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Abstract
We describe a cognitive model of a collaborative agent that
can serve as the basis for automated systems that must col-
laborate with other agents, including humans, to solve prob-
lems. This model builds on standard approaches to cognitive
architecture and intelligent agency, as well as formal models
of speech acts, joint intention, and intention recognition. The
model is nonetheless intended for practical use in the devel-
opment of collaborative systems.

Introduction
The goal of this paper is to define a cognitive model of col-
laborative planning and behavior that provides a foundation
for building collaborating, communicating agents. We are
particularly interested in situations that involve human and
non-human (robotic or software) agents working together.

There are several challenges involved in developing such
a model. We need to show how agents, who are only able
to act individually, can nonetheless plan and perform ac-
tivities jointly. We also must show how the agents com-
municate to coordinate all their joint planning and acting,
as well as learning to perform new tasks. There is signifi-
cant prior work formalizing joint activities and shared plans
(e.g., (Cohen and Levesque 1990; Grosz and Kraus 1996;
Clark and Schaefer 1987; Clark 1996; Subramanian, Ku-
mar, and Cohen 2006)), collaborative problem solving and
mixed initiative planning (e.g., (Ferguson and Allen 2006))
and models of communication based on speech act plan-
ning (e.g., (Allen and Perrault 1980; Cohen and Perrault
1979)). However these models focus more on formal as-
pects of belief states and reasoning rather than how agents
behave. Other work, such as COLLAGEN (Rich and Sidner
1997) and RavenClaw (Bohus and Rudnicky 2009) focus on
task execution but lack explicit models of planning or com-
munication. The PLOW system (Allen et al. 2007) defines
an agent that can learn and execute new tasks, but the PLOW
agent is defined in procedural terms making it difficult to
generalize to other forms of problem solving behavior. Our
goal is a model that builds on the theories, accounts for col-
laborative behavior including planning and communication,
and in which tasks are represented declaratively to support
introspection and the learning of new behaviors.
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Architecture of a Basic Agent
We start by drawing ideas from cognitive architectures, es-
pecially ICARUS (Langley, Choi, and Rogers 2009) with its
commitment to hierarchical task structures, and from “re-
active” (or “BDI”) agents such as PRS (Georgeff and Lan-
sky 1987; Ingrand, Georgeff, and Rao 1992) and the “Basic
Agent” (Vere and Bickmore 1990). These models assume
that the agent knows a set of hierarchical tasks (whether pre-
defined or learned) and that acting involves perceiving the
world, identifying which tasks to perform and then decom-
posing tasks as necessary until the agent identifies the next
action it will perform. The agent thus is in a never-ending
cycle of perception, goal selection, planning and execution.
This can be summarized in the following simple algorithm
for the basic agent:

Loop Forever:
1. Process perceptions
2. Identify new problems and tasks
3. Decide which task to focus on next
4. Decide what to do about this task

Do we know what to do next?
(a) Yes: do it
(b) No: Figure out what to do (one-step expan-

sion/decomposition using operators/templates).
If successful, expand the task, otherwise aban-
don subtask and mark as failed.

In practice, we use a more complex multi-nested loop where
the agent reconsiders its goals less often and spends more
time planning and executing. But these details are not im-
portant for this paper.

Note that while this is a model of a single cognitive agent,
it is possible to generate communicative speech acts using
the planning models developed by Perrault, Allen, and Co-
hen (1978; 1979; 1980). Such an agent can communicate
but cannot create collaborative plans. We’ll see this in the
first examples we present.

Domain
For concreteness, we’ll use a simple domain where agents
can push boxes around rooms of a building. Although ob-
viously an abstraction and very simple, this domain empha-
sizes many key features of real-world problems:



• It naturally scales to more complex problems: with more
rooms, doors, and more complex connectivity; by vary-
ing colors, shapes, sizes, etc., and adding more complex
constraints on goals.

• It can include goals that require joint action (e.g., heavy
boxes requiring two agents to push)

• Durative and simultaneous actions are built-in properties
of the domain.

• External events can be naturally included, for example by
introducing “external” agents that move boxes.

• Observability is a controllable parameter of the domain:
e.g., Agents might not be able to identify heavy boxes
from their appearance, but have to experiment.

This “Box World” serves as crisp, extensible abstraction of
the types of domains and problems that require multi-agent
collaboration. It is also very amenable to simulation, in sup-
port of visualization and experimentation in scenarios in-
volving human and robotic or software agents working to-
gether. Although not the focus of this paper, we are imple-
menting a feature-rich, interactive, immersive simulated en-
vironment based on videogame engine technology (specif-
ically “first person shooter,” or “FPS” games). The first-
person perspective of FPS games allows humans to partici-
pate in the world along with automated systems, providing a
true testbed for human-centered multi-agent collaboration.

Intentional State and Individual Action
To explore the model further, we need to further elabo-
rate on the agent’s intentional state. The agent has a set
of tasks it has committed to performing—these are its in-
tentions. As a task is executed, the agent acquires beliefs
about the progress of the task and about the world, includ-
ing whether subtasks have succeeded or failed. To keep the
development simple in this paper, we will generally focus
on the intentions, and depict them graphically as in Figure
1(a), which shows agent A1 having a task of delivering two
boxes, BOX1 and BOX2, to a different room, ROOM2. As
indicated by the ? for the agent role of this task, it is not
specified which agents should deliver the boxes. Nor does
this intention specify how exactly the task should be per-
formed.

We will assume there are two agents, A1 and A2. If A1
were to decide that it could deliver both boxes, it might plan
to do so and execute that plan. This would be a straight-
forward application of the basic agent model, in which the
agent successively chooses tasks, decomposes them until it
identifies an executable action, and then performs that ac-
tion.

Instead, for the rest of these examples, we suppose that A1
has decided that it should deliver BOX1 and that A2 should
deliver BOX2 (Figure 1(b)). The arrows indicate the decom-
position or “in order to” relationship, but we elide many of
the representational details. Note that this decomposition of
the main task is part of A1’s private intentional state, which
now asserts that A1 intends to accomplish task T by means
of accomplishing subtasks T1 and T2. Thus the structure of

the task is part of the intentional state, just as was done in
(Allen and Perrault 1980).

A1, following our model of agent behavior, can make
progress on this task. Since it is the agent of T1, it can exe-
cute the task (perhaps after refining it further first). However
when it comes to T2, agent A1 is stuck. If it cannot commu-
nicate with A2, all it can do is wait and hope that A2 will
perform T2. Of course since A2 is not privy to A1’s pri-
vate plan, it might do something different (or do nothing).
In some cases A1 might be able to reason that A2 already
plans to do T2 for some reason, but this is unlikely in gen-
eral, particularly if A2 is a human agent.1

If A1 and A2 can communicate, however, then the situa-
tion is more interesting. A1 can adopt the intention of get-
ting A2 to do T2 (Figure 1(c)). Using the standard model
of planning speech acts (Perrault, Allen, and Cohen 1978;
Cohen and Perrault 1979), this can be accomplished by A1
requesting that A2 perform T2, and A2 accepting that re-
quest. These sub-tasks are labeled with “CA” to suggest
that they are communicative acts (a generalization of speech
acts). Now, A1 can further execute this (private) task by per-
forming the REQUEST, which it does with an utterance like
“Would you please move box 2 into room 2?”

Suppose A2 is willing to do this, and so responds “Ok.”
Since this paper is not about natural language understand-
ing, we ignore all language understanding and speech act
interpretation issues, but see our prior papers (e.g., (Hinkel-
man and Allen 1989)). Figure 1(d) shows the situation from
A1’s perspective after initial interpretation of the utterance
as A2’s acceptance of A1’s request.

Key to our model is that part of the agent’s perceptual
processing includes the introduction of new tasks to react
to other agent’s communication. In this case, A1 acquires
the task T6 of reacting to the utterance. Performing this
task triggers a built-in interpretation process that determines
how the utterance fits the agent’s beliefs and intentions, and
hence how the agent should react (as in (Allen and Perrault
1980)). This intention recognition process will be illustrated
more fully in subsequent examples. In this case, it is a sim-
ple matter of matching the interpretation of A2’s utterance
CA6 with A1’s expectation that A2 will accept (CA5).

With this interpretation, task CA5 is marked as com-
pleted, which in turn leads to T3 being completed (that is,
A1 has got A2 to intend to do T2). Thus, A1 now believes
that A2 will (eventually) do T2. Thus, A1 concludes that
the overall task, T, will be completed successfully, even if
it simply waits. Indeed, acquiring such beliefs is the reason
for performing speech acts under the standard model.

However it is worth noting that although this way of ac-
complishing the main task involves both agents and com-

1Much current work on cooperation in multi-agent systems
is based on modeling agent behavior using probabilistic models
such as DCOPs (Mailler and Lesser 2004; Modi et al. 2005) and
POMDPs (Roth, Simmons, and Veloso 2005; Wu, Zilberstein, and
Chen 2009). These are generally planned in advance, rather than
collaboratively and incrementally during problem solving. They
also do not seem well-suited to modeling interaction involving hu-
mans. Some recent research advocates a return to the BDI frame-
work (Taylor et al. 2010).



A1

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

A1

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

T1: DELIVER agent: A1
           object: BOX1
             dest: ROOM2

T2: DELIVER agent: A2
           object: BOX2
             dest: ROOM2

A1

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

T1: DELIVER agent: A1
           object: BOX1
             dest: ROOM2

T2: DELIVER agent: A2
           object: BOX2
             dest: ROOM2

T3: CAUSE-TO-DO agent: A1
                actor: A2
                 task: T2

CA4: REQUEST speaker: A1
              hearer: A2
                task: T2

CA5: ACCEPT speaker: A2
             hearer: A1
                act: CA4

Would you please move 
box 2 into room 2?

A1

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

T1: DELIVER agent: A1
           object: BOX1
             dest: ROOM2

T2: DELIVER agent: A2
           object: BOX2
             dest: ROOM2

T3: CAUSE-TO-DO agent: A1
                actor: A2
                 task: T2

CA4: REQUEST speaker: A1
              hearer: A2
                task: T2

CA5: ACCEPT speaker: A2
             hearer: A1
                act: CA4

CA6: ACCEPT speaker: A2
             hearer: A1
                act: CA4
T6: REACT-TO agent: A1
               act: CA6

OK.

(a) (b) (c) (d)

Figure 1: Non-collaborative behavior

munication between them, the planning is nonetheless non-
collaborative since the entire development has been in terms
of A1’s private tasks. Thus for example, A1 cannot know
whether A2 is doing T2 in order to do T, or for some
other reason. They do not have a shared task (correspond-
ing to a joint intention as in (Cohen and Levesque 1990;
Levesque, Cohen, and Nunes 1990)). This leads us to extend
the basic agent model to include the mechanisms necessary
for collaboration.

The Basic Collaborative Agent
There are two general approaches we could take to extend
the basic model. We could, for instance, modify the basic
agent algorithm to account for agent in collaboration. But
this seems unmotivated. Even when collaborating, an agent
can only perform individual actions, and all its reasoning is
still necessarily private reasoning. We do not believe our
cognitive architecture changes fundamentally just because
we need to collaborate.

But something significant does change, and that is in the
agent’s intentional state. Besides having private beliefs and
tasks, the agent must have a notion of shared tasks (involving
shared beliefs and joint intentions). The key point is that
beliefs about shared tasks only come about as the result of
agreements with the other agent.

Let’s return to the example again, where the agent starts
with the goal in Figure 1(a). Rather than doing private plan-
ning as before, the agent might decide to enlist the other
agent’s help in defining the plan, i.e., create a shared plan.
Note that we treat this as is just another way of decompos-
ing the original goal: the agent plans to achieve task T by
making T a shared task, and it does this by getting the other
agent to agree to do task T jointly.

This is shown in Figure 2(a). First, the figure illustrates
that there are now two task spaces from A1’s perspective:
its private tasks and the tasks it shares with A2. Second, A1

cannot unilaterally decide that a task is shared. Instead, A1
adopts the intention of accomplishing T by agreeing with A2
to make T a shared task. This action is the first example of
what we call a collaborative problem solving act (“CPSA” in
the figures). A small inventory of such actions represent the
agent’s knowledge of how to collaborate. An initial analysis
of such CPS actions can be found in (Allen, Blaylock, and
Ferguson 2002).

Now, the task of agreeing on something with another
agent can be decomposed in several ways depending on the
acting agent’s beliefs and their beliefs about the other agent.
For some additional description of this process with some-
what different terminology, see (Ferguson and Allen 2006).
In the example in Figure 2(b), A1 decides to accomplish the
agreement (T7) by proposing the shared task to A2 and ex-
pecting them to accept the proposal. A1’s execution of this
task leads it to perform the proposal T8, resulting in some-
thing like “Let’s work together to move the boxes” (ignoring
the details of natural language generation).

Suppose A2 responds “Ok.” As before, initial interpreta-
tion of this utterance identifies it as accepting the proposal,
and A1 acquires the task of reacting to the utterance (T10).
The interpretation triggered by T10 is as before, matching
the interpretation of the utterance (CA10) with A1’s expec-
tation CA9. This results in CA9 being marked as success-
fully completed, and thus T7 being completed. The effect of
AGREE-ON tasks like T7 is the acquisition of a belief about
the shared task, in this case it is the new belief that A1 and
A2 share the goal of moving the boxes (Ts).

As noted previously, a crucial element of our model is
that only collaborative problem solving actions can change
the contents of shared task spaces. In this case, A1 recog-
nizing the successful agreement to adopt a new shared task
results in the task being added to A1’s shared task space as
Ts (Figure 2(d)). That is, A1 intends to perform Ts in order
to perform T (its private task). This situation illustrates an



A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

T7: AGREE-ON who: (A1 A2)
            what: CPSA7
CPSA7: SHARED-TASK task: T

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

T7: AGREE-ON who: (A1 A2)
            what: CPSA7
CPSA7: SHARED-TASK task: T

CA8: PROPOSE speaker: A1
              hearer: A2
                task: CPSA7

CA9: ACCEPT speaker: A2
             hearer: A1
                act: CA8

Let's work together to 
move the boxes.

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

T7: AGREE-ON who: (A1 A2)
            what: CPSA7
CPSA7: SHARED-TASK task: T

CA8: PROPOSE speaker: A1
              hearer: A2
                task: CPSA7

CA9: ACCEPT speaker: A2
             hearer: A1
                act: CA8

CA10: ACCEPT speaker: A2
              hearer: A1
                task: CA8
T10: REACT-TO agent: A1
                act: CA9

Ok.

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

(a) (b)

(c) (d)

Figure 2: Adopting a shared task

important point about our representation. The task spaces re-
flect A1’s different beliefs and intentional state (private and
shared), but the task structures cut across such spaces. It is
not the case that we have separate tasks in the shared space
and private space. We have a one task T (rooted in private
space) that A1 intends to accomplish by means of task Ts in
the shared space. Also, as noted above, A1 could not have
unilaterally adopted Ts as a shared task. Instead the collab-
orative process of agreeing to do something together leads
to a shared task (or joint intention).

Collaborative Planning
So now A1 has established a shared goal with A2. It could
simply decide to decompose that shared task privately. That
is, it could plan and perform private sub-tasks to accom-
plish Ts, just as in the previous two cases (Figures 1 and
2). This behavior is not ruled out by our model, but it would
probably be a bad strategy. Most of the time when working
with someone else, it is more productive to agree on how
to proceed. Joint commitment to choices puts stronger con-
straints on behavior and leads to better teamwork (Cohen

and Levesque 1991; Tambe 1997).

Nonetheless, all A1 can do is private planning, even to
achieve shared goals. It can, however, choose to accomplish
Ts by agreeing with A2 that the way to do it is for A1 to
deliver BOX1 (T1) and A2 to deliver BOX2 (T2). This is
shown in Figure 3(a) (definitions of T1 and T2 are in Figure
1(a)). To do this, we need to reify the problem solving acts
that are used in planning (as in (Allen et al. 2007)). Here,
we use the problem solving act DECOMP to stand for the
decomposition operation in HTNs. We have an inventory
of problem-solving acts that capture all possible operations
an HTN-style planning might do: introduce tasks, decom-
pose tasks, bind parameters, abandon tasks/subtasks, mod-
ify tasks, etc. An agent could use these actions to meta-plan
about its own private tasks as well, and such an ability to
introspect is critical for learning new problem-solving be-
haviors. But the point here is that the same problem-solving
acts can be proposed as part of an AGREE-ON task in order
to perform collaborative planning. Using the same technique
from the previous example, A1 proposes a decomposition of
the task to A2: “I’ll deliver box 1 and you deliver box 2.”



A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T11: AGREE-ON who: (A1 A2)
             what: CPSA11
CPSA11: DECOMP task: Ts
                 by: (T1 T2)

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T11: AGREE-ON who: (A1 A2)
             what: CPSA11
CPSA11: DECOMP task: Ts
                 by: (T1 T2)

CA12: PROPOSE speaker: A1
               hearer: A2
                 task: CPSA11

CA13: ACCEPT speaker: A2
              hearer: A1
                 act: CA12

I'll deliver box 1 and you 
deliver box 2.

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T11: AGREE-ON who: (A1 A2)
             what: CPSA11
CPSA11: DECOMP task: Ts
                 by: (T1 T2)

CA12: PROPOSE speaker: A1
               hearer: A2
                 task: CPSA11

CA13: ACCEPT speaker: A2
              hearer: A1
                 act: CA12

CA14: ACCEPT speaker: A2
              hearer: A1
                task: CA12
T14: REACT-TO agent: A1
                act: CA13

Ok.

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T1: DELIVER agent: A1
           object: BOX1
             dest: ROOM2

T2: DELIVER agent: A2
           object: BOX2
             dest: ROOM2

(a) (b)

(c) (d)

Figure 3: Collaborative planning

See Figure 3(b). Note that this follows quite naturally the
exchange from the previous section (Figure 2).

Figure 3(c) show the situation after A2 replies with “Ok.”
Again, this is the simplest case. A1’s reacting to the utter-
ance results in A2’s act CA14 being matched against A1’s
expectation CA13. Thus CA13 is done, and so also is T11
(the agreement). In this case, the agreement leads to a new
belief constructed by applying the decomposition operation
in the shared task space (Figure 3(d)). Thus A1 has arrived
at a similar plan for performing T as before (Figure 1), but
this time both accomplishing the task and the means of ac-
complishing it are joint commitments.

Before moving on, let us very briefly consider what hap-
pens if A2 disagrees and rejects A1’s proposal. Accounting
for this requires that the model of the AGREE-ON task be
more elaborate than we have shown thus far. Essentially, it
needs to accommodate the possibility of one’s proposal be-
ing rejected. In this case, the task is still completed, but it
does not result in a change to the shared tasks. Thus our ap-
proach is to make the task model more complex, which sim-
plifies intention recognition and is needed anyway to drive

the agent’s behavior.

Other Initiative and Intention Recognition
Thus far, our examples have all involved A1 taking the ini-
tiative to solve problems. This makes sense, since by as-
sumption A1 has the goal of delivering the boxes (perform-
ing task T). But suppose that after A2 has agreed to making
T a shared task (Figure 2), A2 seizes the initiative and sug-
gests a means of accomplishing the task. This would be very
natural in a human collaboration, for example. For simplic-
ity, let’s assume that A2 proposes the same way of proceed-
ing by saying “You deliver box 1 and I’ll deliver box 2.”

The basic interpretation process for A1 identifies the il-
locutionary (or conventional) act for the utterance (see, e.g.,
(Hinkelman and Allen 1989)). In this case, there are in fact
two possible interpretations. First, A2 might be proposing
a new shared task: that the two agents work together on T1
and T2, independent of any prior shared tasks. That would
be a proposal of a new shared task as in Figure 2. The other
possible interpretation is that A2 is proposing accomplish-
ing task Ts by performing T1 and T2 (that is DECOMP, as



A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: (A1 A2)
           object: (BOX1 BOX2)
             dest: ROOM2

CA15: PROPOSE speaker: A2
               hearer: A1
               task: CPSA15
CPSA15: DECOMP task: ?
               by: (T1 T2)
T15: REACT-TO agent: A1
                act: CA15

You deliver box 1 and I'll 
deliver box 2.

T16: AGREE-ON who: (A1 A2)
             what: CPSA15

CA15: PROPOSE speaker: A2
               hearer: A1
                 task: CPSA15

CA17: RESPOND speaker: A1
               hearer: A2
                  act: CA15

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: (A1 A2)
           object: (BOX1 BOX2)
             dest: ROOM2

CA17b: ACCEPT  speaker: A1
                hearer: A2
                   act: CA15

OK.

T16: AGREE-ON who: (A1 A2)
             what: CPSA15

CA15: PROPOSE speaker: A2
               hearer: A1
                 task: CPSA15

CA17: RESPOND speaker: A1
               hearer: A2
                  act: CA15

(a) (b)

Figure 4: Other initiative and intention recognition

in Figure 3). The heuristics based on dialogue coherence
described in (Allen and Litman 1990) are used to prefer the
latter interpretation when it is plausible. The result is shown
in Figure 4(a).

As discussed above, responding to a proposal involves ei-
ther accepting or rejecting (but not ignoring) it. Thus this
more elaborate model of the AGREE-ON task involves a
RESPOND subtask for A1. A1 must then decide how to
decompose that subtask. If it chooses to ACCEPT, the situ-
ation is as shown in Figure 4(b). The result of agreeing is to
apply the DECOMP act in the shared task space, as in Figure
3(d). If A1 had instead chosen to REJECT, then the agreeing
task T16 is still marked as completed, but the shared tasks
are not changed. Significantly, the result of the agreement
on a collaborative task is independent of which agent took
the initiative to accomplish it.

Meta-level Collaboration
Finally, to illustrate the generality of our model, consider the
following exchange:

A1: We need to deliver the boxes to room 2.
A2: Ok.
A1: So how should we do that?

The first two utterances are agreeing on a shared task, as
in Figure 2. The third utterance is motivated by the “meta”
knowledge that one way to accomplish a shared task is to
first agree on the right way to perform it. In other words,
agent A1 is suggesting discussing the overall problem solv-
ing strategy before getting down to specific details about the
actual plan. This is especially important for complex tasks
where agents need to focus their attention on different as-
pects of the overall task. It also allows agents to negotiate to
what extent a task is shared and what aspects are left to the
individual agents (e.g., they agree that agent A2 will move
BOX2, but leave the details entirely up to A2). Meta-talk is
crucial for effective collaborative problem solving and com-
mon in human problem solving interactions.

Back to our simple example, application of this strategy
by A1 yields the situation in Figure 5(a). Decomposing
the meta-agreement task as a PROPOSE-ACCEPT sequence
yields Figure 5(b) and A1’s utterance from the exchange
above. Assuming A2 accepts the proposal, the nested agree-
ment task is established as the shared means of accomplish-
ing the shared task (Figure 5(c)).

Many continuations are possible. A1 could take the ini-
tiative and attempt to advance the task itself, by privately
planning a PROPOSE-ACCEPT sequence. For example, it
could determine as before that performing T1 and T2 is the
way to accomplish Ts, and propose that, as shown in Fig-
ure 5(d). Or, similarly to Figure 1, it could request that A2
perform the PROPOSE step, as shown in Figure 5(e).

Or interestingly, A1 could choose to apply the meta-level
agreement operator once again, as shown in Figure 5(f). Es-
sentially this is saying that the best way to agree on some-
thing is to agree on how to agree on it. While such an op-
erator could be applied endlessly, this would be a bad strat-
egy for an intelligent agent. However it is not ruled out by
the model, and can be observed happening in many faculty
meetings where the discussion remains at the meta-level and
no actual decisions are ever made. We therefore believe we
may have developed the the first formal account of unpro-
ductive meetings!

Concluding Remarks
We have developed a practical agent model for collaborative
systems that supports a wide range of behavior, including
private planning, collaborative planning, and the planning
and use of meta-acts about the collaborative planning pro-
cess itself. By practical, we mean that the agent’s behavior
is driven by explicit task models, rather than first principles
reasoning about beliefs and intentions. This greatly simpli-
fies both intention recognition and the planning of conversa-
tional acts.

We have developed this model by generalizing the in-
tentional state of the agent while retaining the same basic



A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T18: AGREE-ON who: (A1 A2)
             what: CPSA18
CPSA18: DECOMP task: T
                 by: T19
T19: AGREE-ON who: (A1 A2)
             what: CPSA19
CPSA19: DECOMP task: T
                 by: ?

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T18: AGREE-ON who: (A1 A2)
             what: CPSA18
CPSA18: DECOMP task: T
                 by: T19
T19: AGREE-ON who: (A1 A2)
             what: CPSA19
CPSA19: DECOMP task: T
                 by: ?

CA20: PROPOSE speaker: A1
               hearer: A2
                 task: CPSA18

CA21: ACCEPT speaker: A2
              hearer: A1
                 act: CA20

How should we do it?
or

Let's figure out how to 
do it.

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T19: AGREE-ON who: (A1 A2)
             what: CPSA19
CPSA19: DECOMP task: T
                 by: ?

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T19: AGREE-ON who: (A1 A2)
             what: CPSA19
CPSA19: DECOMP task: T
                 by: ?CPSA22: DECOMP task: T

                 by: (T1 T2)
CA22: PROPOSE speaker: A1
               hearer: A2
                 task: CPSA22

CA23: ACCEPT speaker: A2
              hearer: A1
                 act: CA23

You move box 2 and 
I'll move box 1.

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T19: AGREE-ON who: (A1 A2)
             what: CPSA19
CPSA19: DECOMP task: T
                 by: ?CA24: PROPOSE speaker: A2

               hearer: A1
                 task: CPSA19

CA25: ACCEPT speaker: A1
              hearer: A2
                 act: CA24

You propose 
something.

T26: CAUSE-TO-DO agent: A1
                actor: A2
                 task: CA24

CA27: REQUEST speaker: A1
               hearer: A2
                 task: CA24

CA28: ACCEPT speaker: A2
              hearer: A1
                 act: CA27

A1 Shared (A1 A2)

T: DELIVER agent: ?
          object: (BOX1 BOX2)
            dest: ROOM2

Ts: DELIVER agent: ?
           object: (BOX1 BOX2)
             dest: ROOM2

T19: AGREE-ON who: (A1 A2)
             what: CPSA19
CPSA19: DECOMP task: T
                 by: ?

T29: AGREE-ON who: (A1 A2)
             what: CPSA29
CPSA29: DECOMP task: ?1
                 by: T30
T30: AGREE-ON who: (A1 A2)
             what: CPSA30
CPSA30: DECOMP task: ?1
                 by: ?2

CA31: PROPOSE speaker: A1
               hearer: A2
                 task: CPSA29

CA31: ACCEPT speaker: A2
              hearer: A1
                 act: CA31

Well how should we 
do that?

(a) (b)

(c) (d)

(e) (f)

Figure 5: Meta-level collaboration



perceive-reason-act cycle used for private behavior. We con-
sider this an essential property, as individual agents can only
do individual reasoning and acting. By making all collab-
orative actions explicit in the model, we allow for meta-
collaborative actions and open the door for learning new bet-
ter ways of collaborating and planning.

Furthermore we have proposed what we think is the min-
imal amount of additional mechanism over the individual
agent model, primarily the ability to represent shared task
models and to perform intention recognition. All of the
ideas, however, are justified and developed in the rich prior
literature formalizing speech act planning, shared plans, and
joint intentions. Our contribution here is a practical system
for collaborative planning and communication cast within a
fairly typical cognitive architecture. We are implementing
the model in the context of practical dialogue systems for
mixed-initiative decision support.
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