8% 18.9% 2.4/5.6

2 89.7% 62.0% 42.1% 84.4% 45.2% 3.6/4.8

3 90.6% 74.4% 81.8% 99.0% 71.0% 3.9/4.5

4 90.8% 68.6% 96.5% 100% 80.9% 3.8/3.8

5 98.2% 76.4% 81.4% 100% 53.1% 2.0/3.9

6 98.3% 98.3% 99.2% 100% 50.0% 4.0/4.0

7 100% 100% 100% N/A N/A N/A

8 100% 100% 100% N/A N/A N/A

total 91.3% 68.7% 47.2% 92.5% 43.7% 3.6/6.1

Table 8.6: Results of Instantiated Recognition

202

1-best(τ = 0.7, ψ = 2.0)

level prec. recall param% conv. conv. param% conv. pt

top 93.1% 53.7% 20.6% 94.2% 40.6% 5.4/10.0

2-best(τ = 0.9, ψ = 2.0)

level prec. recall param% conv. conv. param% conv. pt

top 95.8% 56.6% 21.8% 97.4% 41.1% 5.5/10.1

Table 8.7: Results of Flat Instantiated Recognition on the Monroe Corpus (from Chap-

ter 7)

Hierarchical instantiated results at the top level closelymirror results of the hier-

archical schema recognizer. This also happened for the flat recognizer and is to be

expected, as schema recognition performance limits performance of the instantiated

recognizers.

As discussed in Chapter 7, the addition of parameter predictions serves to degrade

the precision and recall of schema recognition results. Interestingly, a comparison of the

degradation in the flat recognizer (Tables 8.2 and 8.7) and the hierarchical recognizer

(Tables 8.3 and 8.6) shows a similar percentage point drop between the schema and

instantiated recognizers for precision and recall. The flatschema recognizer achieved

95.6 percent precision and 55.2 percent recall for the 1-best case, which dropped to 93.1

percent and 53.7 percent for the flat instantiated recognizer. Similarly, the hierarchical

schema recognizer achieved 85.6 percent precision and 58.6percent recall for the 1-best

case, which dropped to 82.5 percent and 56.4 percent for the hierarchical instantiated

recognizer.

The percentage of parameter values instantiated for correct predictions actually in-

creased in the hierarchical recognizer — from 20.6 percent to 24.0 percent, which at

least partially reflects the improved performance of the hierarchical parameter recog-

203

nizer over the flat recognizer. Thus, at the top level, almosta quarter of parameter

values are instantiated in correct predictions, which rises to almost half for converged

sessions.

8.3.3 Other Levels

Precision and recall at other levels also closely mirror theperformance of the schema

recognizer. Precision dips in the middle levels as it did in the schema recognizer, but

this levels out for 2-best prediction, which achieves precision ranging from the high

80’s to 100 percent (with recall ranging in the 60’s and 70’s for high levels and high

90’s and 100 percent for the lower levels).

Parameter prediction for levels 1 and 2 remains in the 20’s, with a sudden jump to

82.4 percent at level 3, 99.9 percent at level 4, and 100 percent for the lower levels,

for the 1-best level. Note that the drop in parameter prediction at several levels in the

2-best case is due to the fact that the recognizer gets more cases right (i.e., increases

recall), but that many of the new correct predictions have less instantiated parameter

values. Thus the decrease in number reflects that the recognizer is getting more correct

predictions, but it does not reflect a decrease in performance for the cases it got correct

in 1-best prediction.

8.4 Conclusion

In this chapter, we have presented a hierarchical goal recognizer which recognizes the

chain of active subgoal schemas, instantiated with their parameter values. For effi-

cient hierarchical goal schema recognition, we have introduced a new type of graphical

model, the Cascading Hidden Markov Model (CHMM) and use a modified forward al-

gorithm to make predictions based on probabilities learnedfrom a plan-labeled corpus.

204

We are now in a position to evaluate the hierarchical goal recognizer based on the

desired requirements we outlined in Chapter 5:

Speed: This refers to the speed of the algorithm in making a prediction, given a new

observation. Our recognizer has a runtime complexity whichis quadratic in the number

of possible subgoals and the number of observed actions, andlinear in the depth of the

goal chain. This makes it scalable in terms of all of these factors.

Early Prediction: Not only should a recognizer be fast, it should also be able to

predict the agent’s goal before the agent completes it. In the Monroe domain, for cases

where it converges, our recognizer is on average able to predict the correct top-level

goal after a little more than half of the observed actions.

Partial Prediction: In cases where full early prediction is not possible, recognizers

should be able to provide partial predictions. Our recognizer provides partial prediction

in two separate ways. First, it can make partial predictionsby predicting only a subset

of parameter values for a goal schema. The early prediction results above are actually

based on partially instantiated predictions, and not full predictions.

Also, our recognizer can provide partial information by predicting the agent’s cur-

rent subgoals, even in cases where it is not yet able to predict the top-level goal. This

is perhaps the most valuable contribution of the hierarchical recognizer, as it is able to

make predictions at lower levels very early on (after just the first action for levels 7 and

8 — with 100 percent precision). As discussed above, as goal complexity increases, it is

unlikely that the top-level goal will be predictable early on in the session. In such cases,

the ability to predict lower-level subgoals should be even more valuable in allowing the

recognizer to make predictions early on in the exchange.

205

9 Conclusion

The goal of building a generalized agent-based dialogue system is one which requires a

lot of progress in many areas of artificial intelligence. In this thesis, we have presented

work which lays several foundational pieces for agent-based dialogue systems.

First, we have created a model of agent collaborative problem solving which is

based on human communication. This model also includes a descriptive language of

communicative intentions which can serve as an (artificial)agent communication lan-

guage, or as a model of communicative intentions in human dialogue. We have also

described a model of dialogue based on this collaborative problem-solving model and

expanded to incorporate a well-known theory of communicative grounding. This model

of dialogue is able to represent a wider range of dialogue phenomena than previous sys-

tems, including a range of collaborative paradigms and collaborative problem-solving

activity.

The collaborative problem-solving model and the dialogue model based upon it are

an important backbone of agent-based dialogue research. Aswe discussed in Chap-

ter 1, there are three main subsystems necessary to support agent-based dialogue. First,

an interpretation subsystem is necessary to convert language into communicative in-

tentions. The dialogue model provides a descriptive language of these communicative

intentions which need to be recognized.

206

Second, a behavior subsystem is necessary to guide the actions of the system. This

is where the autonomous agent lives. The dialogue model presented in this thesis rep-

resents dialogue moves and dialogue state at a problem-solving level, which is much

closer to a form which current artificial agents reason with than most dialogue models;

it provides a significant narrowing of the gap between the twofields of research.

Third, a generation subsystem is required to convert communicative intentions into

language for communication. Again, the definition of what these communicative inten-

tion was a prerequisite for this.

After the agent-based dialogue model, we turned our attention in the second half

of the thesis to supporting the problem of interpretation, more specifically, to intention

recognition, where communicative intentions are recognized from a high-level semantic

form. Intention recognition is a special form of plan recognition (the recognition of an

agent’s goal and plan given observations), and one of the biggest challenges to this has

been the lack of tractable algorithms.

In the second half of the thesis, we introduced a fast goal recognizer based on sta-

tistical machine learning. The algorithm is fast and scalable, with runtime complexity

quadratic in the number of possible goals. At the same time, it is able to hierarchically

recognize active goal schemas and their parameter values, and does not place the re-

strictions on the expressiveness of the domain that other, scalable recognizers do. We

intend to use this goal recognizer as the engine for an intention recognizer for agent-

based dialogue in future work.

In order to train and test the recognizer, we also provided two new corpora to the

plan recognition community — the Linux corpus and the Monroecorpus — and intro-

duced a method for the stochastic generation of plan-labeled corpora. We also described

a set of general desirable properties of plan recognizers, and introduced several new

metrics for measuring these. We believe the contribution ofthese corpora and metrics

will foster better evaluation in the plan recognition community and better comparability

between different recognizers.

207

In short, the work described in this thesis has been a foundational one. We have

set the primary foundation for work in agent-based dialoguesystems by describing a

model of agent-based dialogue and its accompanying communicative intentions. We

have also contributed a new form of scalable goal recognition to the plan recognition

community, which will serve as the foundation of efficient intention recognition algo-

rithms for agent-based dialogue systems.

In the remainder of this chapter, we discuss various routes of needed future work

which this thesis has lead to. We first discuss future work in dialogue modeling, using

the dialogue model we presented in Chapters 3 and 4. We then explore future work

in the area of goal recognition. Finally, we discuss in more detail, needed work in

agent-based dialogue systems.

9.1 Future Work in Dialogue Modeling

In this section, we mention several areas of future work for the collaborative problem-

solving dialogue model.

9.1.1 Evaluations and Argumentation

As noted in Chapters 3 and 4, we do not yet have a good idea about how to represent

evaluations in the model, beyond a simple good/bad dichotomy. More study needs

to be done to determine how evaluations are made in dialogue,and what kinds are

distinguished.

As a further extention, we believe it may be possible to use evaluations to model

argumentation in dialogue. Typically, argumentation is considered to be part of an

exchange in which beliefs of the various agents are supported and attacked — a sort of

debate.

208

Usually, argumentation is modeled solely as being about beliefs (cf. [Chu-Carroll

and Carberry2000]). Our evaluations seem to also serve this function. For example, an

evaluation of a constraint on the top-level situation (e.g., a belief in our model) could

be used to decide whether that belief is good or bad, i.e., true or not true. This is also

true for anywhere an evaluation can be used in the model (e.g., an evaluation of an

objective). Our model also supports evaluations of evaluations, which may be able to

support attacks on attacks as used in [Chu-Carroll and Carberry2000].

To model full argumentation, however, we need to be able to model a reason or

argumentfor or against the proposition. Argumentation allows a reason or argument to

be supplied for the attack or support, something which our model does not have at the

moment. This addition seems like a natural extension and would widen the range of

dialogue that can be handled by the model.

9.1.2 Grounding

Another area which needs improvement is the model of Grounding Acts (GAs). In

Chapter 4, we simply took the act types from Conversational Acts [Traum and Hinkel-

man1992] and defined a single parameter value for them: the Interaction Act (IntAct)

which is to be grounded. Although this may be sufficient for several of the acts (e.g.,

initiate, cancel), operationalizing the model has shown us that more/different informa-

tion is needed in some cases.

First, we model separate grounding acts for each of the intended IntActs from the

speaker. As an example, we will suppose that agent A utters something to B that has

three Grounding Acts as the correct interpretation. Say, however, that the B does not

understand the utterance at all (e.g., hears that it was meant for him, but does not un-

derstand anything from the content), and says something like “Could you repeat that?”

as a response. It is now unclear, using our model, how the communicative intentions of

this response should be modeled. It is clear that the Grounding Act is aReqRepairbut

209

how many are there? Right now, our model would say that there should be threeRe-

qRepairs, since there were three GAs in A’s utterance, but B obviouslydoes not know

that, since he was not able to decode the message that far.

A possible solution would be to model grounding acts at each of Clark’s [Clark1996]

four levels of communication, and at lower levels, only havegrounding occur on the

utterance as a whole. For example, in the case given above, the communication failure

occurs at the signal level, i.e., B knows a signal was sent to him, but does not know

what the content was. We could therefore model the response “Can you repeat that?”

as aReqRepairat that level (and thus on the signal) or something similar.

Another need to better operationalize the grounding model,is that some GAs need

to provide more information than just the IntAct to be grounded.

Again, for example, take theReqRepairact. This time, suppose that A utters “Pick

up the block”. Suppose that B responds with “Which block?”, which would be modeled

as aReqRepair, and this time, (we suppose that) B understands exactly whatIntActs

were meant, just not which block (which would be modeled as a nested resource within

the objective). However, simply wrapping these intentionsin a ReqRepairgives no

indication about whichpart of the utterance has been requested to be repaired. Similar

examples can be given forrepair and evenack(e.g., for differentiating varying degrees

of acknowledgments for different parts of the utterance (cf. [Clark1996]).

9.2 Future Work in Goal Recognition

In this section, we outline next steps for work in statistical goal recognition.

9.2.1 Further Testing with New Corpora

As discussed in Chapter 6, we are aware of only very few corporafor plan recognition.

We have tested our flat recognizer on the Linux corpus and the Monroe corpus, and our

210

hierarchical recognizer only on the Monroe corpus. An important next step would be to

evaluate the recognizers in different domains. This is especially true for the hierarchical

recognizer, as the recognition results are based on an artificially generated corpus.

Especially interesting to us would be to gather a human corpus in a domain similar

to Monroe and annotate it (by hand, most likely) with plan information. The creation

and use of this corpus could help answer several open questions from our work, in-

cluding: How difficult is it to hand annotate a corpus with plan information? What

differences are exhibited in human versus artificial corpora? How well does our hi-

erarchical recognizer perform on human-produced data? Howwell can we recognize

human goals with a recognizer trained on artificially generated data?

9.2.2 Conditioning on Parameter Values

Another important next step will be to remove one of the the simplifying assumptions

we made in Chapter 7, namely, that the probability of a goal schema is independent of

action parameter values, given their action schema. As we mentioned in Chapter 7, this

is not always the case, as the goal schema can very much dependon what the action

parameter values are.

The main reason for making this assumption was data sparsity. Right now, both

the flat and hierarchical schema recognizers use a fairly straightforward bigram model

over action schemas. If we do not make this independence assumption, however, we

need to introduce action parameter values into the equation, which would lead to an

explosion in the number of possible instantiated actions inthe domain (in the worst

case, exponential in the number of parameter positions and objects in the domain).

There are several potential solutions to this that could be tried. The first would be

to use some sort of abstraction backoff for getting conditional probabilities. The idea

would be similar to the n-gram backoff we use in the recognizer right now. The rec-

ognizer would first look for the most specific conditional probability (i.e., the bigram

211

of action schemas and their actual parameter values). If this was not found (or was not

found enough times) in the training data, then the recognizer would look for the proba-

bility of some sort of abstraction of that bigram. For example, parameter values could

be abstract to their domain types (e.g., vehicle or person) and then those conditional

probabilities could be searched. By using a domain ontology,abstraction backoff could

happen until at the end, it abstracts to just using the actionschemas themselves. This

would theoretically give us more information where it is available in the training data,

but give us a backoff to what is happening now.

Another possibility would be to use data mining techniques (cf. [Zaki, Lesh, and

Ogihara2000]) to automatically identify cases in the data where action parameter values

are particularly helpful in discriminating goal schema values. The intuition here is that,

in our experience, in many cases, the action parameter values really do seem to be

independent from the goal schema. However, there are some easily identifiable cases

where they are nearly always a distinguishing factor. Discovering these would allow

the recognizer to take those into account only where helpful.

9.2.3 Problem Solving Recognition

Finally, we believe that an important area of future research (brought out especially

from the focus of this thesis) will be the generalization of plan recognition to what

we will call problem solving recognition. Plan recognition is typically defined as the

recognition of an agent’s plan, given observed actions. This definition, however, im-

plicitly makes the same assumption many plan-based dialogue models do (as discussed

in Chapter 2) namely, that an agent first creates a plan, and then executes it.

Of course this is not always the case, and we would argue that there are many do-

mains in which this is usuallynot the case. We believe if we want to model real agents

from observations, we need to recognize the agent’s problem-solving activity itself.

This would mean recognizing the agent’s current problem-solving state, which could

212

then change from timestep to timestep. There would no longerbe a singleplan data

object attached to a plan session, rather, a post hoc view of aplan session would reveal a

trace of the agent’s problem-solving state over the session. The agent may have had sev-

eral (partial or full) plans over the session, which may havebeen expanded or revised

(or scrapped) as time passes. This would also model shifts inexecution of different

plans for different objectives, and even phenomena like goal abandonment. (It could be

very useful to know when an agent has abandoned a goal withoutaccomplishing it.)

As this is a very new area, much work is needed here. However, as a possible

extention to our work, we have considered the possibility ofusing an artificial agent to

create aproblem-solving labeled corpuswhich could then give us information about not

only hierarchical goal structure over time but also could beused to train a recognizer to

predict when phenomena like replanning or goal abandonmenthave occurred.

9.3 Future Work in Agent-based Dialogue Systems

In this section, we describe directions of future work needed for supporting agent-based

dialogue systems. We discuss these by subsystem: starting first with interpretation, then

moving to behavior, and finally discussing generation.

9.3.1 Interpretation

An agent-based dialogue system needs to be able to convert input language into the cor-

responding communicative intentions, i.e., the instantiated grounding acts from Chap-

ter 4. This, of course, is highly context dependent, thus an intention recognizer would

need to take the dialogue state into account, as well as the semantics of the utterance.

We believe a good starting point for an agent-based intention recognizer will be

the basic ideas of a plan-based recognizer (e.g., [Lochbaum1998; Chu-Carroll and Car-

berry2000]). However, as we discussed in Chapter 2, plan-based intention recogniz-

213

ers are only able recognize intentions based on their own dialogue model. Thus, a

plan-based intention recognizer would need to be augmentedto recognize the range of

collaborative problem-solving activity which we need to for agent-based dialogue.

Most intention recognition algorithms are based on plan recognition, and are there-

fore not scalable. To provide scalability, the next step would be to incorporate our hi-

erarchical goal recognizer into the intention recognizer.Although the goal recognizer

cannot recognize intentions on its own, it does provide a fast way to narrow down the

search space (e.g., by an n-best prediction) to allow for a slower, symbolic recognition

algorithm to perform the recognition of the actual intention.

9.3.2 Behavior

Once the user’s intentions have successfully been recognized, the dialogue model de-

scribed in Chapter 4 defines in which way they update the dialogue state. Given an

updated dialogue state, we need a behavioral component which can make decisions

about what to do next, both in terms of interaction with the world (through sensing and

acting) as well as interaction through communication.

To provide a truly agent-based system, we want to use an autonomous agent to

control behavior. Work in the agents field has made progress in designing agents which

act based on their beliefs about the world, their desires forhow the world should be, and

intentions for action ([Rao and Georgeff1991]), but these agents typically do not know

how to collaborate with others. Research needs to be done in programming such agents

to take problem-solving obligations into account in decision-making. Such agents also

need to be able to generate their own communicative intentions which can be passed on

to generation.

214

9.3.3 Generation

The final area of needed research for agent-based systems is in generation, particu-

larly in the area of content planning, where communicative intentions generated by the

behavioral subsystem are converted into language to be communicated with the user.

This is perhaps the most wide-open field, as most research in language generation for

dialogue has taken high-level semantic forms as input, instead of communicative inten-

tions.

215

Bibliography

[Agre and Horswill1992] Agre, P. and I. Horswill. 1992. Cultural support for impro-
visation. InProceedings of the Tenth National Conference on Artificial Intelligence
(AAAI), pages 363–368.

[Albrecht, Zukerman, and Nicholson1998] Albrecht, David W., Ingrid Zukerman, and
Ann E. Nicholson. 1998. Bayesian models for keyhole plan recognition in an ad-
venture game.User Modeling and User-Adapted Interaction, 8:5–47.

[Alexandersson et al.1998] Alexandersson, Jan, Bianka Buschbeck-Wolf, Tsutomu
Fujinami, Michael Kipp, Stephan Kock, Elisabeth Maier, Norbert Reithinger, Birte
Schmitz, and Melanie Siegel. 1998. Dialogue acts in VERBMOBIL-2 second edi-
tion. Verbmobil Report 226, DFKI Saarbrücken, Universiẗat Stuttgart, TU Berlin,
Universiẗat des Saarlandes, July.

[Allen et al.2000] Allen, J., D. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and
A. Stent. 2000. An architecture for a generic dialogue shell. Journal of Natural
Language Engineering special issue on Best Practices in Spoken Language Dia-
logue Systems Engineering, 6(3):1–16, December.

[Allen1983] Allen, James. 1983. Recognizing intentions from natural language utter-
ances. In M. Brady and R. C. Berwick, editors,Computational Models of Discourse.
MIT Press, pages 107–166.

[Allen, Blaylock, and Ferguson2002] Allen, James, Nate Blaylock, and George Fergu-
son. 2002. A problem-solving model for collaborative agents. In Maria Gini, Toru
Ishida, Cristiano Castelfranchi, and W. Lewis Johnson, editors, First International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 774–781,
Bologna, Italy, July 15-19. ACM Press.

[Allen and Core1997] Allen, James and Mark Core. 1997. Draft
of DAMSL: Dialog act markup in several layers. Available at
http://www.cs.rochester.edu/research/cisd/resources/damsl/, October.

216

[Allen, Ferguson, and Stent2001] Allen, James, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversational systems. InProceedings of
Intelligent User Interfaces 2001 (IUI-01), pages 1–8, Santa Fe, NM, January.

[Allen1979] Allen, James F. 1979. A plan-based approach to speech act recognition.
Technical Report 131/79, University of Toronto. PhD thesis.

[Allen et al.2001] Allen, James F., Donna K. Byron, MyroslavaDzikovska, George
Ferguson, Lucian Galescu, and Amanda Stent. 2001. Towards conversational
human-computer interaction.AI Magazine, 22(4):27–37.

[Allen and Perrault1980] Allen, James F. and C. Raymond Perrault. 1980. Analyzing
intention in utterances.Artificial Intelligence, 15(3):143–178.

[Appelt and Pollack1991] Appelt, Douglas E. and Martha E. Pollack. 1991. Weighted
abduction for plan ascription.User Modeling and User-Adapted Interaction, 2:1–25.

[Ardissono, Boella, and Lesmo1996] Ardissono, Liliana, Guido Boella, and Leonardo
Lesmo. 1996. Recognition of problem-solving plans in dialogue interpretation. In
Proceedings of the Fifth International Conference on User Modeling, pages 195–
197, Kailua-Kona, Hawaii, January.

[Ashbrook and Starner2003] Ashbrook, Daniel and Thad Starner. 2003. Using GPS
to learn significant locations and predict movement across multiple users.Personal
and Ubiquitous Computing, 7(5).

[Austin1962] Austin, J. L. 1962.How to Do Things with Words. Harvard University
Press, Cambridge, Massachusetts.

[Azarewicz et al.1986] Azarewicz, Jerome, Glenn Fala, RalphFink, and Christof Hei-
thecker. 1986. Plan recognition for airborne tactical decision making. InPro-
ceedings of the Fifth National Conference on Artificial Intelligence, pages 805–811,
Philadelphia.

[Bauer1994] Bauer, Mathias. 1994. Quantitative modeling of user preferences for plan
recognition. In B. Goodman, A. Kobsa, and D. Litman, editors,Proceedings of the
Fourth International Conference on User Modeling (UM94), pages 73–78, Hyannis,
Massachusetts, August. MITRE Corporation.

[Bauer1995] Bauer, Mathias. 1995. A Dempster-Shafer approach to modeling agent
preferences for plan recognition.User Modeling and User-Adapted Interaction,
5(3–4):317–348.

[Bauer1996a] Bauer, Mathias. 1996a. Acquisition of user preferences for plan recogni-
tion. In Proceedings of the Fifth International Conference on User Modeling, pages
105–112, Kailua-Kona, Hawaii, January.

217

[Bauer1996b] Bauer, Mathias. 1996b. Machine learning for user modeling and plan
recognition. InWorking Notes of the International Conference on Machine Learning
Workshop ML Meets HCI, Bari, Italy, July 3.

[Bauer1998] Bauer, Mathias. 1998. Acquisition of abstract plan descriptions for plan
recognition. InProceedings of the Fifteenth National Conference on Artificial Intel-
ligence (AAAI-98), pages 936–941, Madison, WI, July.

[Bauer and Paul1993] Bauer, Mathias and Gabriele Paul. 1993. Logic-based plan
recognition for intelligent help systems. In Christer Bäckstr̈om and Erik Sandewall,
editors,Current Trends in AI Planning: EWSP ’93 — Second European Workshop on
Planning, Frontiers in Artificial Intelligence and Applications. IOS Press, Vadstena,
Sweden, December, pages 60–73. Also DFKI Research Report RR-93-43.

[Blaylock2002] Blaylock, Nate. 2002. Managing communicative intentions in dia-
logue using a collaborative problem-solving model. Technical Report 774, Univer-
sity of Rochester, Department of Computer Science, April.

[Blaylock and Allen2003] Blaylock, Nate and James Allen. 2003. Corpus-based, sta-
tistical goal recognition. In Georg Gottlob and Toby Walsh,editors,Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages
1303–1308, Acapulco, Mexico, August 9–15.

[Blaylock and Allen2004] Blaylock, Nate and James Allen. 2004. Statistical goal
parameter recognition. In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, ed-
itors, Proceedings of the Fourteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS’04), pages 297–304, Whistler, British Columbia, June
3–7. AAAI Press.

[Blaylock and Allen2005a] Blaylock, Nate and James Allen. 2005a. A collaborative
problem-solving model of dialogue. InProceedings of the SIGdial Workshop on
Discourse and Dialog, Lisbon, September 2–3. To appear.

[Blaylock and Allen2005b] Blaylock, Nate and James Allen. 2005b. Generating arti-
ficial corpora for plan recognition. In Liliana Ardissono, Paul Brna, and Antonija
Mitrovic, editors,User Modeling 2005, number 3538 in Lecture Notes in Artificial
Intelligence. Springer, Edinburgh, July 24–29, pages 179–188.

[Blaylock and Allen2005c] Blaylock, Nate and James Allen. 2005c. Recognizing in-
stantiated goals using statistical methods. In Gal Kaminka, editor, Workshop on
Modeling Others from Observations (MOO-2005), pages 79–86, Edinburgh, July
30.

[Blaylock, Allen, and Ferguson2002] Blaylock, Nate, James Allen, and George Fer-
guson. 2002. Synchronization in an asynchronous agent-based architecture for

218

dialogue systems. InProceedings of the 3rd SIGdial Workshop on Discourse and
Dialog, Philadelphia, July.

[Blaylock, Allen, and Ferguson2003] Blaylock, Nate, James Allen, and George Fergu-
son. 2003. Managing communicative intentions with collaborative problem solving.
In Jan van Kuppevelt and Ronnie W. Smith, editors,Current and New Directions in
Discourse and Dialogue, volume 22 ofKluwer Series on Text, Speech and Language
Technology. Kluwer, Dordrecht, pages 63–84.

[Blum and Furst1997] Blum, Avrim L. and Merrick L. Furst. 1997.Fast planning
through planning graph analysis.Artificial Intelligence, 90:281–300.

[Bohlin et al.1999] Bohlin, Peter, Johan Bos, Staffan Larsson,Ian Lewin, Colin Math-
eson, and David Milward. 1999. Survey of existing interactive systems. Deliverable
D1.3, EU Project TRINDI, February.

[Bohus and Rudnicky2003] Bohus, Dan and Alexander I. Rudnicky. 2003. Raven-
Claw: Dialog management using hierarchical task decomposition and an expectation
agenda. InProceedings of Eurospeech-2003, Geneva, Switzerland.

[Bui2002] Bui, Hung H. 2002. Efficient approximate inference for online probabilistic
plan recognition. Technical Report 1/2002, School of Computing, Curtin University
of Technology.

[Bui2003] Bui, Hung H. 2003. A general model for online probabilistic plan recog-
nition. In Georg Gottlob and Toby Walsh, editors,Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
9–15.

[Bui, Venkatesh, and West2002] Bui, Hung H., Svetha Venkatesh, and Geoff West.
2002. Policy recognition in the Abstract Hidden Markov Model. Journal of Ar-
tificial Intelligence Research, 17:451–499.

[Carberry1983] Carberry, Sandra. 1983. Tracking user goals in an information-seeking
environment. InProceedings of the Third National Conference on Artificial Intelli-
gence, pages 59–63, Washington, D.C.

[Carberry1987] Carberry, Sandra. 1987. Pragmatic modeling:Toward a robust natural
language interface.Computational Intelligence, 3:117–136.

[Carberry1990a] Carberry, Sandra. 1990a. Incorporating default inferences into plan
recognition. InProceedings of the Eighth National Conference on Artificial Intelli-
gence, pages 471–478, Boston, July 29 – August 3. AAAI Press.

[Carberry1990b] Carberry, Sandra. 1990b.Plan Recognition in Natural Language
Dialogue. ACL-MIT Press Series on Natural Language Processing. MIT Press.

219

[Carberry, Kazi, and Lambert1992] Carberry, Sandra, Zunaid Kazi, and Lynn Lam-
bert. 1992. Modeling discourse, problem-solving and domain goals incrementally
in task-oriented dialogue. InProc. 3rd Int. Workshop on User Modeling, pages 192–
201. Wadern.

[Carletta et al.1997] Carletta, Jean, Amy Isard, Stephen Isard, Jacqueline C. Kowtko,
Gwyneth Doherty-Sneddon, and Anne H. Anderson. 1997. The reliability of a
dialogue structure coding scheme.Computational Linguistics, 23(1):13–31.

[Charniak1997] Charniak, Eugene. 1997. Statistical techniques for natural language
parsing.AI Magazine, 18(4):33–43.

[Charniak and Goldman1993] Charniak, Eugene and Robert P. Goldman. 1993. A
Bayesian model of plan recognition.Artificial Intelligence, 64(1):53–79.

[Chu-Caroll and Brown1997] Chu-Caroll, Jennifer and Michael K. Brown. 1997. Ini-
tiative in collaborative interactions — its cues and effects. In S. Haller and S. McRoy,
editors,Working Notes of AAAI Spring 1997 Symposium on Computational Models
of Mixed Initiative Interaction, pages 16–22, Stanford, CA.

[Chu-Carroll2000] Chu-Carroll, Jennifer. 2000. MIMIC: An adaptive mixed initiative
spoken dialogue system for information queries. InProceedings of the 6th Confer-
ence on Applied Natural Language Processing, pages 97–104.

[Chu-Carroll and Carberry1994] Chu-Carroll, Jennifer and Sandra Carberry. 1994. A
plan-based model for response generation in collaborativetask-oriented dialogues.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
799–805, Seattle, WA.

[Chu-Carroll and Carberry1995] Chu-Carroll, Jennifer and Sandra Carberry. 1995.
Communication for conflict resolution in multi-agent collaborative planning. In
V. Lesser, editor,Proceedings of the First International Conference on Multiagent
Systems, pages 49–56. AAAI Press.

[Chu-Carroll and Carberry1996] Chu-Carroll, Jennifer and Sandra Carberry. 1996.
Conflict detection and resolution in collaborative planning. In M. Woodbridge, J. P.
Müller, and M. Tambe, editors,Intelligent Agents II: Agent Theories, Architectures,
and Languages, number 1037 in Lecture Notes in Artificial Intelligence. Springer-
Verlag, pages 111–126.

[Chu-Carroll and Carberry2000] Chu-Carroll, Jennifer and Sandra Carberry. 2000.
Conflict resolution in collaborative planning dialogues.International Journal of
Human-Computer Studies, 53(6):969–1015.

[Clark1996] Clark, Herbert H. 1996.Using Language. Cambridge University Press.

220

[Cohen1978] Cohen, Philip R. 1978. On knowing what to say: Planning speech acts.
Technical Report 118, Department of Computer Science, University of Toronto, On-
tario, January. PhD thesis.

[Cohen1994] Cohen, Philip R. 1994. Models of dialogue. In T. Ishiguro, editor,Cogni-
tive Processing for Voice and Vision. Society of Industrial and Applied Mathematics,
pages 181–203.

[Cohen and Levesque1990a] Cohen, Philip R. and Hector J. Levesque. 1990a. Inten-
tion is choice with commitment.Artificial Intelligence, 42:213–261.

[Cohen and Levesque1990b] Cohen, Philip R. and Hector J. Levesque. 1990b. Per-
sistence, intention, and commitment. In P. R. Cohen, J. Morgan, and M. Pollack,
editors,Intentions in Communication. MIT Press, Cambridge, MA, pages 33–69.

[Cohen and Levesque1990c] Cohen, Philip R. and Hector J. Levesque. 1990c. Ratio-
nal interaction as the basis for communication. In P. R. Cohen,J. Morgan, and
M. Pollack, editors,Intentions in Communication. MIT Press, Cambridge, MA,
pages 221–254.

[Cohen et al.1991] Cohen, Philip R., Hector J. Levesque, José H. T. Nunes, and
Sharon L. Oviatt. 1991. Task-oriented dialogue as a consequence of joint activ-
ity. In Hozumi Tanaka, editor,Artificial Intelligence in the Pacific Rim. IOS Press,
Amsterdam, pages 203–208.

[Cohen and Perrault1979] Cohen, Philip R. and C. Raymond Perrault. 1979. Elements
of a plan-based theory of speech acts.Cognitive Science, 3:177–212. Reprinted in
B.J. Grosz, K. Sparck-Jones, and B.L. Webber, editors, Readings in Natural Lan-
guage Processing, Morgan Kaufmann, Los Altos, 1986 and Reprinted in L. Gasser
and M. Huhns, editors, Readings in Distributed Artificial Intelligence, Morgan Kauf-
mann, Los Altos, 1988.

[Cohen, Perrault, and Allen1982] Cohen, Philip R., C. Raymond Perrault, and
James F. Allen. 1982. Beyond question answering. In Wendy G. Lehnert and
Martin H. Ringle, editors,Strategies for Natural Language Processing. Lawrence
Erlbaum Associates, pages 245–274.

[DARPA Knowledge Sharing Initiative, External Interfaces Working Group1993]
DARPA Knowledge Sharing Initiative, External Interfaces Working Group. 1993.
Specification of the KQML agent-communication language. Working paper, June.

[Davison and Hirsh1997] Davison, Brian D. and Haym Hirsh. 1997. Experiments in
UNIX command prediction. Technical Report ML-TR-41, Department of Computer
Science, Rutgers University.

221

[Davison and Hirsh1998] Davison, Brian D. and Haym Hirsh. 1998. Predicting se-
quences of user actions. InNotes of the AAAI/ICML 1998 Workshop on Predicting
the Future: AI Approaches to Time-Series Analysis, Madison, Wisconsin.

[Di Eugenio et al.1997] Di Eugenio, Barbara, Pamela W. Jordan, Richmond H.
Thomason, and Johanna D. Moore. 1997. Reconstructed intentions in collaborative
problem solving dialogues. InWorking Notes of AAAI Fall Symposium on Commu-
nicative Action in Humans and Machines, Cambridge, Massachusetts, November.

[Ferguson and Allen1998] Ferguson, George and James F. Allen. 1998. TRIPS: An
intelligent integrated intelligent problem-solving assistant. InProceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 567–573,
Madison, WI, July.

[Fine, Singer, and Tishby1998] Fine, Shai, Yoram Singer, and Naftali Tishby. 1998.
The Hierarchical Hidden Markov Model: Analysis and applications. Machine
Learning, 32:41–62.

[Geib and Goldman2001] Geib, Christopher W. and Robert P. Goldman. 2001. Plan
recognition in intrusion detection systems. In2nd DARPA Information Survivability
Conference and Exposition (DISCEX-II 2001), pages 46–55, Anaheim, California,
June 12–14.

[Goldman, Geib, and Miller1999] Goldman, Robert P., Christopher W. Geib, and
Christopher A. Miller. 1999. A new model of plan recognition.In Uncertainty in
Artificial Intelligence: Proceedings of the Fifteenth Conference (UAI-1999), pages
245–254, San Francisco, CA. Morgan Kaufmann Publishers.

[Grice1957] Grice, H. P. 1957. Meaning.Philosophical Review, 66(3):377–388.

[Grice1969] Grice, H. Paul. 1969. Utterer’s meaning and intention. Philosophical
Review, 78(2):147–177.

[Grice1975] Grice, H. Paul. 1975. Logic and conversation. In P. Cole and J. L. Morgan,
editors,Speech Acts, volume 3 ofSyntax and Semantics. Academic Press, New York,
pages 41–58.

[Gross, Allen, and Traum1992] Gross, Derek, James Allen, and David Traum. 1992.
The Trains 91 dialogues. TRAINS Technical Note 92-1, University of Rochester,
Department of Computer Science.

[Grosz and Sidner1986] Grosz, Barbara and Candace Sidner. 1986. Attention, inten-
tion, and the structure of discourse.Computational Linguistics, 12(3):175–204.

[Grosz1981] Grosz, Barbara J. 1981. Focusing and description in natural language
dialogues. In A. Joshi, B. Webber, and I. Sag, editors,Elements of Discourse Un-
derstanding. Cambridge University Press, New York, New York, pages 84–105.

222

[Grosz and Kraus1996] Grosz, Barbara J. and Sarit Kraus. 1996. Collaborative plans
for complex group action.Artificial Intelligence, 86(2):269–357.

[Grosz and Kraus1999] Grosz, Barbara J. and Sarit Kraus. 1999. The evolution of
SharedPlans. In A. Rao and M. Wooldridge, editors,Foundations and Theories of
Rational Agency. Kluwer, pages 227–262.

[Grosz and Sidner1990] Grosz, Barbara J. and Candace L. Sidner. 1990. Plans for
discourse. In P. R. Cohen, J. Morgan, and M. Pollack, editors,Intentions in Commu-
nication. MIT Press, Cambridge, MA, pages 417–444.

[Hansen, Novick, and Sutton1996] Hansen, Brian, David G. Novick, and Stephen Sut-
ton. 1996. Systematic design of spoken prompts. InConference on Human Fac-
tors in Computing Systems (CHI’96), pages 157–164, Vancouver, British Columbia,
April.

[Hong2001] Hong, Jun. 2001. Goal recognition through goal graph analysis.Journal
of Artificial Intelligence Research, 15:1–30.

[Horvitz and Paek1999] Horvitz, Eric and Tim Paek. 1999. A computational archi-
tecture for conversation. InProceedings of the Seventh International Conference on
User Modeling, pages 201–210, Banff, Canada, June. Springer-Verlag.

[Huber, Durfee, and Wellman1994] Huber, Marcus J., Edmund H. Durfee, and
Michael P. Wellman. 1994. The automated mapping of plans forplan recognition. In
R. L. de Mantaras and D. Poole, editors,UAI94 - Proceedings of the Tenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 344–351, Seattle, Washington.
Morgan Kaufmann.

[Jurafsky and Martin2000] Jurafsky, Daniel and James H. Martin. 2000. Speech and
Language Processing: An Introduction to Natural Language Processing, Computa-
tional Linguistics, and Speech Recognition. Prentice Hall.

[Kautz1990] Kautz, Henry. 1990. A circumscriptive theory of plan recognition. In
P. R. Cohen, J. Morgan, and M. Pollack, editors,Intentions in Communication. MIT
Press, Cambridge, MA, pages 105–134.

[Kautz1991] Kautz, Henry. 1991. A formal theory of plan recognition and its imple-
mentation. In J. Allen, H. Kautz, R. Pelavin, and J. Tenenberg, editors,Reasoning
about Plans. Morgan Kaufman, San Mateo, CA, pages 69–125.

[Kautz and Allen1986] Kautz, Henry and James Allen. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth National Conference on Artificial Intelligence,
pages 32–37, Philadelphia.

223

[Kautz1987] Kautz, Henry A. 1987. A formal theory of plan recognition. Technical
Report 215, University of Rochester, Department of Computer Science. PhD thesis.

[Kellner1998] Kellner, Andreas. 1998. Initial language models for spoken dialogue
systems. InProceedings of ICASSP’98, pages 185–188, Seattle, Washington.

[Lambert1993] Lambert, Lynn. 1993. Recognizing complex discourse acts: A tripar-
tite plan-based model of dialogue. Technical Report 93-19, University of Delaware,
Department of Computer and Information Sciences, Newark, Delaware, May. PhD
thesis.

[Lambert and Carberry1991] Lambert, Lynn and Sandra Carberry. 1991. A tripartite
plan-based model of dialogue. InProceedings of the 29th ACL, pages 47–54, Berke-
ley, CA, June.

[Lamel et al.2000] Lamel, L., S. Rosset, J. L. Gauvain, S. Bennacef, M. Garnier-
Rizet, and B. Protus. 2000. The LIMSI ARISE system.Speech Communication,
31(4):339–354, August.

[Larsson2002] Larsson, Staffan. 2002. Issues under negotiation. InProceedings of the
3rd SIGdial Workshop on Discourse and Dialog, pages 103–112, Philadelphia, July.

[Lemon, Gruenstein, and Peters2002] Lemon, Oliver, Alexander Gruenstein, and
Stanley Peters. 2002. Collaborative activities and multi-tasking in dialogue sys-
tems: Towards natural language with robots.Traitement Automatique des Langues
(TAL), 43(2):131–154.

[Lesh1998] Lesh, Neal. 1998.Scalable and Adaptive Goal Recognition. Ph.D. thesis,
University of Washington.

[Lesh and Etzioni1995a] Lesh, Neal and Oren Etzioni. 1995a.Insights from machine
learning for plan recognition. In M. Bauer, editor,IJCAI 95 Workshop on The Next
Generation of Plan Recognition Systems: Challenges for and Insight from Related
Areas of AI (Working Notes), pages 78–83, Montreal, Canada.

[Lesh and Etzioni1995b] Lesh, Neal and Oren Etzioni. 1995b.A sound and fast goal
recognizer. InIJCAI95 - Proceedings of the Fourteenth International JointConfer-
ence on Artificial Intelligence, pages 1704–1710, Montreal, Canada.

[Lesh and Etzioni1996] Lesh, Neal and Oren Etzioni. 1996. Scaling up goal recog-
nition. In Proceedings of the Fifth International Conference on the Principles of
Knowledge Representation and Reasoning (KR96), pages 178–189.

[Levesque, Cohen, and Nunes1990] Levesque, H., P. Cohen, and J. Nunes. 1990. On
acting together. InProceedings of the Eighth National Conference on Artificial In-
telligence, pages 94–99, Boston, July 29 – August 3. AAAI Press.

224

[Litman1985] Litman, Diane J. 1985. Plan recognition and discourse analysis: An in-
tegrated approach for understanding dialogues. TechnicalReport TR170, University
of Rochester, Department of Computer Science. PhD thesis.

[Litman1986] Litman, Diane J. 1986. Understanding plan ellipsis. InProceedings of
the Fifth National Conference on Artificial Intelligence, pages 619–624, Philadel-
phia.

[Litman and Allen1987] Litman, Diane J. and James F. Allen. 1987. A plan recogni-
tion model for subdialogues in conversations.Cognitive Science, 11(2):163–200.

[Litman and Allen1990] Litman, Diane J. and James F. Allen. 1990. Discourse pro-
cessing and commonsense plans. In P. R. Cohen, J. Morgan, and M.Pollack, editors,
Intentions in Communication. MIT Press, Cambridge, MA, pages 365–388.

[Lochbaum1998] Lochbaum, Karen E. 1998. A collaborative planning model of in-
tentional structure.Computational Linguistics, 24(4):525–572.

[Lochbaum, Grosz, and Sidner2000] Lochbaum, Karen E., Barbara J. Grosz, and Can-
dace L. Sidner. 2000. Discourse structure and intention recognition. In Robert Dale,
Hermann Moisl, and Harold Sommers, editors,Handbook of Natural Language Pro-
cessing. Marcel Dekker, New York, pages 123–146.

[Mann and Thompson1987] Mann, William C. and Sandra A. Thompson. 1987.
Rhetorical structure theory: A theory of text organization.In L. Polanyi, editor,
The Structure of Discourse. Ablex Publishing Corporation.

[McRoy1998] McRoy, Susan W. 1998. Achieving robust human-computer communi-
cation. International Journal of Human-Computer Studies, 48:681–704.

[Murphy and Paskin2001] Murphy, Kevin P. and Mark A. Paskin.2001. Linear time
inference in hierarchical HMMs. InNIPS-01.

[Nau et al.2003] Nau, Dana, Tsz-Chiu Au, Okhtay Ilghami, UgurKuter, J. William
Murdock, Dan Wu, and Fusun Yaman. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20:379–404.

[Patterson et al.2003] Patterson, Donand J., Lin Liao, Dieter Fox, and Henry Kautz.
2003. Inferring high-level behavior from low-level sensors. InFifth Annual Confer-
ence on Ubiquitous Computing (UBICOMP 2003), Seattle, Washington.

[Pollack1986] Pollack, Martha. 1986. Inferring domain plans in question-answering.
Technical Report MS-CIS-86-40 LINC LAB 14, University of Pennsylvania, May.
PhD thesis.

225

[Pollard and Sag1994] Pollard, Carl and Ivan A. Sag. 1994.Head-Driven Phrase
Structure Grammar. Studies in Contemporary Linguistics. University of Chicago
Press, Chicago.

[Pynadath1999] Pynadath, David V. 1999.Probabilistic Grammars for Plan Recog-
nition. Ph.D. thesis, University of Michigan, Department of Computer Science and
Engineering.

[Pynadath and Wellman1995] Pynadath, David. V. and Michael. P. Wellman. 1995.
Accounting for context in plan recognition, with application to traffic monitoring.
In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pages 472–481, Montreal, Canada. Morgan Kaufmann.

[Pynadath and Wellman2000] Pynadath, David V. and Michael P. Wellman. 2000.
Probabilistic state-dependent grammars for plan recognition. In Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 507–
514, Stanford, CA, June.

[Ramshaw1989] Ramshaw, Lance A. 1989. A metaplan model for problem-solving
discourse. InProceedings of the Fourth Conference of the European Chapter of the
Association for Computational Linguistics, pages 35–42, Manchester, England.

[Ramshaw1991] Ramshaw, Lance A. 1991. A three-level model forplan exploration.
In Proceedings of the 29th ACL, pages 39–46, Berkeley, CA, June.

[Ramshaw1989] Ramshaw, Lance Arthur. 1989. Pragmatic knowledge for resolving
ill-formedness. Technical Report 89-18, University of Delaware, Newark, Delaware,
June. PhD thesis.

[Rao and Georgeff1995] Rao, A. and M. Georgeff. 1995. BDI agents: From theory to
practice. In V. Lesser, editor,Proceedings of the First International Conference on
Multiagent Systems. AAAI Press.

[Rao and Georgeff1991] Rao, Anand S. and Michael P. Georgeff. 1991. Modeling
rational agents within a BDI-architecture. In James Allen, Richard Fikes, and Erik
Sandewall, editors,Principles of Knowledge Representation and Reasoning, pages
473–484, Cambridge, Massachusetts, April 22-25. Morgan Kaufmann. Also avail-
able as AAII Technical Note 14.

[Rayner, Hockey, and James2000] Rayner, Manny, Beth Ann Hockey, and Frankie
James. 2000. A compact architecture for dialogue management based on scripts
and meta-outputs. InProceedings of the 6th Conference on Applied Natural Lan-
guage Processing.

226

[Rich and Sidner1998] Rich, Charles and Candace L. Sidner. 1998.COLLAGEN:
A collaboration manager for software interface agents.User Modeling and User-
Adapted Interaction, 8(3–4):315–350. Also available as MERL Technical Report
97-21a.

[Rich, Sidner, and Lesh2001] Rich, Charles, Candace L. Sidner, and Neal Lesh. 2001.
COLLAGEN: Applying collaborative discourse theory to human-computer interac-
tion. AI Magazine, 22(4):15–25. Also available as MERL Tech Report TR-2000-38.

[Rudnicky et al.1999] Rudnicky, A. I., E. Thayer, P. Constantinides, C. Tchou, R. Sh-
ern, K. Lenzo, W. Xu, and A. Oh. 1999. Creating natural dialogsin the Carnegie
Mellon Communicator system. InProceedings of the 6th European Conference on
Speech Communication and Technology (Eurospeech-99), pages 1531–1534, Bu-
dapest, Hungary, September.

[Sadek and De Mori1998] Sadek, David and Renato De Mori. 1998.Dialogue sys-
tems. In Renato De Mori, editor,Spoken Dialogues with Computers, Signal Pro-
cessing and Its Applications. Academic Press, London, pages 523–561.

[Schmidt, Sridharan, and Goodson1978] Schmidt, C. F., N. S. Sridharan, and J. L.
Goodson. 1978. The plan recognition problem: An intersection of psychology
and artificial intelligence.Artificial Intelligence, 11:45–83.

[Searle1975] Searle, John R. 1975. Indirect speech acts. In P. Cole and J. L. Morgan,
editors,Speech Acts, volume 3 ofSyntax and Semantics. Academic Press, New York,
pages 59–82.

[Seneff and Polifroni2000] Seneff, Stephanie and Joseph Polifroni. 2000. Dia-
logue management in the Mercury flight reservation system. In Proceedings of
ANLP/NAACL-2000 Workshop on Conversational Systems, Seattle, Washington,
May.

[Sidner1994] Sidner, Candace L. 1994. An artificial discourse language for collabo-
rative negotiation. InProceedings of the Twelfth National Conference on Artificial
Intelligence, pages 814–819, Seattle, WA. Also available as Lotus Technical Report
94-09.

[Sidner and Israel1981] Sidner, Candace L. and David J. Israel. 1981. Recognizing
intended meaning and speakers’ plans. InProceedings of International Joint Con-
ference on Artificial Intelligence, pages 203–208, Vancouver, B.C.

[Sidner1994] Sidner, Candy. 1994. Negotiation in collaborative activity: A discourse
analysis.Knowledge-Based Systems, 7(4):265–267. Also available as Lotus Techni-
cal Report 94-10.

227

[Stent2000] Stent, Amanda J. 2000. The Monroe corpus. Technical Report 728,
University of Rochester, Department of Computer Science, March. Also Technical
Note 99-2.

[The Foundation for Intelligent Physical Agents2002] The Foundation for Intelligent
Physical Agents. 2002. FIPA Request Interaction Protocol specification.
http://www.fipa.org/specs/fipa00026/SC00026H.html, December.

[Traum1994] Traum, David R. 1994. A computational theory of grounding in natural
language conversation. Technical Report 545, University ofRochester, Department
of Computer Science, December. PhD Thesis.

[Traum2000] Traum, David R. 2000. 20 questions for dialogue act taxonomies.Jour-
nal of Semantics, 17(1):7–30.

[Traum and Hinkelman1992] Traum, David R. and Elizabeth A. Hinkelman. 1992.
Conversation acts in task-oriented spoken dialogue.Computational Intelligence,
8(3):575–599. Also available as University of Rochester Department of Computer
Science Technical Report 425.

[Vilain1990] Vilain, Marc. 1990. Getting serious about parsing plans: a grammatical
analysis of plan recognition. InProceedings of the Eighth National Conference on
Artificial Intelligence, pages 190–197, Boston, July 29 – August 3. AAAI Press.

[Wilensky1983] Wilensky, Robert. 1983.Planning and Understanding: A Computa-
tional Approach to Human Reasoning. Addison-Wesley, Reading, Massachusetts.

[Wooldridge and Jennings1999] Wooldridge, Michael and Nicholas R. Jennings. 1999.
The cooperative problem-solving process.Journal of Logic and Computation,
9(4):563–592.

[Wu2003] Wu, Huadong. 2003.Sensor Data Fusion for Context-Aware Computing
Using Dempster-Shafer Theory. Ph.D. thesis, Carnegie Mellon University, Robotics
Institute, December.

[Zaki, Lesh, and Ogihara2000] Zaki, Mohammed J., Neal Lesh,and Mistunori Ogi-
hara. 2000. PLANMINE: Predicting plan failures using sequence mining.Artificial
Intelligence Review, 14(6):421–446, December. special issue on the Application of
Data Mining.

[Zue et al.2000] Zue, Victor, Stephanie Seneff, James Glass, Joseph Polifrani, Chris-
tine Pao, Timothy J. Hazen, and Lee Hetherington. 2000. JUPITER: A telephone-
based conversational interface for weather information.IEEE Transactions on
Speech and Audio Processing, 8(1):100–112, January.

228

A Instructions Given to Users in the

Linux Corpus Collection

We are studying how people perform tasks in Linux. We will give you a series of tasks

to complete. In each case, we will record the commands you use(and their results).

By continuing, you agree to let us do this recording and use it for further study and/or

publications. It will in no way be used to personally identify you.

Each task should take no more than a few minutes at most. You are free to do as

many tasks as you like and you may quit at any time.

INSTRUCTIONS

You will be given a task to complete in Linux. When you have successfully completed

the task, use the command ’success’ to indicate so. If, at anytime, you wish to give up,

use ’fail’. Note: the system is not actually checking to see if you accomplished the task

or not. It just believes you when you say ’success’ or ’fail’.Use the command ’help’ if

you ever need any.

You may perform the task any way you like. However, please follow the following

rules:

1. Do everything in the current shell. Don’t invoke new shells (tcsh, rsh, etc.) or do

stuff in another program (like emacs). It prevents the program from monitoring

229

your activity.

2. Don’t use scripts (awk, perl, sh, ...)

3. Use one command per line, don’t use pipes ’|’ or commands with other com-

mands embedded in them, (e.g., with ’;’ or backticks ’‘’). Also, it’s ok to use

’find’ but not ’find -exec’

4. For each session, you will be assigned a randomly generated directory called:

/u/blaylock/Experiment/Playground/usernametime (where ’usernametime’ will

be your username and the current time). Please stay within that subdirectory tree

(i.e., pretend like /u/blaylock/Experiment/Playground/usernametime is /)

5. Use only standard programs. Don’t use any shell scripts/programs installed in

personal user accounts.

6. Arrows, command completion, and command editing don’t work. Sorry.

Remember, there is nowhere you need to put an ’answer’ for the task. Simply type

’success’ if you accomplished the task, or ’fail’ if you are giving up.

The current directory isdirname, please treat this as your root directory.

230

B Goal Schemas in the Linux Corpus

There were 19 goal schemas used in the Linux corpus. Table B.1 shows each schema,

along with the template used to generate its English description and its assigned a priori

probability.

Note that the English description includes parameters in the form $1, $2, etc. which

correspond to the first, second, etc. parameter in the goal schema. In the corpus collec-

tion, these variables were instantiated with the value of the actual parameter and then

the text was shown to the subject.

231

Goal Schema Prob.
English Description
find-file-by-attr-name-exact(filename) 0.091
find a file named ’$1’
find-file-by-attr-name-ext(extension) 0.055
find a file that ends in ’.$1’
find-file-by-attr-name-stem(stem) 0.055
find a file that begins with ’$1’
find-file-by-attr-date-modification-exact(date) 0.055
find a file that was last modified $1
compress-dirs-by-attr-name(dirname) 0.055
compress all directories named ’$1’
compress-dirs-by-loc-dir(dirname) 0.055
compress all subdirectories in directories named ’$1’
know-filespace-usage-file(filename) 0.073
find out how much filespace file ’$1’ uses
know-filespace-usage-partition(partition-name) 0.055
find out how much filespace is used on filesystem ’$1’
know-filespace-free(partition-name) 0.036
find out how much filespace is free on filesystem ’$1’
determine-machine-connected-alive(machine-name) 0.036
find out if machine ’$1’ is alive on the network
create-file(filename,dirname) 0.073
create a file named ’$1’ in a (preexisting) directory named ’$2’
create-dir(create-dirname,loc-dirname) 0.036
create a subdirectory named ’$1’ in a (preexisting) directory named ’$2’
remove-files-by-attr-name-ext(extention) 0.036
delete all files ending in ’.$1’
remove-files-by-attr-size-gt(numbytes) 0.018
delete all files which contain more than $1 bytes
copy-files-by-attr-name-ext(extention,dirname) 0.018
copy all files ending in ’.$1’ to a (preexisting) directory named ’$2’
copy-files-by-attr-size-lt(numbytes,dirname) 0.018
copy all files containing less than $1 bytes to a (preexisting)
directory named ’$2’
move-files-by-attr-name-ext(extention,dirname) 0.091
move all files ending in ’.$1’ to a (preexisting) directory named ’$2’
move-files-by-attr-name-stem(stem,dirname) 0.073
move all files beginning with ’$1’ to a (preexisting) directory named ’$2’
move-files-by-attr-size-lt(numbytes,dirname) 0.073
move all files containing less than $1 bytes to a (preexisting)
directory named ’$2’

Table B.1: Goal Schemas in the Linux Corpus

232

C Action Schemas in the Linux

Corpus

We discuss here some of the issues in converting raw Linux command strings into

parameterized actions. We first discuss some of the general issues encountered and

then discuss the action schemas themselves.

C.1 General Issues for Conversion

The following describes some of the general difficulties we encountered in mapping the

Linux domain onto actions. It is important to note that our goal in this project was not

to write a general-purpose action-description language for Linux, rather to test a theory

of goal recognition, thus some of our choices were pragmaticrather than principled.

Flags Linux uses command flags (e.g.,-l) in two different ways: to specify un-

ordered parameters and to change the command functionality. The former is fairly easy

to handle. The latter, however, is more difficult. It would bepossible to treat each

command/flags combination as a separate command. However, many commands have

various flags, which may be used in various combinations, which would likely lead to

a data sparseness problem.

233

We currently just ignore all command functionality flags. The action schema name

used is just the ’command name’ of the Linux command (e.g.,ls from ls -l -a).

One option would be to form a sort of multiple-inheritance abstraction hierarchy of

commands and their flags (e.g.,ls -l -a inherits fromls -l andls -a), al-

though we leave this to future work.

Optional Parameters Treating various modes of commands as one command ex-

pands the number of possible parameters for each command. For example,find can

take the-size parameter to search for a file of a certain size, or-name to search for

a certain name. These parameters can be used together, separately, or not at all.

To deal with this problem, each action schema has a parameterfor eachpossible

parameter value, but parameter values are allowed to be blank.

Lists of Parameters Many commands actually allow for a list of parameters (usually

for their last parameter). The commandls, for example, allows a list of filenames

or directory names. Rather than handle lists in special ways,we treat this as multiple

instances of the action happening at the same timestep (one instance for each parameter

in the list).

Filenames and Paths As can be seen below in the action schemas, many commands

have both apath and aprepath parameter. Because our parameter recognizer uses

the action parameter values to help predict goal’s parameter values, it is necessary that

the corresponding value be found in the action parameter where possible. Paths were

especially difficult to handle in Linux because they can conceptually be thought of

as alist of values — namely each subdirectory name in the path as well as a final

subdirectory name (in the case that the path refers to a directory) or a filename (in the

case it refers to a file). In a complex path, the parameter value was often the last item

in the path.

234

As a solution, we separated each path into apath and aprepath. Thepath was

the last item on the original path, whereas theprepath contained the string of the rest

of the original path (even if it had more than one subdirectory in it).

As an example, consider the commandcd dir1/dir2/file.txt which con-

tains a complex path. In this case, it would translate into the following action in our cor-

pus:cd(dir1/dir2,file.txt). This way, the argumentfile.txt becomes a

separate parameter value, and thus accessible to the parameter recognizer.

Wildcards How to handle wildcards (* and ?) was another issue. In Linux,filenames

containing wildcards are expanded to a list of all matching file and directory names in

the working directory. However, that list was not readily available from the corpus.

Furthermore, even if there is not match to expand to, we wouldlike to be able to tell

that a commandls *.ps is looking for an extensionps. Our solution was to simply

delete all wildcards from filenames.

Current and Parent Directories The special filenames. and.. refer to the current

working directory and its parent, respectively. The referents of these were not readily

available from the corpus, and leaving them as. and.. made them look like the same

parameter value, even though the actual referent was changing (for example when acd

was executed).

For each goal session, we rename. and.. to*dot[num]* and*dotdot[num]*,

where[num] is the number ofcd commands which have been executed thus far in the

current plan session. This separates these values into equivalence classes where their

real-life referent is the same. Of course this doesn’t handle cases where a latercd

comes back to a previous directory.

235

C.2 The Action Schemas

There were 43 valid command types used in the Linux corpus which we converted into

the action schemas listed below. Each action schema lists the name of the command as

well as its named parameters.

• cal()

• cat(prepath,path)

• cd(prepath,path)

• clear()

• compress(prepath,path)

• cp(dest-prepath,dest-path,source-prepath,source-path)

• date()

• df(prepath,path)

• dir(prepath,path)

• du(prepath,path)

• echo(string)

• egrep(pattern,prepath,path)

• fgrep(pattern,prepath,path)

• file(prepath,path)

• find(prename,name,size,prepath,path)

• grep(pattern,prepath,path)

• gtar(dest-prepath,dest-path,source-prepath,source-path)

• gzip(prepath,path)

• info(command)

• jobs()

• less(prepath,path)

236

• ln(dest-prepath,dest-path,source-prepath,source-path)

• ls(prepath,path)

• man(command)

• mkdir(prepath,path)

• more(prepath,path)

• mount()

• mv(dest-prepath,dest-path,source-prepath,source-path)

• pico(prepath,path)

• ping(machine-name,machine-path)

• pwd()

• rlogin(machine)

• rm(prepath,path)

• rsh(machine,command)

• ruptime()

• sort(prepath,path)

• tar(dest-prepath,dest-path,source-prepath,source-path)

• touch(prepath,path)

• tree(prepath,path)

• uncompress(prepath,path)

• vi(prepath,path)

• which(command)

• zip(dest-prepath,dest-path,source-prepath,source-path)

237

D Goal Schemas in the Monroe

Corpus

There were 10 top-level goal schemas used in the Monroe corpus. Table D.1 shows

each schema, along with its assigned a priori probability.

Note that, in the domain, we modeled roads as simple being between their two end-

points. Thus inclear-road-hazard(from,to), thefrom andto parameters

refer to the road between the two variables (where the hazardis).

Goal Schema Prob.
clear-road-hazard(from,to) 0.094
clear-road-tree(from,to) 0.063
clear-road-wreck(from,to) 0.156
fix-power-line(location) 0.063
fix-water-main(from,to) 0.031
plow-road(from,to) 0.219
provide-medical-attention(person) 0.219
provide-temp-heat(person) 0.094
quell-riot(location) 0.031
set-up-shelter(location) 0.031

Table D.1: Goal Schemas in the Monroe Corpus

