
Using Semantics to Identify Web Objects

Nathanael Chambers and James Allen and Lucian Galescu
Hyuckchul Jung and William Taysom

Florida Institute for Human and Machine Cognition
40 South Alcaniz Street

Pensacola, FL 32502
{nchambers,jallen,lgalescu,hjung,wtaysom}@ihmc.us

Abstract
Many common web tasks can be automated by algorithms
that are able to identify web objects relevant to the user’s
needs. This paper presents a novel approach to web object
identification that finds relationships between the user’s ac-
tions and linguistic information associated with web objects.
From a single training example involving demonstration and
a natural language description, we create a parameterized ob-
ject description. The approach performs as well as a popular
web wrapper on a routine task, but it has the additional ca-
pability of performing in dynamic environments and the at-
tractive property of being reusable in other domains without
additional training.

Introduction
Searching the World Wide Web involves interacting with
web objects such as links, search fields, buttons and forms.
Each object is described in natural language, assisting the
user in identifying the meaning and purpose of that object.
The semantic knowledge in these natural language descrip-
tions can be used to help automate everyday web brows-
ing tasks. Unfortunately, approaches to automating knowl-
edge extraction rely on the syntactic location of objects, and
few (if any) semantic indicators are used. This paper de-
scribes WebLearn, a new approach to identifying web ob-
jects based on unifying the semantic content of a user’s ut-
terances with the semantic content of the written language
surrounding web objects.

Web objects in this paper refers to the basic entities on a
web page: text fields, links (anchors), buttons, etc. Most
such objects are designed for humans to read, and so con-
tain linguistic information that can be unified with the user’s
reasons for selecting the object. This gives important clues
about the meaning of an object; such semantic information
can then be used to identify it more reliably than purely syn-
tactic information about the structure of the web page.

WebLearn’s semantic approach also lends itself well to
transfer learning. We will show how a user can teach a sys-
tem where a books tab is located, and have the system find a
DVD tab without extra training. This sort of transfer is pos-
sible because we can generalize on semantic parameters, as
opposed to only syntactic constraints on page structure.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The following section presents some background on web
wrappers, followed by a description of PLOW, the larger
procedure learning system that uses WebLearn. We then
present WebLearn’s approach to identifying web objects,
followed by evaluations and a discussion.

Background
Web wrappers have been used since the mid nineties to
identify web content. A wrapper is a program that turns a
semi-structured information source into a structured source
(Knoblock et al. 2001). This approach can be reliable on
static, structured formats, but brittle and sensitive to any
changes. Most wrappers define rules based on the syntax
around a desired object, and fail if the page is restructured.

Many groups have investigated machine-learning to auto-
matically create syntactic rules. (Lerman et al. 2004) de-
veloped a system that infers the page layout based on the
repeated structure of the page, while also incorporating du-
plicate information on related “details” pages. (Hsu & Dung
1998) developed a wrapper induction algorithm using finite
transducers and (Muslea, Minton, & Knoblock 1999) pre-
sented a technique using more expressive rules, transform-
ing web pages into a tree-like structure. (Cohen 2003) dis-
cusses many of these wrapper approaches based on structure
rather than content.

Some work has used ontologies instead of syntactic cues.
(Embley et al. 1998) developed a system that formulated
rules based on an ontology of words. (Davulcu, Mukherjee,
& Ramakrishnan 2002) developed a technique to locate in-
formation related to the object taxonomies. These ontology-
based approaches can be applied to unstructured web pages,
however, their focus is on finding text patterns for the at-
tributes in a given ontology, not on finding web objects.

User goals are largely ignored in the above. Our approach
learns how web objects relate to the user’s task; we are inter-
ested in how a desired object is described, not the structure
of a web page.

Procedure Learning on the Web
WebLearn is part of a larger learning system called PLOW
(Procedure Learning on the Web), whose purpose is to learn
to perform common web tasks. PLOW is taught through nat-
ural language coupled with web action demonstrations. For



let me teach you to buy a book
go to this page
-enters the URL in the browser and hits enter-
click the books tab
-clicks the tab labeled ’books’-
select advanced search
-clicks the link labeled ’advanced search’-
put the title here
-types a book title into the title search field-
and put the author here
-types an author into the author search field-
now click the search button
-clicks the search button-
now select the page for the book
-clicks the link with the title of the book-

Figure 1: Dialogue and accompanying browser actions the
user performs as the system is instructed how to buy a book.

example, the user speaks, “we put the title of the book here”
while simultaneously clicking on a text field and typing the
title. The TRIPS dialogue system (Allen, Ferguson, & Stent
2001) controls the interaction with the user and monitors the
state of a web browser. TRIPS uses a domain independent
ontology and a lexicon of approximately 5000 unique words
(excluding morphological derivations).

The system collaborates with the user to learn tasks by
discussion. Natural language utterances are automatically
parsed and interpreted into a semantic form that is com-
bined with input from an instrumented Mozilla browser
(WebTracker). When the central agent (Plow) receives a
semantic representation of the user’s utterance, it must de-
termine if that utterance corresponds to a new step in the
procedure, a conditional, a retraction, etc. An example of a
discussion with the user is in figure 1. With each new step,
Plow asks the procedure learning module (Palm) if this next
step makes sense, and if so, to add the step to the current
procedure. Upon receiving a step and corresponding web
action, Palm queries WebLearn for information about the
web object. WebLearn learns to find instances of the object
in the future by using (1) the current web object and (2) the
description of the action. WebLearn’s use of the semantic
description to identify the object is the focus of this paper.

The procedures and the web objects relevant to each step
are learned from a single example performed by the user as
he/she teaches the system, step by step, how to perform a
specific web procedure. Since the PLOW system was de-
signed for one-shot learning, WebLearn also learns how to
identify web objects from a single example. WebLearn is
key to procedure learning because few web tasks can be per-
formed without robust object identification.

WebLearn

WebLearn’s main task is to associate the attributes of web
objects with the semantic representations of a user’s utter-
ances as he explains his actions.

Input Format
WebLearn’s input for learning is a 2-tuple: an action de-
scription and a web object ID. The action description is a
frame-like feature-value structure based on a knowledge rep-
resentation that is parsed automatically from the user’s utter-
ances as he/she teaches PLOW, providing relevant semantic
context for the web object. As an example, below is a de-
scription for the utterance, then we click the books tab.

(CHOOSE :object (TAB :assoc-with BOOK))

WebLearn interacts with WebWatcher to retrieve informa-
tion about the object by querying for the object and its chil-
dren’s attributes in the Document Object Model (DOM) of
the web page. The following is a list representation of our
example object description returned by the browser.

(object :type a :id a22 :atts ((href “www.amazon.com...”)))
:children ((object :type text :id t31

:atts ((content “Books”))))

Semantic Relations
WebLearn searches the object description to find a seman-
tic connection between its attributes and the current action.
Each ontology class in the input description is expanded into
its English realizations through the TRIPS ontology and lex-
icon. In our example, a relationship can be found between
the third class, BOOK, and the text label of the link that the
user clicked. BOOK has several linguistic realizations, in-
cluding hardcover, paperback and book. We easily find that
Book is a substring of the attribute’s value in the DOM tree,
“Books” (the plural, books, is an exact match. This paper
did not use morphological variations during learning, but in-
stead relied upon them during search in the execution stage).
WebLearn parameterizes both the object description and the
action description where a relation was found, creating an
Object Identification (ID) Rule to associate the action with
the object; the action description is used as context for iden-
tifying the object in the future. Figure 2 shows a full repre-
sentation of the learned knowledge in an Object ID Rule.

There are two parts to an Object ID Rule. The first is the
action description, as explained above. The second is the
object description. Each object description contains a list of
parameter variables and string relations. The string relations
describe the relationship between the parameters in the ac-
tion description and the linguistic realizations of the seman-
tic concepts in the object description. In figure 2, note that
the variable ?target has parameterized the BOOK concept in
the task and the object. The relationship is a substring of a
BOOK lexical item (based on the lexicon/ontology) with an
s postfix. Currently, our system supports four types of string
relations:

• exact: The task value exactly matches the object value.

• substring: The task value is a substring of the object
value.

• superstring: The object value is a substring of the task
value.

• keyword: The object value contains at least half the
words in the task value, but not necessarily in order.



(IDrule :action (CHOOSE :object (TAB :assoc-with ?target))
:object (link :def (object :type a :atts ((href “http://www.amazon.com/...”)))

:children ((object :type text :atts ((content ?target))))
:vars (?target (relation :type substring :prefix ” :postfix ’s’)) :domain (“http://www.amazon.com/...”)))

Figure 2: An Object Identification Rule. :vars is the relationship between the parameter in the :action and its location in the
:object. The :domain is a list of webpages on which this rule was trained.

These string relations allow WebLearn to use linguistic
information about the object that is not always visible to the
user, but that may be present due to human creation of the
web pages.For instance, form text fields often have several
DOM values that are not rendered by the browser. In our
book buying scenario, the user teaches the system to, “put
the author here.” The object description of the text field is
as follows:
(object :type input :id input4

:atts ((type “text”) (size 40) (name “field-author”)))
The name attribute of the field, which is only used by the

browser for submitting the form, contains enough informa-
tion for us to learn how to identify the correct author field
using a substring relation on the lexical instance author of
the AUTHOR concept. Since the string relations are in terms
of abstract concepts, they can be applied to find objects that
the system was not specifically trained on; for example, the
Object ID Rule for finding this author field could be applied
to find a title field (search for field-title). Such knowledge
lends itself well to transfer learning and is discussed later.

Execution
Given a set of Object ID Rules, WebLearn can execute any
rule that unifies with a semantic action description input.
The interface to WebLearn is essentially a semantic one,
freeing the calling agent from knowledge requirements on
types of web objects and their properties.

The input action description is unified with all of Web-
Learn’s Object ID Rule actions. The unification is a par-
tial unification in that all of the features do not have to be
present, but a penalty is given for missing or altered features.
As long as the variables unify, the actions are considered a
match and the extra features are simply penalized in a sim-
ilarity metric. This metric allows for flexible action inputs
and if multiple actions match, the one with the least edit dis-
tance is chosen.

The variable bindings from the action unification are then
bound to the object description in the matched Rule, produc-
ing a new instance of the object that is used to query Web-
Watcher for all matching objects. The variable (?target) is
bound with the unified value using the constraints specified
by the matching relation (exact, substring, superstring, key-
word). For increased robustness, we make use of the TRIPS
ontology and lexicon to further expand the range of natural
language expressions. For each unified variable, WebLearn
checks the value against the lexicon and ontology to see if it
is present as a semantic class or lexical item:
• If a semantic class is found, all possible words under that

class are included in the query to WebWatcher.

• If a lexical item is found, all morphological derivations of
the word are used.

As an example, we use this text child from figure 2:
(object :type text :atts ((content ?target)))

If our input binds the action’s ?target to the value, “Hard
Times”, with the exact relation, the expansion algorithm
inserts a regular expression search string into this object’s
?target variable that would match, among other possibilities;
hard times, harder time, hard timing, and harder timed. This
approach of utilizing semantic input and linguistic knowl-
edge provides for robust execution that finds semantically
related objects with linguistically different realizations.

When multiple web objects are found, they are ranked
according to a combined metric based on string similarity
and tree similarity. The string similarity compares the uni-
fied values in the target object to the returned objects. We
use a string edit distance score based on a modified version
of the Generation String Accuracy (Bangalore, Rambow, &
Whittaker 2000). Generation String Accuracy (GSA) is a
metric from the Natural Language Generation community,
designed to measure the similarity of two strings:

GSA = 1 − (I + D + S + M)/L (1)

where I , D, S and M are respectively the number of word
insertions, deletions, substitutions and movements. Move-
ments are the same as one deletion and one insertion else-
where in the string, but are only counted as one penalty
rather than two. L is the word length of the target object.
We created a new, modified version of this metric, the Lexi-
cal Generation String Accuracy:

LexGSA = GSA + (2)
λ∗

∑L

i=0
morph(xi)−

∑I+D+S+M

j=0
disc(yj)

L (3)

where morph(xi) is a function on each word in the tar-
get string that returns 0 if no pre-processing morphology
is needed and 1 if it is. The pre-processing step finds all
morphological variants of words that could be changed to
provide exact matches (e.g. ‘timing’ matches ‘time’). λ
is a weight that determines the morphology penalty. We
chose λ = 0.2 for our study. disc(yi) is a discount func-
tion that removes some of the penalty scores based on the
part of speech (POS) of the word that was deleted, inserted,
etc. Instead of penalizing string differences equally, we take
into account the POS differences. Determiners and conjunc-
tions return 0.75, prepositions and quantifiers 0.5, numbers
and ordinals 0.25, and all other words 0. These numbers are
chosen heuristically based on the semantic content of those
types of words. Determiners do not add much content to a



phrase (‘a tale’ vs.‘the tale’), but ordinals do (‘two cities’
vs.‘three cities’). We present a string comparison example
for illustration:
target: ’a counting of cristo’
found: ’the count of monte cristo’
morph(count)=1 to make counting. We substitute the word
the for a and delete monte so that S = 1 and D = 1. Each
action is also discounted (shown below in 4). The resulting
lexGSA is then shown below in (5).

disc(y0 = the) = 0.75 disc(y1 = monte) = 0 (4)

lexGSA = 1− 0 + 1 + 1 + 0
4

+
λ ∗ 1 − 0.75

4
= 0.32 (5)

In addition to the string similarity metric, a tree similarity
score is calculated for each object against the ideal object
from which WebLearn learned. We use a metric similar to
GSA, counting the number of insertions, deletions, and sub-
stitutions that would make a given tree equal to the target
tree.

treeSim = 1 − (I + D + S)/N (6)
where I , D and S are respectively the number of node in-
sertions, deletions and substitutions that must be made to
the tree structure to be equivalent to the target tree. N is
the number of nodes in the target tree. This is expensive to
compute, but the objects we deal with are typically primi-
tive web objects with trees that are usually less than 5 levels
deep, so the computation is tractable.

The Lexical GSA is combined with this tree score and the
highest object score is returned:

score = (w ∗ lexGSA) + treeSim (7)

The lexGSA is weighted higher than the treeSim using the
weight w since the semantic values are the main indicators
for correctness. The tree similarity measure affects the or-
dering of the objects when we have multiple objects with
the same strings, or an object that has a vastly different tree
structure than expected. Minor variations in the trees can be
ignored by setting w relatively high. The lexGSA weight w
was set to w = 10 for our study. Several values for w were
tried during development, and a value emphasizing semantic
values over syntactic structure performs better. The optimal
value may be website specific. The system currently does
not have a score threshold at which point it would give up
and say the object is too dissimilar from the description, but
instead always returns the highest scoring object.

Book Search Evaluation
Evaluations were performed on booksellers amazon.com
(Amazon) and barnesandnoble.com (B&N). The overall pro-
cedure that the PLOW system used was a book search task
in which a user teaches PLOW how to find a book. Our eval-
uation looks at the performance of WebLearn’s execution.

Book Search
For training, the user demonstrates how to find a book’s de-
tails page just once. The discussion and the user actions are
shown in figure 1. The utterances in this evaluation are not

Figure 3: Book search results from (A) amazon.com (162
books) and (B) barnesandnoble.com (155 books). Incom-
plete indicates no web object was returned.

hardcoded into the system, but rather each utterance is auto-
matically parsed and interpreted. Variations in the language
commands are also possible. After learning the Object ID
Rules for each training step, WebLearn assists in the book
search procedure, given an author and a title.

Four evaluators randomly selected 165 book authors, ti-
tles, and ISBN numbers from an online ISBN database. The
test set was then validated on each website to spot books that
are not available for sale. After removing missing books, the
set was reduced to 162 for Amazon and 155 for B&N.

The evaluation inserted each author/title pair into
PLOW’s learned procedure. A test is successful if at the end
of the procedure, the system is on the correct book details
page. Since the procedure PLOW learns is based on a 6-step
procedure, the number of web objects that are tested is actu-
ally 6 ∗ n where n is the number of books. We searched for
972 objects on Amazon and 930 on B&N.

A baseline evaluation was run as a macro-recorder against
which to measure our results. The macro recorder ignores
user utterances and simply records web actions. When the
user selects a link (or textfield, form, etc.) during training,
it records the index of that link on the page (e.g. the 23rd
link). During execution, it acts a little differently than a basic
macro in that it is parameterized by author and title.

We also compared the performance of WebLearn against
a typical web wrapper, the AgentBuilder1 system. Its GUI
was used to build the same list of learned web objects from
the procedure described above. The systems were trained
separately on Amazon and B&N.

Book Search Results
The results for the title and author book search are shown in
figure 3. The baseline macro-recorder performed at 61.3%
and 36.4% on Amazon and B&N respectively. The results
were much lower on B&N because that page dynamically

1AgentBuilder is a commercial web wrapper, available at
http://www.agentbuilder.com/



changes the content of its left selection pane, thus changing
the sequential position of the information in the main body
and causing the macro-recorder to fail.

WebLearn always found the objects in the first 5 of 6 steps
(810 and 775 objects respectively). In essence, the results in
figure 3 reflect the performance on the final step, identifying
the book link from the search results. For illustration, we
show the learned object description for the book link here:

(object :type link :atts ((href “http://...”))
:children ((object :type text :atts ((content ?target)))))

Note that the learned object has a variable in the text node
of the link. Hence, for each book in the test set, we looked
for a link with a specific title and used very little other infor-
mation. As a result, the performance of finding this link was
different depending on the type of relationship between the
parameter’s value and the task’s value (the book title). Fig-
ure 3 shows the evaluation of each of the four string relations
and their performance.

The exact match performed the worst on both Amazon
and B&N, but the other three varied depending on the web-
site. Substring does poorly on B&N because the search
results use a different object structure when a subtitle is
present. Our learned object was trained on a result without
a subtitle, so fails to find the link. Superstring performed
worse on Amazon because Amazon tends to include very
verbose titles, and the shorter test titles fail on these cases.
Keyword performs quite well on both sites, with a slightly
lower performance on B&N because there tend to be more
search results to choose from than on Amazon.

After seeing different results on both websites, and not-
ing that most failures were incomplete runs (failure to find
a matching object) and not incorrect choices, we ran a fifth
evaluation that uses a disjunct of the four relationships, try-
ing each relation until a link is found. The disjunct was in
order from specific to general: exact, substring, superstring,
keyword. The fifth column in figure 3 shows this All ap-
proach with correct results of 97.5% on Amazon and 96.1%
on B&N, well over the 61.3% and 36.4% baseline.

These results are somewhat dependent on the behavior
of the websites (Amazon and B&N). The titles and authors
stored in Amazon are in a different format than those stored
in B&N. To make matters worse, our test set was extracted
from an independent ISBN search page with its own for-
matting. Many of Amazon’s books do not include subti-
tles, while B&N includes them using a different html syntax.
Sometimes our test set included subtitles and sometimes not.
These exceptions notwithstanding, our approach performs
quite well at 97.5% and 96.1% correct.

AgentBuilder’s results are also shown in figure 3. On
Amazon, WebLearn (using the All algorithm) outperformed
97.5% to 96% correct, while on B&N, AgentBuilder out-
performed 99% to 96.1%. Both approaches appear effec-
tive during execution of their learned actions on this book
task. One reason may be because the book search typically
returns the correct match as the first choice. If the search re-
sults were more ambiguous, AgentBuilder would continue
to choose the first link, while WebLearn would try to choose
the most relevant link.

Figure 4: Some of the tabs at the top of books.com

While the lack of understanding is the most important
drawback for wrapper approaches, it should be noted that
they also require a significant amount of effort for train-
ing. Counting the number of steps (mouse clicks, text in-
put, spoken utterances) to build our single training proce-
dure, AgentBuilder required 96 GUI actions. Our natural
language system required only 18 natural actions.

Transfer Learning Evaluation
WebLearn creates a parameterized description of the object,
not a description of its location. Thus, Object ID Rules can
be reused in different, yet similar tasks by providing differ-
ent values for the parameters. The current PLOW system is
not yet able to transfer entire procedures, but WebLearn it-
self is fully capable. We ran a few preliminary evaluations
to test the feasibility of training WebLearn on one object and
applying the Object ID Rule to find an object within a dif-
ferent context.

Transfer Learning
B&N includes a list of tabs across the top of its page (fig-
ure 4), letting the user refine his/her search by visiting a
subtopic. By learning the context of a user’s book tab choice,
we can conceivably use this information to find other tabs,
such as the DVD or Magazine tab. We performed a simple
evaluation of this idea to see if WebLearn could find related
links, given a single training example.

Repeating our example, Weblearn finds a relation between
the tab type (book) and the actual tab on the page:

(CHOOSE :object (TAB :assoc-with ?target))

We created a test set of action descriptions that could
be said by the user and compared WebLearn’s returned ob-
jects against the desired links. For example, the command,
choose the magazine tab would return the magazine tab from
the list containing the learned books tab. This evaluation was
applied on three menus: the left hand pane, the top list of
tabs (figure 4), and the left hand pane on Amazon. For each
of the three menus, the text of each link or graphical tab
was included in the test set, as well as realistic subphrases
that a user might use to describe it. For instance, the Ap-
parel & Accessories link on Amazon may be described as
just Apparel or just Accessories. Both were included in the
set. Amazon’s left pane included 80 descriptions (from 55
links), B&N’s left pane had 55 (from 37 links) and its tabs
list had 25 (from 12 tabs). Each was sent to WebLearn and
the system was deemed correct if the expected link for the
description was chosen.



AZ Left B&N Top B&N Left
Correct 77 (96.3%) 25 (100%) 53 (96.4%)
Incorrect 2 (2.5%) 0 (0%) 2 (3.6%)
Failed 1 (1.2%) 0 (0%) 0 (0%)

Figure 5: Percent correct in the transfer learning test. Cor-
rect indicates the expected object was chosen.

Transfer Learning Results
The results for the three transfer learning tasks are shown in
figure 5. AZ Left is Amazon’s left panel of links, B&N Top
is B&N’s top list of graphical tab links, and B&N Left is
B&N’s left panel of links.

Looking at just the correct hits, WebLearn performs ex-
tremely well on B&N’s two lists with 100% of the tabs and
96.4% of the links. The tabs are interesting because they are
images that are unreadable by a computer without graphical
processing. WebLearn finds a string relation using informa-
tion that is normally hidden from the user, the alt attribute
of images. WebLearn finds the semantic relationship:
(object :type link :atts ((href “http://...”))

:children ((object :type img :atts (..(alt ?target)..))))
By learning this very informative attribute, it is able to

choose any of the tabs with 100% success.
The performance on Amazon’s left pane is interesting

because 66 of the correct matches were not from the left
pane, as one would expect. Instead, they were chosen from
elsewhere on the page, but they still pointed to the correct
web address. At the time of the evaluation, Amazon used
javascript to create a duplicate list of links in a different lo-
cation on the page (hidden from view until the user performs
specific mouse gestures). It is from this list that WebLearn
chose its results. A user of the system would be oblivious to
whether or not the system chose the visually obvious choice.
Although unexpected, the choice is still correct in that the
effect is to navigate to the correct page. This behavior is
possible precisely because WebLearn learns a description of
an object, and not a description of the object’s location.

Given the success of transferring knowledge to similar
links, we attempted to transfer the entire book search pro-
cedure to that of a musical album. This involved selecting
a Music tab instead of a Book tab, filling in a search form
with different labels, and choosing the CD from the search
results based on its title. WebLearn was able to do all of the
above based on a single training example about books.

Discussion
The performance of WebLearn is quite good in the book pur-
chasing domain. We achieved performance results of 97.5%
and 96% on two websites with limited book information, far
above the performance of a parameterized macro recorder.
This level of success was achieved with the user showing
the system only one training example, accompanied by short
and natural descriptions of why he/she was clicking on each
web object. While the task of clicking a book title link may
seem simplistic, it is the recognition that the title is relevant
(and not the author) that makes these results exciting.

Our novel semantic approach also performed as well as a
commercial web wrapper, AgentBuilder. This book search
task is somewhat in a web wrapper approach’s favor in that
the search engines of the book sites typically return the de-
sired book as the first link. A wrapper that learns this lo-
cation will be correct the majority of the time. WebLearn
has the clear advantage if an ambiguous search returns a dif-
ferent ordering of results or on pages with dynamic content
structure. Also, we showed that WebLearn and PLOW re-
quire far less effort to train than traditional wrappers.

Finally, we showed that a parameterized semantic ap-
proach can work beyond extracting the specific type of ob-
ject on which it learned. WebLearn is extendable to other
tasks outside of what the user initially intended. Not only
did our transfer learning tests of web page menus prove very
successful, but WebLearn was then able to search for a mu-
sical album based solely on its learning in a book domain.
Using the semantic context of a user’s actions to learn cross-
domain knowledge will prove critical to building advanced
agents that can effectively collaborate with a human. Since
this study, we are using WebLearn for other procedures in
domains such as weather forecasting, travel planning, publi-
cation searches, and several office tasks.

Acknowledgements
This work was supported in part by DARPA grant NBCH-
D-03-0010 under a subcontract from SRI International, and
ONR grant N000140510314.

References
Allen, J.; Ferguson, G.; and Stent, A. 2001. An architecture
for more realistic conversational systems. In Proceedings
of IUI-01.
Bangalore, S.; Rambow, O.; and Whittaker, S. 2000. Eval-
uation metrics for generation. In Proceedings of INLG.
Cohen, W. W. 2003. Learning and discovering structure in
web pages. In IEEE Data Eng. Bul., volume 26, 3–10.
Davulcu, H.; Mukherjee, S.; and Ramakrishnan, I.
2002. Extraction techniques for mining services from web
sourcesk. In IEEE Int. Conference on Data Mining.
Embley, D.; Campbell, D.; Smith, R.; and Liddle, S. 1998.
Ontology-based extraction and structuring of information
from data-rich unstructured documents. In International
Conference on Information and Knowledge Managemen.
Hsu, C.-N., and Dung, M.-T. 1998. Generating finite-
state transducers for semi-structured data extraction from
the web. Information Systems Journal 23-8.
Knoblock, C. A.; Minton, S.; Ambite, J. L.; Muslea, M.;
Oh, J.; and Frank, M. 2001. Mixed-initiative, multi-source
information assistants. In WWW-01, 697–707.
Lerman, K.; Getoor, L.; Minton, S.; and Knoblock, C.
2004. Using the structure of web sites for automatic seg-
mentation of tables. In ACM SIGMOD Conference.
Muslea, I.; Minton, S.; and Knoblock, C. 1999. A hier-
archical approach to wrapper induction. In International
Conference on Autonomous Agents.


