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Abstract
We define Canonical Form Minimal Recursion Semantics (CF-MRS) and prove that

all the well-formed MRS structures generated by the MRS semantic composition algo-
rithm are in this form. We prove that the qeq relationships are equivalent to outscoping
relations when MRS structures are in this form. This result fills the gap between some
underspecification formalisms and motivates defining a Canonical Form Underspecified
Representation (CF-UR) which brings those underspecification formalisms together.

Keywords UNDERSPECIFICATION, SEMANTIC FORMALISMS, MINIMAL RE-
CURSION SEMANTICS

5.1 Introduction
Several underspecification formalisms in semantic representation have been
proposed during the last two decades, such as Quasi Logical Form (Alshawi
and Crouch 1992), Hole Semantics (Bos 1996 and 2002), Minimal Recursion
Semantics (Copestake et al. 2001), and Dominance Constraints (Egg et al.
2001). Recently there have been some efforts to bring these formalisms under
a unified theory of underspecification.
Koller et al. (2003) define a back-and-forth translation between Hole Se-

mantics and Dominance Constraints and show that under some specific re-
strictions (chain-connectedness and leaf-labeledness) the two formalisms
generate the same number of solutions. Under these restrictions, however, the
encoding is exact. By giving an example of a grammar, they also claim that
all linguistically useful structures satisfy these restrictions.
Niehren and Thater (2003) give a translation from Minimal Recursion
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Semantics (MRS) to Dominance Constraints. They define the concept of
nets and show that when an MRS is in this form, there is a one-to-one cor-
respondence between the (bounded) scope-resolved structures of an MRS
and minimal solved forms of its corresponding dominance net. In their ap-
proach, however, they treat MRS’s qeq relationships, which are a restricted
version of outscoping relations (see section 2 for details), as simple dom-
inance (i.e. outscoping) relations. Fuchss et al. (2004) claim that in MRS
nets, the additional power of qeq relationships is not necessary and replac-
ing them by simple outscoping relationships does not affect the number of
scope-resolved structures. Although experimental data (the output of English
Resource Grammar on Redwood corpus) supports this claim, there has been
no theorem to show this equivalence rigorously. Furthermore, there are ex-
amples of coherent English sentences for which the MRS structure is not a
net (Thater 2007). Therefore even if we accept that this equivalence holds for
all MRS nets, the notion of net is not broad enough to cover all linguistically
well-formed MRS structures.
In this paper we seek to prove the equivalence of qeq and outscoping re-

lations for a class of MRS structures which we call Canonical Form MRS or
CF-MRS. In a recent paper, Copestake et al. (2005) give an algorithm which
applies to the syntactic tree of a sentence to build its MRS structure. Here, we
define the notion of canonical form and show that every well-formed MRS
structure which is generated by this algorithm is in this form. Then, we show
a very useful property of canonical form: we prove that when an MRS struc-
ture is in this form, Fuchss et al. (2004)’s claim about the equivalence of qeq
and outscoping relations holds. However, our approach has the following two
advantages:. The assumption, that all the well-formed MRS structures occurring in

practice are in canonical form, is well-justified.. We rigorously prove that the equivalence of qeq and outscoping rela-
tionships hold for every MRS structure which is in this form.

The notion of CF-MRS and the equivalence of qeq and dominance relations
for this class of MRS structures motivate the definition of a universal under-
specified semantic representation which we call Canonical Form Underspec-
ified Representation or CF-UR. We define the notion of CF-UR and show the
back and forth translation between CF-MRS and CF-UR. We leave the de-
tails of the translation between CF-UR and the other two formalisms (Hole
Semantics and Dominance Constraints) for future work.
The rest of this paper is organized as follows. We review the definition of

MRS (1.2). We define CF-MRS and prove that every MRS which is gener-
ated by the semantic composition algorithm is in canonical form (1.3). We
give a formal definition of CF-MRS (1.4) and show that qeq and outscoping
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relationships are equivalent when MRS structures are in this form (1.5). The
notion of CF-UR is defined in section (1.6).

5.2 Minimal Recursion Semantics
Elementary Predications (EP) are the basic blocks of MRS. An EP is a labeled
relation of the form
l: P(x1, x2, ..., h1, h2, ...)

where l is the label of the EP, P is the relation, x1, x2 ... are variables of
the object language called non-scopal arguments (also referred to as ordinary
variables) and h1, h2... are variables over the set of labels, called handle-
taking arguments or holes of the EP. We use the term handle to include both
holes and labels.
MRS recognizes three different types of EP. Non-scopal EPs are EPs with

no hole. They model first order predicates in the object language. Floating-
scopal or quantifier EPs are in the form l:Q(x, hr, hb) where Q is the actual
generalized quantifier; x is the variable quantified by Q; and hr and hb are
holes for the restriction and the body of the quantifier and are referred to as
restriction hole and body hole respectively. All other EPs are called fixed-
scopal EPs. They model modal operators in the object language. The term
scopal is used for both fixed and floating scopal EPs.
Consider the following bag of EPs for the exampleEvery hungry dog prob-

ably chases a cat:
(6) {h1:Every(x,h7,h8),h2:Hungry(x) h2:Dog(x), h3:Probably(h9), h4:Chase(x,y),

h5:A(y,h10,h11), h6:Cat(y)}
This example shows the three kinds of EP: non-scopal: Hungry(x), Dog(x),
Chase(x,y), Cat(y); quantifier EPs: Every(x,h2,h3), A(y,h9, h10); and fixed-
scopal EP Probably(h6). In this example, h1...h6 are labels and h7...h11 are
holes.
A group of EPs with the same label are called an EP conjunction. For

example the EPs Dog(x) and Hungry(x) form an EP conjunction which can
be thought as the semantic fragment Dog(x)∧Hungry(x) if interpreted in the
first order logic. Every MRS has a unique hole called (global) top handle
to mark the highest EP (or EP conjunction). There is also a set of (handle)
constraints associated with every MRS that restrict how holes are equated
with labels. Every handle constraint (or simply constraint) relates one hole
to one label and is shown as h =q l, where h is a hole and l is a label. This
handle constraint is satisfied iff either h = l or h = l1, where l1 is the label of
a quantifier EP Q(x, h1, h2) and h2 =q l recursively holds. Handle constraints
are also called qeq (equality modulo quantifier) relationships. In summary, an
MRS structure (or simply an MRS) is a triple 〈GT, R, C〉 where GT is the
global top handle, R is a bag of EPs and C is a set of handle constraints. As



July 14, 2008

76 / MEHDI HAFEZI MANSHADI, JAMES F. ALLEN, MARY SWIFT

FIGURE 1 Two scope-resolved MRSs

an example, the complete MRS structure for the above sentence is:
(7) 〈 h0, {h1:Every(x,h7,h8), h2:Hungry(x) h2:Dog(x), h3:Probably( h9),

h4:Chase(x,y), h5:A(y,h10,h11), h6:Cat(y)},{h0 =q h3, h7 =q h2, h9
=q h4, h10 =q h6}〉

Every MRS corresponds to a set of scope-resolved MRSs in which every
hole is equated with some label and no label is equated with more than one
hole. A scope-resolved MRS must form a tree of EPs (or EP conjunctions),
in which dominance is determined by outscoping1 relation, and must satisfy
all the qeq relationships. For example the scope-resolved MRS in (3) can
be obtained from the above MRS using the equalities h0=h1, h7=h2, h8=h5,
h10=h6, h11=h3 and h9=h4.
(8) {h0:Every(x,h2,h5),h2:Hungry(x) h2:Dog(x), h3:Probably(h4), h4:Chase(x,y),

h5:A(y,h6, h3), h6:Cat(y)}
Scope-resolvedMRSs are usually represented as tree structures. For example
the scoped-resolved structure in (3) is represented as the tree shown in figure
(1a). An MRS is called well-formed if it corresponds to at least one scope-
resolved structure. A scope-resolved MRS is called bounded if every non-
scopal argument (i.e. x, y, ...) is in the scope of its quantifier. It can be easily
verified that the above MRS has six bounded scope-resolved structures, two
of which shown in figure (1a, b).

5.3 Semantic composition algorithm
Copestake et al. (2005) give a semantic composition algorithmwhich converts
a syntactic tree to an MRS. In this section we introduce the notion of Canon-
ical Form MRS (CF-MRS) and prove that every well-formed MRS structure
that is generated by this algorithm is in this form.
A Canonical Form MRS (CF-MRS) is an MRS which satisfies following

conditions:
1A label l (or its corresponding EP or EP conjunction) immediately outscopes a label l′ (or its

corresponding EP or EP conjunction) iff l is the label of some EP P(...h...) and h=l′ . Outscopes
is the reflexive transitive closure of immediately outscopes.
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. No quantifier EP is involved in an EP conjunction.. The body hole of no quantifier EP is involved in any constraint;. The label of no quantifier EP is involved in any constraint.. Every other hole and label occurs in exactly one constraint.
Theorem 11 Every well-formed MRS structure which is generated by MRS
semantic composition algorithm is in canonical form.

To prove this theorem, we need to describe the semantic composition al-
gorithm. In order to do this, we define partialMRS to be a 4-tuple 〈GT, LT,
R, C〉, where LT is a new handle called local top. As an initialization step,
for every leaf of the syntactic tree (i.e. every word in the sentence), an MRS
of the form 〈h0, h1, {h2:P(...)}, {}〉 is created; where the EP P comes from
the lexicon and label h2 is a new distinct label. If P is floating scopal, h1 is a
new distinct handle; otherwise, h1 = h2. Note that h0, the global top handle,
would be the same for all the partial MRSs which are built during the seman-
tic composition process. For example consider the sentenceEvery hungry dog
frequently barks. (4) shows the partial MRS built for the floating scopal Ev-
ery, fixed-scopal Probably and non-scopal EP Bark.

(9) 〈h0,h1,{h2:Every(x, h3, h4)},{}〉
〈h0, h5, {h5: Frequently(h6)}, {}〉
〈h0, h7, {h7:Bark(x)}, {}〉

Once a partial MRS is created for every leaf, the semantic composition algo-
rithm moves up in the syntactic tree and for every interior node assigns the
combination of its children’s partial MRS to that node. There are two kinds of
MRS combinations: scopal and intersective. Consider the two partial MRSs
m1=〈h0, lt1, R1, C1〉 and m2=〈h0, lt2, R2, C2〉 and let m = 〈h0, lt, R, C〉 be
their combination. If m1 has a scopal EP P(..., h, ...) which scopes over an EP
in m2, the combination of m1 and m2 is a scopal combination, defined as:

(10) lt = lt1
R = R1 + R2
C = C1 ∪ C2 ∪ {h =q lt2}

Otherwise it is an intersective combination:

(11) lt = lt1 = lt2
R = R1 + R2
C = C1 ∪ C2

where h is the hole of the scopal EP in m1 and + means append. The def-
initions can easily be extended to the case where more than two MRSs are
combined. It should be noted that the body hole of the quantifier EPs is ig-
nored during semantic composition; that is no handle constraint for the body
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FIGURE 2 Semantic composition process for the sentence Every hungry dog
frequently barks.

of the quantifier EPs is created. Figure (2) shows how the partial MRS for
each interior node is built using scopal and intersective combinations.
Once the algorithm gets to the root, if the partial MRS for the root is 〈h0,

h1, R, C〉, it outputs 〈h0, R, C ∪ {h0 =q h1}〉 as the final MRS for the whole
sentence. (7) shows the final MRS built for the above example.
(12) 〈h0, {h2: Every(x,h3,h4),h5: Hungry(x), h5: Dog(x), h1: Frequently(h8),

h9:Bark(x)}, {h0 =q h1, h3 =q h5, h8 =q h9}〉
Let M be the output of the semantic composition process for an arbitrary
sentence with the syntactic tree T. Here we sketch the proof of theorem 1 by
stating following propositions. We leave the detailed proof of this theorem to
the longer version of this paper.
Proposition 12 No quantifier EP in M is involved in an EP conjunction.
Proposition 13 Every hole in M is involved in at most one handle constraint.
Furthermore, there is no handle constraint for the body hole of the quantifier
EPs.
Proposition 14 Quantifier EP labels in M are not involved in any handle
constraint. Every other label is involved in exactly one constraint.
Proposition 2 and 3 directly result from the definition of the algorithm. To

prove proposition 4, first we show the following lemma.
Lemma 15 The local top of every node in the tree is involved in exactly one
handle constraint in M.
Proof. Consider a node v in the tree with the local top ltv and the parent u.
From the definition of combination, either ltv is involved in a handle con-
straint in Mu (the MRS of the parent) or it is the local top of u as well. The
same argument can be applied to the node u. If ltv is not involved in any han-
dle constraint until we hit the root, then the termination step of the algorithm
adds the constraint h0=q ltv. This proves that every local top is involved in at
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least one constraint. On the other hand, every local top can occur in at most
one constraint because once a local top gets into a handle constraint, it cannot
be the local top of the parent or any of its ancestors. '(

From the above lemma and the fact that the labels of all EPs except quan-
tifier EPs are a local top at the leaf level (refer to the initialization step of the
algorithm) and that the quantifier EP labels are never a local top, proposition
4 is proved.
From propositions 2, 3 and 4, we can see that, the number of holes is

greater than or equal to the number of labels in M (note that we count the
global top handle as a hole). On the other hand, in every well-formed MRS
structure number of labels is always greater than or equal to the number of
holes.2 These two facts lead us to the following proposition:

Proposition 16 The number of holes is equal to number of labels in M or M
is not well-formed.

In conjunction with proposition 4 and 6, proposition 3 results in the fol-
lowing corollary:

Corollary 17 If M is well-formed, every hole which is not the body hole of a
quantifier is involved in exactly one constraint in M.

Theorem 1 directly results from propositions 2, 3, and 4 and corollary 7.3

Although not mentioned in Copestake et al. (2005) it seems that in prac-
tice a slightly modified version of this algorithm is used, where in the scopal
combination an equality constraint can be added instead of a normal han-
dle constraint. This allows labels to occur as an argument of a scopal EP in an
MRS. That is, an MRS can have two EPs of the form l1:P1(..h..) and l2:P2(...)
with an equality h = l2. In this case, we can collapse the two EPs into one EP
whose arguments are the union of the arguments of the two EPs excluding
the hole h. For example the EPs l1:P1(x, h1, l2) and l2:P2(y, h3, h4) can be
transformed into a single EP l1:P1-2(x, y, h1, h3, h4). While this transforma-
tion does not affect the number of interpretations, it conforms to theorem 1
and lets us keep the same definition for CF-MRS.

2this is true because in order to build a scope-resolved structure, every hole must be equated
with some label and no label can be equated with more than one hole.

3We have made an implicit assumption in proving theorem 1 which needs to be clarified here.
We have assumed that in the scopal combination (equation 5) lt2 is always a label; however this is
not the case if the grammar is not linguistically meaningful (for example consider the case where
we have a quantifier EP Every as a leaf node and a quantifier EP Some as its parent which scopes
over Every). However in this case, in the final MRS M, there is a handle constraint between two
handles where none of them is a label in M. This contradicts the definition of handle constraints
which are required to relate one hole to one label; hence such an MRS can be considered an
ill-formed MRS structure. As a result, theorem 1 remains valid even when the grammar is not
linguistically meaningful.
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5.4 Canonical Form MRS
In section 3, we defined the notion of canonical form MRS as a subset of
MRS structures; however the definition of MRS given in section 2, following
the strategy of standard MRS formalism, was not formal and precise. Here,
in order to give a rigorous proof for the equivalence of qeq and outscoping
relationship in CF-MRS, we need a mathematically clean definition of all the
concepts. Therefore, in this section we define the notion of CF-MRS more
formally as an independent concept. Note that most of the concepts, which
were already defined in section 2, are redefined in this section in a more for-
mal fashion.
Definition 5 A CF-MRS is a triple 〈GT, R, C〉 where R is a set of EPs as
defined in section 2; GT is a unique hole which does not occur in any argu-
ment position in R4 ; and C, the set of (handle) constraints, is a bijection from
H-Hb to L-Lq, in which H and L are the set of all the holes and labels in R
respectively; Hb is the set of body holes of the quantifiers; and Lq is the set of
labels of the quantifier EPs. We require that every label and hole (except GT)
occurs exactly once in R.5

In order to get a more intuitive representation, we introduce a graph rep-
resentation for CF-MRS. The graph of a CF-MRS is a directed graph with
two types of node and two types of edge. Every label/hole in the CF-MRS is
represented as a single label/hole node in the graph. Solid edges connect the
label of EPs to their holes and dotted edges represent handle constraints; that
is every handle constraint (h, l) in C is represented as a dotted edge from hole
node h to label node l. As an example, figure (3) represents the graph repre-
sentation of the CF-MRS given in (8) for the sentence Every dog probably
chases some cat.6

(13) 〈h0, {l1: Every( x, h1, h2), l2: Dog(x), l3: Probably(h3), l4: Chase(x,
y), l5: Some(y, h4, h5), l6: Cat(y)}, {(h0,l3), (h1,l2), (h3,l4), (h4,l6)}〉

As shown in this figure, every label node in the graph is labeled with its
corresponding EP, dropping the label and the handle-taking arguments when
there is no ambiguity. Note that in the graphical representation, we order the
solid outgoing edges of every node from left to right based on the position

4Note that by hole we mean a variable over the set of labels; therefore the set of holes of a
CF-MRS is the set of handle-taking arguments plus the global top GT.

5This is not a limitation in CF-MRS as it is always possible to collapse the set of all the EPs
which share the same label (i.e. an EP conjunction) to a single EP whose arguments is the union
of all the arguments of all the EPs in the conjunction. For example the EPs l1:P1(x1, h1) and
l2:P2(x2, h2) can be collapsed into one EP of the form P1-2(x1, x2, h1, h2) where P1-2 is a new
relation corresponding to the conjunction of the two relations P1 and P2.

6We have removed the arrows from the edges in the graphical representation of CF-MRS and
scope-resolved structures throughout this paper, since the direction is clear from the context.
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FIGURE 3 An MRS graph

of the corresponding handle-taking argument in the EP; for example the re-
striction hole of a quantifier always lies on the left side of its body hole in the
graphical representation.
Definition 6 Every bijection from H, the set of holes, to L, the set of labels,
is called a label assignment.
Definition 7 Given a CF-MRS M, a scope-resolved structure for M is the
pair 〈M, I〉 where I is a label assignment which satisfies all the constraints in
M.
Here, we give two different interpretations for a handle constraint. The

first interpretation is the standard definition of handle constraints in MRS i.e.
qeq relationships. As before, when interpreted as qeq relationship, a handle
constrain (h, l) in C is represented as h =q l. A label assignment I satisfies this
qeq relationship iff either I(h)=l or I(h)=l′, where l′ is the label of a quantifier
EP Q(x, hr, hb) and I recursively satisfies hb =q l. The second interpretation
of a handle constraint is outscoping relation, that is I satisfies the constraint
(h, l) (shown as h ≤ l for this case) iff either I(h)=l or I(h)=l′ where l′ is the
label of some EP P(...h′...) and I recursively satisfies h′≤l. To differentiate
between the two possible definitions of a scope-resolved structure, we define
the two following versions of a scope-resolved structure.
Definition 8 We call a scope-resolved structure standard when handle con-
straints are treated as qeq relationships and call it simple when they are con-
sidered outscoping relations.
The graph of a scope-resolved structure is built by removing all the dotted

edges in the original graph and merging every hole node h with the label node
I(h). More precisely, the graph of a scope-resolved structure 〈M, I〉 is G=(V,
E) where there is exactly one node v in V corresponding to every hole hv
in H and its corresponding label lv=I(hv). Here, for the benefit of the section
5 and to emphasize that every node v in V corresponds to exactly one hole
and one label of M, we represent the vertices of G as big circles with a dot
in center. For example, figure (4) gives two scope-resolved structures for the
CF-MRS given in (8). From the above definitions, it is easy to see that the
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FIGURE 4 Two scope-resolved structures

FIGURE 5 A simple but not standard scope-resolved structure

graph of a scope-resolved structure for every CF-MRS is always a tree.7 In
this paper, whenever we refer to the holes and labels of a scope-resolved tree
or its subtrees we mean the holes and labels in M which correspond to the
nodes of that tree/subtree. For example, the holes and the labels of the subtree
rooted at the node Probably in figure (4a) are h5, h3 and l3, l4 respectively
(refer to the CF-MRS given in (8)).
Note that both of the trees shown in figure (4) are both standard and sim-

ple scope-resolved structures. In section 5, we show that this is not a coin-
cidence but for every CF-MRS structure this property holds; that is every
simple scope-resolved structure is also a standard one and vice versa. Figure
(5a,b) on the other hand shows the graph representation of an MRS (which is
not a CF-MRS) and one of its simple scope-resolved structures that is not a
standard one.8

Definition 9 A non-quantifier EP l1:P(...) is said to be dependent on the
quantifier EP l2:Q(x, hr, hb) iff x is an argument of P. We say that a scope-
resolved MRS M satisfies this dependency constraint iff l2 outscopes l1 in

7Since we order the outgoing solid edges of every label node in the CF-MRS graph, the graph
of a scope-resolved structure is actually an ordered tree.

8Note that the graph representation and the concepts of simple and standard scope-resolved
structures for a general MRS can be defined exactly in the same way as they were defined for
CF-MRS.
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FIGURE 6 General structure of CF-MRS

M.9

Definition 10 A scope-resolved structure is called bounded if it satisfies all
the dependency constraints carried by the non-scopal arguments of the EPs.
As the final point in this section, note that from the definition of CF-MRS

every CF-MRS is a forest of exactly n+1 trees (n is the number of quantifiers)
whose roots are the global top handle and the quantifier labels, as shown in
figure (6).

5.5 Equivalence of qeq and outscoping relationships in CF-MRS
To prove this equivalence we need to prove the following theorem:
Theorem 18 Given an arbitrary CF-MRS M=〈h0, R, C〉, T=〈M, I〉 is a sim-
ple scope-resolved structure if and only if T is a standard scope-resolved
structure.
The if direction is trivial as qeq relation always implies outscoping. In order
to prove the only if direction, we use the following lemma:
Lemma 19 Let T=〈M, I〉 be a simple scope-resolved structure and T ′ be a
subtree 10 of T with no quantifier’s body hole. For every hole h in T ′ we have
I(h) = C(h)11 .
Proof. We prove this using induction on the depth of T′, d. If d = 0, T′ is a
single leaf node u of T which corresponds to some hole h in M. Because h is
not the body hole of some quantifier, there is some label l such that C(h)=l or
equivalently h≤l. Since u is a leaf node, this constraint is satisfied in T only
if I(h)=l, which implies I(h)=C(h).
Now suppose that d>0, let u be the root of T′; u1, u2, ... uk be the children

of u and T1, T2, ...Tk be the subtrees of T rooted at u1 ... uk (figure 7). Based
on the induction assumption, for every hole h′ in T1 ... Tk, we have I(h′)=

9Refer to footnote 1 for the definition of outscoping.
10In this paper, by subtree of a tree T we mean a node with all of its descendants in T.
11Since C, the set of constraints, is a function; if (h, l) ∈ C, we can refer to l as C(h).
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FIGURE 7 Inductive proof of lemma 9

FIGURE 8 Inductive proof of theorem 8

C(h′). Therefore, all we need to show is that I(hu)=C(hu), where hu is the
hole corresponding to the node u. Assume to the contrary that I(hu) +=C(hu).
Because hu is not the body hole of some quantifier, there is some label l, such
that C(hu)=l. In order to satisfy the constraint hu≤l, there must be some hole
h′ in one of the subtrees T1 ... Tk such that I(h′)=l. But we already saw that
for every h′ in these subtrees I(h′)=C(h′). This implies C(h′)=I(h′)=l=C(hu)
which is a contradiction because C is a one-to-one function. '(

Proof of the main theorem: Let T be a simple scope-resolved structure
T=〈M, I〉; using induction on n, number of quantifiers, we show that T is a
standard scope-resolved structure as well. For n = 0, there is no quantifier
in T, therefore according to lemma 9 for every hole h in T, I(h)=C(h) which
means if we treat all the constraints as qeq relationship, I satisfies all these
constraints, hence T is also a standard scope-resolved structure.
Now let n>0, and consider an arbitrary CF-MRS M with n quantifiers as

it is shown in figure (6). There is a quantifier node in T=〈M, I〉 that does
not outscope any other quantifiers (for example the deepest quantifier in T).
Without loss of generality let’s assume that Qn has this property and call the
tree rooted at Qn in T Tn. We call the tree rooted at the left child of Qn in T
the restriction tree and the tree rooted at the right child of Qn the body tree of
Qn and represent them by Tr and Tb respectively (figure 8).
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There is no quantifier in Tr, intuitively it means that Tr is the tree tn (fig-
ure 8) in which every hole is merged with its paired label. More precisely,
according to lemma 9, for every hole h in Tr, I(h)=C(h). Therefore, if we
treat all the constraints in tn (refer to figure 6) as qeq relationships, these con-
straints are satisfied in Tr. Let’s detach the tree Tn from T, replace it with
Tb and call the new tree T′ (figure 8). It is easy to see that T′ is a simple
scope-resolved structure for the CF-MRS M′ with n-1 quantifier (that is the
CF-MRS shown in figure (6) without the whole tree rooted at Qn). To see
why, first note that there is a one-to-one correspondence between the nodes
of T′ and the holes/labels in M′. Second, every handle constraint in M′ is sat-
isfied in T, and hence is satisfied in T′ as well (because the transformation in
figure 8 does not violate any outscoping relation).
T′ is a simple scope-resolved structure for M′; therefore based on the in-

duction assumption, T′ is also a standard scope-resolved structure. It means
that if we treat all the handle constraints in M′ as qeq relationship, they are
all satisfied in T′. But moving from T′ to T (by replacing back the node Qn
and the subtree Tr, see figure 8) does not violate any qeq relationship which
already holds in T′. On the other hand we already saw that if we treat all the
handle constraints in tn as qeq relationship they are satisfied in Tr. As a result
if we treat all the handle constraints in M as qeq relationships, they are all
satisfied in T. Hence T is also a standard scope-resolved structure.

5.6 Canonical Form Underspecified Representation
This result motivates a universal Canonical Form Underspecified Represen-
tation (CF-UR) similar to the CF-MRS structure in figure (6). In CF-MRS,
however, the dependency constraints are encoded in the non-scopal arguments
while in Hole Semantics and Dominance Constraints, all the constraints are
explicitly expressed in the underspecified representation using outscoping
constraints. The equivalence of qeq and outscoping relationship in CF-MRS
allows us to do the same thing in CF-UR. We can remove all the non-scopal
arguments and represent dependency constraints using outscoping constraints
between the label of every quantifier EP and the label of the non-quantifier
EPs which are dependent on that quantifier. Figure (9) shows the graph repre-
sentation of the CF-MRS given in (8), in which both handle and dependency
constraints are shown using dotted edges.
In addition, we label the dependency edges (i.e. the edges which corre-

spond to the dependency constraints) with integers. This is necessary in order
to keep the information that states which argument position in an EP is filled
by which variable. In this example, the edge between Every and Chase is la-
beled 1 which shows that the variable quantified by Every, say x, fills the first
non-scopal argument position of the EP Chase. In general, instead of num-
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FIGURE 9 CF-MRS with explicit dependency constraints

bers we can label the dependency edges using a set of predefined roles. For
example, the edge between Every and Chase can be labeled by the role agent
and the edge between Some and Chase can be labeled by the role theme. For
similar reasons, the edges from Every to Dog and from Some to Cat are nec-
essary as they encode the non-scopal arguments of each predicate. However,
since these predicates have only one argument we haven’t shown the integer
label for these two edges.
More formally we define a CF-UR as a 6-tuple 〈L, H, F, T, C, A〉 where

L is a set of labels; H is a set of variables over labels called holes; F is a set
of labeled formulas consisting of two types: the predications of form li:Pi(h1,
h2, ... hk) and the quantifications of form li′:Qi(h1′, h2′), where li, li′ ∈ L and
h1, h2, ...hk, h1′, h2′ ∈ H; and T is a unique hole in H called top which does
not occur in any argument position in F. We require that every label and every
hole (except T) occurs exactly once in F. Therefore in a CF-UR, no two for-
mulas can be labeled by the same label and no two argument positions can be
filled by the same hole. We define LQ as the set of all the labels which label
some quantification in F and LP as the set of all other labels. We also define
Hb as the set of all the holes which occur as the second argument position of
some quantification (called body holes) and HC as the set of all other holes. C
is a relation over H U L and L, called the set of constraints; More precisely,
C=CHUCL where CH is a bijection from HC to LP and CL is a relation over
LQ and LP. Intuitively CH and CL are equivalent to the set of handle and de-
pendency constraints in a CF-MRS respectively. Finally, A is a total function
fromCL to ROLES, where ROLES is a set of predefined roles (such as {agent,
theme, ...}). Intuitively, A specifies the role of the argument position which is
encoded by every dependency constraint. ROLES can also be defined as the
set of positive integers. In this case, A represents the argument position that
every dependency constraint encodes and we need to force the condition that
((l1, l2), i) ∈ A, only if for every 0<j<i, there is some label l such that ( (l,
l2), j) ∈ A.
In order to have a more intuitive representation, we usually represent a CF-

UR U=〈L, H, F, T, C, A〉 as a directed graph GU=(L+H, S+C) where S is the
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FIGURE 10 Graphical representation of CF-UR

set of all the pairs (l, h) such that h is an argument of the formula labeled by
l. The nodes in L and H are represented as dots and holes respectively and the
edges in S and C are represented using solid and dotted edges respectively.
We label the dependency edges (i.e. label to label dotted edges) by their cor-
responding role (or argument position) specified by the function A. We also
order the outgoing solid edges of every label node from left to right based on
the position of the hole (in the corresponding labeled formula), to which the
edge is connected. For example, the graph shown in figure (10) is the graphi-
cal representation of the CF-UR in (9) in which for the purpose of clarity we
labeled every label node with its corresponding labeled formula.

(14) U=〈{l1, l2, l3, l4, l5, l6}, {h0, h1, h2, h3, h4, h5}, {l1:Every(h1,
h2), l2:Dog, l3:Probably(h3), l4:Chase, l5:Some(h4, h5), l6:Cat}, h0,
{h0≤l3, h1≤l2, h3≤l4, h4≤l6, l1≤l2, l1≤l4, l5≤l4, l5≤l6 }, {((l1,
l2), of), ((l1, l4), agent), ((l5, l4), theme), ((l5, l6), of)}〉

Note that in this example, we have assumed ROLES is a set of predefined
roles which includes the three roles agent, theme and of. As shown in (9)
we usually represent the ordered pairs (x, y) in C as x≤y. From the above
definitions, it is easy to see that the labels in LQ and the hole T are the only
roots (i.e. nodes with no incoming edge) of a CF-UR graph.
Given a CF-UR, any bijection from H to L is called a label assignment. A
label assignment I satisfies a constraint x≤y iff. when x is a hole and y is a label: either I(x)=y or I(x)=z and I recursively

satisfies z≤y;. when x and y are both labels: either x=y or x:Fi(...z..) is in F and I
recursively satisfies z≤y;

A tuple 〈U, I〉 where U is a CF-UR and I is a label assignment which
satisfies all the constraints in C is called a solution of U. As with the CF-
MRS sometimes we use a graphical representation to represent a solution.
The graph of a solution 〈U, I〉 is built by taking the graph of the CF-UR and
merging every hole node h with the label node I(h).
For example, the CF-UR in (9) has 6 possible solutions, two of which are
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FIGURE 11 Two solutions for the CF-UR given in figure (9)

shown in figure (11a,b)12 , one with I = {(h0, l1), (h1, l2), (h2, l5), (h3, l4),
(h4, l6), (h5, l3)} and one with I = {(h0, l5), (h1, l2), (h2, l3), (h3, l1), (h4,
l6), (h5, l4)}.
We have shown how a CF-MRS can be converted to a CF-UR. The inverse

is straightforward. The corresponding CF-MRS of a CF-UR U=〈L, H, F, T,
C, A〉 is a tuple MU= 〈T, R, C′〉 in which R is the set of all the EPs of the form
li:Qi(xi, hri, hbi) where li:Qi(hri, hbi) is a quantification in F and EPs of the
form lk:Pk(xi, xj, ..., h1, h2, ...) where lk:Pk(h1, h2, ...) is a predication in F;
and xi is an argument of the EP lk:Pk(...) if and only if li≤lk is in C. Finally C′

is a subset of C which includes all the hole to label (but not any label to label)
constraints in C. Every (h, l) (or equivalently h≤l) in C is represented as h =q
l in C′. Trivially M is a CF-MRS; hence the qeq relationships are equivalent to
outscoping constraints in M. Using this fact, it can be easily seen that every
bounded scope-resolved structure of M corresponds to exactly one distinct
solution of U and vice versa. As a result, there is a one-to-one correspondence
between the bounded scope-resolved structures of M and the solutions of U.
In a forthcoming paper we show the back and forth translation between

CF-UR and the two other formalisms, Hole Semantics and Dominance Con-
straints.

5.7 Conclusion
We defined Canonical Form MRS and showed that the every well-formed
MRS which is generated by this algorithm is in this form. We have shown for
CF- MRS, qeq relationship is equivalent to dominance relationship. Based on
this result we have proposed a universal underspecified representation, called
Canonical Form Underspecified Representation or CF-UR. In a forthcoming
paper, we will show how this single representation can be translated back and
forth between the other semantic formalisms such as Dominance Constraints
and Hole Semantics.

12Although dependency edges are part of the graph, for the purpose of clarity, we have only
shown the solid edges in these figures.
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