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Abstract
A critical prerequisite for human-level cognitive systems 
is having a rich conceptual understanding of the world. 
We describe a system that learns conceptual knowledge 
by  deep understanding of WordNet glosses. While 
WordNet is often criticized for having a too fine-grained 
approach to word senses, the set of glosses do generally 
capture useful knowledge about the world and encode a 
substantial knowledge base about everyday concepts.. 
Unlike previous approaches that  have built  ontologies of 
atomic concepts from the provided WordNet hierarchies, 
we construct complex concepts compositionally using 
description logic and perform reasoning to derive the best 
classification of knowledge. We view this work as 
simultaneously accomplishing two goals: building a rich 
semantic lexicon useful for natural  language processing, 
and building a knowledge base that  encodes common-
sense knowledge.

 Introduction  
When researchers talk about learning by reading, they 
often are talking about different types of knowledge that 
is acquired. To us, there are three main classes of 
knowledge that need to be acquired to enable a human-
level cognitive agent:
1. Learning facts about the world (e.g., Chicago is a city, 

Chicago is in the USA, ...)
2. Learning complex structured information using 

existing concepts (e.g., how to get to a restaurant)
3. Learning new concepts that extend our ontology (e.g., 

learning about plumbing)
This paper describes work addressing the third problem: 
how to acquire new concepts and learn the meanings of 
new words. It is motivated by our long-standing interest 
in building deep language understanding systems that 
provide a high-fidelity mapping of language to an 
underlying knowledge representation (KR). Rather than 
trying to build the entire target ontology by hand, 
however, we want to build the ontology and its 
associated common-sense knowledge by reading existing 
textual sources. We believe this is the only way we may 
be able to build truly broad-coverage deep understanding 
systems, which then would enable the acquisitions of 
much more complex common-sense knowledge by 
reading further texts (e.g., Wikipedia).
As an initial exploration of the feasibility of this 
enterprise, we are building an ontology by reading the 
definitions that are present in WordNet glosses. Learning 
concepts from machine readable dictionaries has a long 
history. Ide & Veronis, (1994) is an excellent survey of 

early work, and lays out key problems in understanding 
dictionary definitions. First, definitions tend to be quite 
complex, both in structure and in the conceptualizations 
used; and second, they are vague, imprecise, and 
incomplete. However, while glosses may not capture 
word meaning precisely, they can capture significant 
amounts of common-sense knowledge. 
We believe we can overcome the difficulties others have 
found by bringing several key ideas to bear. First, we 
bootstrap the whole process with a hand-built upper-level 
ontology that works in conjunction with a deep 
understanding system, namely the TRIPS system (Allen 
et al, 2008). This provides a capability to interpret many 
of the complexities in the glosses, and seeds the 
development of the ontology inherent in the glosses. 
Second, we define concepts compositionally using 
description logic (specifically OWL-DL) and then use 
off-the-shelf reasoning systems to develop the ontology 
using efficient subsumption algorithms. The result is a 
multiple-inheritance structure supporting complex 
composition concepts, including disjunctive and 
conjunctive concepts, much better suited to the 
definitions present in WordNet (Miller, 1995). Third, in 
order to produce a useful common-sense knowledge 
base, we hand-axiomatize key abstract concepts that 
people would learn from direct experience with the 
world, and are difficult to capture in language definitions. 
These are concepts like START, STOP, CHANGE, and 
the like. With fairly rudimentary axiomatization of such 
core concepts, the learned knowledge is “activated” and 
can produce significant entailments and common-sense 
models from the data. And finally, though not discussed 
in this paper, we use similarity and abstraction 
techniques to clean up the conceptual hierarchy, merging 
redundant and/or overly specific concepts, producing an 
ontology better suited for both reasoning and language 
processing.

The Approach and an Example
A major stumbling block in learning conceptual 
knowledge from text has been the differences between 
the semantics inherent in natural language and the 
knowledge representations that have been developed for 
reasoning. One key problem is the issue of granularity. 
Linguistic representations primarily encode meaning at 
the word level, whereas knowledge representations deal 
with more complex conceptualization. As an example, 
note that KRs often have a top-level distinction that 
subdivides events into processes (perdurants in DOLCE 
(Gangemi et al. 2002)) such as I’m laughing and 

 



accomplishments (endurants in DOLCE) such as It 
broke. But when we try to define the meaning of the verb 
climb, where does it fit? The sentence I climbed all day 
describes a process, whereas I climbed the hill describes 
an accomplishment. Is the verb climb ambiguous? If not, 
how can we classify it? The problem is that many 
concepts in ontologies correspond to phrasal meanings 
rather than word meanings, whereas linguistic ontologies 
stay focused on the words. This is one reason why 
WordNet has so many senses for each word, it tries to 
pack meanings of phrases into meanings of single words 
(typically the verb). 
To unify the two styles of representation: we must 
ground out the representation in word meanings, because 
that is how the knowledge in language is delivered, and 
then capture entailments using complex concepts built 
compositionally from word meanings. We are exploring 
this by building a system that understands word 
definitions from different sources and builds the complex 
concept definitions that the definitions encode. 
Specifically, we are employing the deep understanding 
capabilities of the TRIPS system, with its extensive 
grammar, lexicon and 2000+ concept upper ontology, to 
parse WordNet glosses. Like many other knowledge 
representation systems such as Cyc (Lenat & Guha 
1990), KM (Clark & Porter 1996) and SUMO (Niles & 
Pease 2001), TRIPS includes a coarse grained mapping 
from WordNet synsets into its upper ontology. The 
allows an initial scaffolding  with which to construct the 
much more detailed ontology based on the glosses.
The resulting knowledge is represented in OWL (Smith 
et al. 2004), for which there is a substantial technology 
base of efficient reasoning engines. Key to our effort, we 
use subsumption reasoning to organize and refine new 
concepts into a rich ontology. Also key is the ability of an 
OWL-based system to support complex compositional 
concepts, not just atomic concepts. This allows us to 
construct complete representations of many definitions, 
and reasonable approximations for the more complex 
definitions. Note that while many criticize WordNet for 
having too fine-grained a treatment of word senses, it’s 
important to note that the glosses in WordNet are 
generally true statements about word/concept meaning, 
and thus encode common-sense knowledge as reflected 
in word meaning. By reasoning over the definitions of 
the different variants for a word, we can develop 
techniques to collapse similar senses/synsets in a 
systematic way. 
Consider a simple example of our approach: the 
WordNet synset wake_up%2-29-00, involving the verb 
“wake up,” is defined by the gloss stop sleeping
[1:09:00]. Our processing is made simpler by the fact 
that about half the content words in WordNet glosses are 
already tagged with their WordNet sense. In this 
definition, we are given the sense of sleeping but must 
identify the appropriate sense of stop.
The relevant part of the logical form produced by the 
TRIPS parser for this definition is output as three terms:
(F v1 (:* STOP stop%2:42:00) :affected v3 :process v2)
(F v2 (:* BODILY-PROCESS sleep%1:09:00) :affected v3))
(IMPRO v3 LIVING)

Interpreting these terms, there is an event, V1, which is 
of type STOP in the TRIPS ontology and stop%2:38:00 
in WordNet, which has a :process role filled with an 
event V2, which is of type BODILY-PROCESS in TRIPS 
and sleep%1:09:00 in Wordnet. Finally, there is an 
implicit argument (the IMPRO form), which is an object 
of type LIVING and fills the :affected role of both the 
stopping and sleeping events. This type was derived from 
the selectional restrictions in the TRIPS ontology that 
only LIVING things can undergo bodily processes.
The TRIPS ontology gives an initial framework for 
conceptual classification but few  specifics about actual 
word meaning for most words. For instance, TRIPS 
knows nothing about the action sleeping%1-09-00, 
except that it is some BODILY-PROCESS. Since we 
haven’t read the definition of sleeping%1-09-00 yet, we 
have no further information about it. 
The other key thing we need to do to define a new 
concept is to identify the its arguments (i.e., roles). To 
identify the roles for new concepts, we take all the roles 
in the defining concept that are either missing in the 
definition (i.e., as a gap) or are filled by an indefinite pro-
form (e.g., someone, somewhere, ...). In the current 
example, we infer that the new concept “wake up” has a 
affected role, derived from the role structure of STOP. 
Note another essential role in STOP, namely the process 
role,  but this is not inherited to wake_up%2-29-00 
because it was fully instantiated in the definition. To 
confirm the role hypotheses, we parse the examples 
attached to entries in wordnet and adjust the analysis if 
necessary. 
Figure 1 shows the definition in human-readable form 
that the system constructs from the gloss. The double 
arrows relate an entire concept to it’s superclass, and the 
single arrows relate an argument to its superclass (i.e., its 
restriction). The actual definition in OWL-DL would be:
wake_up%2:29:00 ⊆ stop%2:42:00 ∩ 
! ! ∃process.sleeping%1:09:00 ∩ ∃affected.living
i.e., a waking up event is a subset of stopping events 
whose affected role is an intentional agent and whose 
process is sleeping. 
If we then reading the gloss for sleeping%1:09:00 we 
can extend the knowledge base with additional 
information. The result of processing the definition the 
state%1:03:00 of being asleep%4:02:00 is shown in 
Figure 2.
As mentioned above, a key part of our approach is that 
we treat concepts as complex objects, not atoms. This 
allows for compositional construction of new concepts as 
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Figure 1: Knowledge derived from the definition of wake up

wake_up%2:29:00
:affected X

sleeping%1:09:00

STOP

stop%2:42:00 :process E
    :affected X



well as opening the door to using reasoning techniques 
such as the subsumption algorithm found in description 
logics. An ontology that treats all concepts as atoms 
inhibits learning, for there is no systematic mapping from 
phrases in language to new concepts. There is no 
structure to support non-trivial reasoning. 
Before we consider how we and use such knowledge for 
reasoning, we will explore the construction of concepts 
from definitions in more detail. 

Constructing Definitions
This section provides a little more detail on how we 
build definitions from glosses. The first stage of 
processing involves parsing the definitions using TRIPS 
parser [Allen et al, 2008]. We use all the information 
present in the glosses, including part of speech tags and 
sense tags when available, in order to provide guidance 
to the parser. For words not in the TRIPS lexicon, or that 
do not have a sense corresponding to the WordNet sense 
tag, the TRIPS lexicon managers searches WordNet for 
words matching the provided information and  
automatically constructs an underspecified representation 
in the TRIPS lexical format. The WordNet sense tags are 
converted into TRIPS ontology concepts using hand-built 
mappings from high-level WordNet senses to the TRIPS 
ontology. To control ambiguity arising from multiple 
senses in WordNet, the parser prefers lexical entries 
corresponding to actual tagged senses when they are 
present in the glosses. 

The output of the parser is a logical form graph, which 
encodes an unscoped modal logic with reified events and 
semantic roles as shown above. 
The logical form graph is then translated into an OWL 
compositional class using a simple algorithm, which we 
illustrate using the LF term

(F v1 (:* STOP stop%2:42:00) :affected v3 :process v2)
1. We create a new concept for the class being defined 

using the type in the LF graph (e.g., wake_up
%2:29:00). Call this C.

2. Create (or identify in the ontology)  a concept 
corresponding to the defining concept (e.g., stop
%2:42:00). Call this T.

3. If the defining concept has roles r1, ..., rn
(e.g., :affected, :process), recursively build new 
concepts for each of the arguments. Call these 
concepts R1,..., Rn.

4. Define the class: C ⊆ T ∩ ∃r1.R1 ∩ ... ∩ ∃rn.Rn 
There are a few special cases that complicate the 
algorithm. For example, many of the glosses involve 
disjunctive constructs, and these are handled by mapping 
the disjunctive in the logical form to a UNION of the two 
classes. Conjunctions are treated as intersections.

Building a Micro-Theory of Sleeping
To explore the potential of this approach, we extracted a 
subset of WordNet consisting of all the concepts that 
involve the notion of sleeping in some way. This includes 
all the senses of sleep itself, words derivationally related 
to sleep, words that have some connection to sleep in 
their definitions, plus the definitions of all words used in 
the definitions of sleep (see Table 1). WordNet does 
encode some relationships between these words, but they 
are highly underspecified. The most common link is the 
“derivationally related” link, which indicates some 
morphological connection between words but nothing 
about their semantic relationship. More useful are the 
antonym relations, and we used these links when 
gathering related words. We did not, for this experiment, 
use the antonym information to define the KB. Thus one 
test of the worth of our approach is whether antonyms 
can be derived automatically.
The result of interpreting these glosses is shown in 
Figure 3. There are few things to note. First, while there 
is considerable variation in how definitions are phrased, 
in the end all the sense reduce down to the nominal 
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Figure 2: After processing sleeping%1:09:00 

wake_up%2:29:00
:affected X

sleeping%1:09:00

STOP

HAVE-PROPERTY :property P

stop%2:42:00 :process E
    :affected X

asleep%3:00:00

state%1:03:00 :of X

Synset Name Gloss
wake_up%2:29:00 to stop%2:42:00 sleeping%1:09:00
sleeping%1:09:00 the state%1:03:00 of being asleep%4:02:00
asleep%4:02:00 into a sleeping state%1:03:00
fall_asleep%2:29:00 to change%2:30:00 from a waking%1:09:00 to a sleeping [sleep%2:29:00] state%1:03:00
waking%1:09:00 the state%1:03:00 of remaining awake
sleep%2:29:00 to be asleep%4:02:00
awake%3:00:00 not in a state%1:03:00 of sleep%1:26:00
asleep%3:00:00 in a state%1:03:00 of sleep%1:26:00
sleep%1:26:00 a natural and periodic state%1:03:00 of rest during which consciousness%1:09:00 of the world

%1:09:00 is suspended [suspend%2:30:02]
keep_up%2::29:00 prevent%2:41:00 from going to bed [go_to_bed%2:29:00]
go_to_bed%2:29:00 to prepare for sleep%2:29:00
sleeper%1:18:00 a rester%1:18:00 who is sleeping [sleep%2:29:00]
rester%1:18:00 a person%1:03:00 who rests [rest%2:35:00,rest%2:32:00,rest%2:29:00]

Table 1: Glosses in WordNet directly related to sleeping, showing sense tags when provided



concept sleep%1:26:00. This concept is further defined 
(as a natural and periodic state of rest during which 
consciousness of the world is suspended), but we have 
suppressed this information as it does not affect our 
example. On the face of it, there seems great potential for 
reasoning over these concepts. We see, for instance, that 
being awake%3:00:00 is “not being in state of sleep
%1:26:00” while being asleep%3:00:00 is “in a state of 
sleep%1:26:00”. With an appropriate handling of 
negation, we could infer that both this states cannot hold 
simultaneously. But other conclusions seem close but 
evade realization. For instance, we would like to be able 
to conclude that after one wakes up, one is awake. But 
this not not derivable from the current knowledge base as 
we don’t have appropriate knowledge about what it 
means to stop%2:42:00. And looking at the WordNet 
definitions doesn’t help. Here are the relevant definitions:

Stop:  come to a halt, stop moving
Halt: the event of something ending
Ending: be the end of
End: the point in time when something ends

WordNet has the same problem that we find in all 
dictionaries, namely that some core concepts are simply 
impossible to reduce to other concepts and the definitions 
become circular. This leads us to the next key part of the 
work: defining an inferential model that can exploit the 
knowledge we have gained.

Inference 
Description logic supports inference about classes of 
objects, and provides efficient inference models for 
computing subsumption of classes in a multiple-
inheritance representation. These definitions say nothing 
about any particular individuals. For instance, wake_up
%2:29:00 was defined as the stopping of an event 
described by the nominalization sleep%1:09:00, which 

is defined as “a state of sleep%2:29:00”, which is the 
verbal form of the event. Nothing in the description logic 
says that when you are in the state of some event 
occurring, that the event is actually occurring. To capture 
such relationships and use the knowledge we produce, 
we need to introduce some axioms for basic concepts. 
We’ll define a representation for making assertions based 
on interval-based temporal logic (Allen, 1984). We have 
a predicate T that asserts that some concept (described by 
a OWL concept) holds/occurs over time t. While Allen 
distinguished between events occurring and properties 
holding, we will ignore such issues here. With this 
representation, we can now define some basic axioms 
that enable inference. To handle negation, we have the 
axiom (where all lower case letters are universally 
quantified variables)
T([NOT :arg p], t) <=> ¬T(p, t)
i.e., the concept of a situation not holding holds at t if 
and only if it’s not the case that the situation holds at t. 
With this axiom, we can now prove that the situations 
described by awake%3:00:00 and asleep%3:00:00 are 
mutually exclusive.
In order to derive much of the rest of the relationships 
we’d like, we need to axiomatize some key concepts like 
stopping, causing, preventing, and so on. As an example, 
here is one of the axioms for stop%2:42:00 (all 
variables without quantifiers are assumed to be 
universally quantified):

T([stop%2:42:00 :process e], t) ⊃ ∃ tʼ . ¬T(e, tʼ) ^ meets(t, tʼ)
i.e., if event e stops at time t, then e is not occurring at 
time t’ that immediately follows t, using the meets 
relation from Allen (1983).
Figure 4 shows a sampling of these core axioms, ones 
that are particularly relevant to the micro-theory of 
sleeping we have derived. A reader might complain that 
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wake_up%2:29:00
:affected X

change%2:30:00 :from X :to Y

sleeping%1:09:00

STOP

waking%1:09:00

state%1:03:00 :of X

HAVE-PROPERTY :property P
remain%2:42:01 :effect P

stop%2:42:00 :process E
    :affected X

state%1:15:01 :of X

sleep%1:26:00

NOT :arg P 

awake%3:00:00
asleep%3:00:00

keep_up%2:29:00

prevent%2:41:00 :effect E

go_to_bed%2:29:00

fall_sleep%2:29:00

prepare%2:30:00 :purpose ECHANGE

state%1:03:00 :of X

in%4:02:01 :val  X

state%1:03:00 :of Xsleep%2:29:00

Figure 3: The micro-theory of sleeping constructed by the system



we are hand-building the knowledge we need, but in fact, 
we believe the number of core concepts that will be 
axiomatized is relatively small, say on the order of 50 to 
100 concepts, and that almost all the knowledge in the 
axioms is knowledge that a cognitive agent would 
generally learn by early experiences interacting with the 
world. So the hand-defined set of axioms replace the the 
need for an agent that can learn in situ before acquiring 
much language. With this base, then we can learn the 
meanings of all other words directly from the glosses.
Finally, in this logical framework we need an axiom 
schema that relates subsumption and inference. 
Essentially, if a concept describing a situation holds, then 
all superconcepts of that concept also hold. This rule is 
the inheritance rule:
Inheritance Rule
If concept A subsumes concept B, then T(B, t) ⊃ T(A, t)
We now have everything we need to use the knowledge 
base to compute entailments. First, note we can derive 
the antonym relation between awake%3:00:00 and asleep
%3:00:00 directly from the definitions. As a more 
complex example showing how the axioms work, 
consider the following proof of the statement Before 
falling asleep (Fall_asleep%2:29:00), the agent is awake
%3:00:0:
a. Assume T(Fall_asleep%2:29:00, T)
b. [change%2:30:02 :to [state%1:03:00 :of sleep

%2:29:00]] holds at time T (inheritance, defn of 
Fall_asleep%2:29:00)

c. sleep%1:09:00 holds at a time Tn which immediately 
follows time T (axiom 3)

d. [state%1:03:00 :of [HAVE-PROPERTY :property 
asleep%3:00:00]] holds at the a time Tn ((inheritance, 
defn of sleep%1:09:00))

e. [HAVE-PROPERTY :property asleep%3:00:00] holds 
at Tn (axiom 8).

f. asleep%3:00:00 holds at Tn (axiom 4)
g. [in%4:02:01 :val [state%1:03:00 :of sleep%1:26:00]] 

holds at time Tn (inheritance, defn of asleep%3:00:00)
h. [state%1:03:00 :of sleep%1:26:00] holds at time Tn 

(axiom 2)
i. Thus, sleep%1:26:00 holds at time Tn (axiom 3)
Note that while there are 8 inference steps to derive this 
conclusion from the definitions, the search space is very 
small and such inference can be performed rapidly using 
a simple forward inference chaining algorithm. It would 
be entirely possible to precompute many of these 

conclusions (that seem obvious to us) in a post-
processing phase of the learning in order to simplify the 
knowledge base. 

Implementation
We have implemented this reasoning framework using 
SWRL, a standard reasoning engine for OWL. Each of 
the axioms in Figure 4 have a direct translation into 
SWRL. We then can perform such inference in a forward 
chaining fashion when instances are added, pretty much 
following the proof just presented. 
Using this, we can test what conclusions the agent can 
draw about sleeping given the derived knowledge from 
the glosses. Here are a few other statement it now 
believes
Being awake%3:00:0 is mutually exclusive with being  
asleep%3:00:00
If an agent is Sleeping%2:29:00, then it is asleep, and 
thus not awake.
If an agent falls asleep (Fall_asleep%2:29:00), then it is 
in a state of  sleep afterwards, and is not awake.
If an agent wakes up, then it was sleeping and now is 
not. 
Note that there are other facts we would like to derive 
but cannot be obtained from the definitions. For instance, 
we learn that keeping someone up is preventing them 
from going to bed, which is defined as preparing for 
sleep. So we can conclude that keeping someone up 
prevents them from preparing for sleep, but not that they 
didn’t fall asleep anyway without preparation! Either we 
need to find a better definition or, more practically, we 
need to develop a framework for default/probabilistic 
reasoning. Another solution is to gather information from 
many different sources and use reasoning processes to 
combine and reconcile differences.

Can this really work?
Constructing the mini-theory of sleep was quite 
successful, so it leads to the question of whether we can 
use these techniques to construct a knowledge base 
containing all the information present in WordNet. In this 
section we discuss some of the challenges we face in 
accomplishing this task. There are two main challenges 
we face: getting accurately understanding of definitions, 
and cleaning up and organizing the knowledge that is 
produced.
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# Axiom Example Entailment n the sleeping microtheory using the axiom i

1 T([stop%2:42:00 :effect e], t) ⊃ ∃ tʼ . ¬T(e, tʼ) ^ meets(t, tʼ) After stopping sleeping, you are not sleeping

2 T([in%4:02:01 :val [state%1:03:00 :of e]], t) ⊃ T(e, t) If you are in a state of sleeping, you are sleeping
3 T([state%1:03:00 :of e], t) ⊃ T(e, t) If a state of sleeping holds now, then sleeping holds now.
4 T([[HAVE-PROPERTY :property p], t) ⊃ T(p, t) If you have the property ‘you are sleeping’, then ‘you are sleeping’
5 T([prevent%2:41:00 :effect e], t) ⊃ ¬T(e, t)) If you prevent E from happening, then it isn’t happening
6 T([remain%2:42:01 :effect e],t ) ⊃ T(e, t) & ∃ tʼ . Meets(tʼ, t) ^ T(e, t’) If you remain sleeping, then you were sleeping before and are sleeping now.

7 T([change%2:30:02 :from e], t) ⊃ ∃ tʼ . Meets(tʼ, t) ^T(e, t’) & ¬T(e, t) If something changes from being in some situation, then it was in that 
situation before

8 T([change%2:30:02 :to e], t) ⊃ ¬T(E) & ∃ tʼ . Meets(t, tʼ) ^T(e, t’) If something changes to being in some situation, then it is in that situation 
next

Figure 4: Some common-sense axioms



Challenges in Understanding
Regarding understanding the glosses, we first note that 
the glosses for the sleeping words are unusually clean 
and concise. Many other glosses are significantly more 
difficult to understand, which we discuss here.
Disjunction and Conjunction
The first thing to note is that many glosses involve 
significant use of  disjunctions and conjunctions. While it 
is not difficult to express such concepts in OWL-DL, 
getting the right parses is a considerable challenge. 
Consider the gloss for bouillabaisse:

Highly seasoned Mediterranean soup or stew made 
of several kinds of fish and shellfish with tomatoes 
and onions or leeks and seasoned with saffron and 
garlic and herbs

The TRIPS parser is unable to find a full spanning parse 
for this definition because of the complexity of the search 
space. It does however produce a partial understanding 
using its robustness mechanism and produces a definition 
equivalent to the fragment a seasoned Mediterranean 
soup or stew. While this correctly defines bouillabaisse 
as a soup/stew dish it misses much of the detail present 
in the gloss. We plan to explore some preprocessing 
techniques to bracket conjunctions using semantic 
similarity measures to improve conjunction handling.
Vague Semantic Relations
We can use the same example to illustrate the next issue. 
The understander is currently unable to refine vague 
relations in the definitions. The most common source of 
such vagueness is in noun-noun modification, as in 
Mediterranean soup. The logical form for this fragment 
uses the very abstract relation Assoc-with (i.e., associated 
with), which could be ownership, part-of, made-from, 
and so on. We currently have no mechanism for refining 
this to a better relation. This may be a case where we 
attempt a bootstrapping approach. We first acquire 
information about the various relationships such as 
partof and madeof using text mining techniques. We then 
can use this knowledge to identify more specific relations 
when available. As an example, the gloss for the 
locomotive sense of engine starts with a wheeled 
vehicle ... which produces an LF with a vehicle Assoc-
with wheels. If we already know that vehicles can have 
wheels, we could refine this semantic relation 
appropriately. Note that while WordNet does contain 
part-of information, it is very partial - in fact there is 
only one part identified for vehicles, namely the 
dashboard.
Word Sense Ambiguity
In general word sense ambiguity remains an issue when 
learning by reading online sources. For WordNet, 
however, about half of the words in the the glosses have 
been hand-tagged with their senses, making this a very 
useful resource to start with. While there are some errors, 
as noted above, in some cases the parser is able to correct 
the problem as these tagged senses only come in as 
preferences, not absolute constraints. For the general 
problem when we move to other resources, we need to 
address better what are useful senses. It is widely 
acknowledged that WordNet uses far too fine a set of 

senses to be useful as a knowledge base. This issue is 
revisited in the next section, under cleaning up and 
organizing knowledge.

Challenges in Organizing Acquired Knowledge
Even if the glosses were understood perfectly, the 
resulting knowledge would be a jumble of idiosyncratic 
information based on the whims of the people writing the 
glosses. In this section we consider a few techniques that 
we pursuing to clean up the resulting knowledge. 
Cleaning up Redundancies
Note first that we do have a good start in using OWL-
DL reasoners. If equivalent concepts are defined from the 
glosses, the subsumption algorithms should be able to 
identify them. There are a fair number of concepts in 
WordNet that are unnecessary and create spurious 
ambiguity issues. For instance, WordNet has a concept 
young_person%1:18:00 defined as a young person! To 
identify such issues, we parse the phrase young person 
that is associated with the sense and find that the 
compositional semantics is exactly equivalent to the 
gloss definition. In other words, there is no need for 
young_person%1:18:00 as a separate concept as it can 
be produced compositionally. Not all cases are so easy, 
but we believe similar techniques will identify likely 
candidates. For instance, young_woman%1:18:00 is 
defined as a young female, and woman%1:18:01 is 
defined as a female person. Processing these definitions 
places young_woman%1:18:00 very close in the 
hierarchy go the compositional meaning of young 
woman. We need to identify effective heuristics for 
collapsing such cases.
Reducing Word Senses
Related to this are techniques we are exploring for 
reducing the number of senses for words to an effective 
core. As an example, consider glosses for two of the 49 
senses of the verb make:

Cause to do
Compel or make someone to act in a certain way

Now, compel is defined as force somebody to do 
something,  and force is defined as to cause to do .... 
Thus compel and cause are closely related. Furthermore,  
the appropriate sense of do is defined as perform an 
action, and act is also defined as perform an action. By 
constructing all these concepts, we find these two senses 
of make are virtual synonyms of each other, and so we 
should construct a single sense that captures all the 
entailments of both. 
This, again, is a simple example. We are exploring more 
general clustering techniques based on semantic 
similarity in the conceptual hierarchy to identify abstract 
senses that produce much cleaner knowledge.
Eliminating Meta-talk and Language Variants
Language supports substantial variation in 
conceptualizing the same circumstances. This can be 
seen in the sleep mini-theory we constructed, where we 
see multiple nominalizations (sleeping%1:09:00, sleep
%1:26:00), verbal forms (sleep%1:26:00), adjectival 
properties (asleep%3:00:00) and adverbials (asleep
%4:02:00)  all essentially referring to the same state of 
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affairs (i.e., being asleep).. One of the points of doing the 
sleeping mini-theory in detail was to show that we could 
inferentially connect all these concepts in a reasonable 
way. We could also use the same derived knowledge, 
however, to produce much more concise knowledge base 
that is abstracted one level away from language. The idea 
would be to use the forward chaining of the core axioms 
in order to produce simplified knowledge. As an 
example, consider the concept wake_up%2:29:00 again. 
Rather than depending on inference every time we 
consider a waking up event, we could do forward 
chaining once in a preprocessing stage and then build a 
richer conceptual structure with the concept. Taking 
terminology from the event semantics, we might directly 
assert that the result of a wake up event is that the actor is 
awake, and that a necessary precondition on this event 
occurring is that the actor was asleep. By doing this, we 
could build an axiomatization of events similar to that 
proposed in Allen (1984).

Related Work
While clearly a critical need in constructing human-level 
cognitive agents, automatic acquisition of linguistically-
based knowledge has not be explored much in the 
cognitive systems literature. But there is a significant 
history trying to build lexical knowledge from 
dictionaries, and a substantial amount of new work on 
mining the web to learn facts. The latter work, however, 
does not focus on learning conceptual knowledge, so we 
will not consider it further here.
Research on automatically building knowledge bases 
from lexical resources has a long history. Early attempts 
used techniques such as hypernym extraction  (e.g., 
Calozari 1984; Chodorow et al. 1985), pattern matching 
(e.g., Alshawi 1989; Vossen et al. 1989; Wilks et al. 
1989) and co-occurrence data (e.g., Wilks et al. 1989). 
In an evaluation, Ide & Véronis (1994) conclude that the 
limited results from these efforts show that 
understanding lexical definitions requires deeper 
processing than the techniques applied to date. They 
attribute lack of progress to lack of sophistication of the 
extraction techniques as well as source information that 
is inconsistent, circular, or missing crucial (often 
common sense) information.
Other work targets encoding WordNet glosses as axioms  
in first-order logic (Harabagiu et al. 1999; Rus 2005). 
The logical information is extracted from syntactically 
processed glosses using straightforward structural 
analysis (for example mapping the NP in a subject 
position to an AGENT role), which limits the depth of 
the semantic representation. In addition, the 
representation does not lend itself to using reasoning 
processes in order to clean up and refine the conceptual 
definitions.
Our approach addresses many of the shortcomings in 
previous work. TRIPS gives us a well developed core 
deep language understanding system that provides a 
substantial processing boost beyond what is available 
with other off-the-shelf tools. Furthermore, its ontology 
defines key concepts and their participant roles in a 
hierarchy. Each word is associated with a concept and 

linking templates that align the semantic relations with 
syntactic structure during parsing. The TRIPS NL 
framework helps us overcome the bootstrapping problem 
that limits the depth of information extracted with earlier 
approaches.

Concluding Remarks
A critical obstacle preventing the constructing of human-
level cognitive agents is the lack on common-sense 
knowledge that it would need to understand language 
and reason about the world. We hope we have presented 
a convincing case that extraction of high quality 
knowledge from sources such as WordNet is a feasible 
goal to pursue.
While the example we presented in this paper is small, 
and based on a particularly suitable subset of WordNet, 
we are currently performing a significantly larger 
experiment based on approximately 7500 synsets that are 
likely to be related to cooking. In order to construct an 
effective knowledge base, we are working on a number 
of the challenges presented earlier. We plan to evaluate 
this cooking KB by having subjects pose queries about 
cooking (based on a provided set of templates)  to both 
the system and to a human using a web-based system, 
and then scoring the resulting answers for degree of 
appropriateness and correctness. 
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