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Abstract
We describe a corpus for research on learning everyday tasks in natural environments using the combination of natural language descrip-
tion and rich sensor data that we have collected for the CAET (Cognitive Assistant for Everyday Tasks) project. We have collected audio,
video, Kinect RGB-Depth video and RFID object-touch data while participants demonstrate how to make a cup of tea. The raw data are
augmented with gold-standard annotations for the language representation and the actions performed. We augment activity observation
with natural language instruction to assist in task learning.

1. Introduction
Much progress has been made in individual areas of artifi-
cial intelligence, including natural language understanding,
visual perception, and common-sense reasoning. But to ad-
vance intelligent assistants, systems that can interact natu-
rally with humans to help them perform real-world tasks,
an integrated approach is required. Our goal in the CAET
(Cognitive Assistant for Everyday Tasks) project is to build
a system that can automatically learn to track everyday ac-
tivities from demonstration and use the models to help peo-
ple perform everyday tasks. We have created an experimen-
tal environment for learning everyday tasks in natural en-
vironments using the combination of natural language de-
scription and rich sensor data. Natural language assists in
task learning by providing a useful level of abstraction from
the observed actions, as well as information about task pa-
rameters and hierarchical structure (Allen et al., 2007).
We focus on structured activities of daily living that lend
themselves to practical experimentation in a kitchen do-
main. The initial corpus we describe here consists of
recorded and annotated demonstrations of making tea. Sub-
jects verbally describe what they are doing as they make a
cup of tea, as they might in an instructional video. The
audio and video are annotated with gold-standard represen-
tations of the language and activities performed.
In related work, the CMU Multi-Modal Activity Database
(2009) is a corpus of recorded and annotated video, audio
and motion capture data of subjects cooking recipes in a
kitchen. However, the subjects did not verbally describe
their actions. In addition, we use the Microsoft Kinect to
capture 3D point-cloud data.
In the following sections we describe the corpus, the data
collection and equipment used, and the gold-standard an-
notations for language and activity. We conclude with a
discussion of future work.

2. Corpus Overview
The corpus consists of recorded and annotated sessions of
people demonstrating how to make tea. The raw data com-
prise audio (both speech and ambient sound), video, Mi-

crosoft Kinect RGB-Depth video, RFID object-touch data
and data from other environmental sensors. The raw data
are augmented with gold-standard annotations for the lan-
guage representation and the actions performed. Ten ses-
sions were selected from a larger set for the gold-standard
annotation. Sessions for this initial annotation subset were
selected so that each of the seven participants was repre-
sented at least once. A secondary selection criterion was
fluency of speech.

3. Recording Protocol
Subjects were familiarized with the experimental kitchen
setup, including the electric kettle and the location of ob-
jects they might use, such as the tea, cups and cutlery. They
were instructed to make tea and at the same time verbally
describe what they were doing, as if teaching someone how
to do it. They were asked to speak naturally. We recorded
three sessions for each of seven participants (4 male, 3 fe-
male) from the research community, for a total of 21 tea-
making sessions. We recorded additional sessions in the
event of technical failure during recording, such as no au-
dio from the lapel mike.

Figure 1: The experimental kitchen setup.

4. Equipment Setup
The kitchen environment is shown in Figure 1. The simple
kitchen has an island workspace with a working sink. There



are cabinets and a refrigerator along the back wall. The
video camera and Kinect were mounted on tripods to record
the activity. Ceiling-mounted microphones record the am-
bient noise. Subjects wore a lapel microphone to capture
speech, and an RFID sensing iBracelet on each wrist.
Audio Audio data was collected from three microphones:
a lavalier microphone as an unobtrusive means of capturing
speech, and two ceiling mounted microphones for record-
ing of the environment. All equipment used was consumer-
grade. The lavalier microphone was an Audio-Technica
AT831cW connected to the Audio-Technica 701/L UHF
Wireless System. The other two microphones were
Behringer C2 condenser microphones. The interface to
the computer used for data collection was via a Tascam
US800 USB 2.0 audio interface. All audio was recorded
at 44.1kHz in a 16-bit, linear PCM format.
Video Video was captured using a tripod-mounted Flip
Mino HD camera and stored as 720p HD using H.264 (60
fps) and AAC codecs in an MPEG-4 container. The video
is used to support the annotation and to present the results
of recognition in context. We have not yet explored using it
for computer vision.
Kinect RGB-Depth cameras allow for the easy but accu-
rate collection of synchronized depth information in addi-
tion to the RGB image. In particular, the Microsoft Kinect
has been the sensor of choice for many machine vision tasks
over the past year as it provides a low cost and robust alter-
native to video-only cameras. The Kinect is particularly
suitable for indoor activity data collection due to its high
depth accuracy and framerate despite its constrained field
of view (of around 60 degrees). Problems of human and
object segmentation and localization that are difficult for
ordinary video have the potential to be solved in a more
straightforward manner using RGB-Depth data.
Video was collected using the two cameras on the Kinect,
RGB and depth. Using the OpenNI drivers 1 for the Kinect,
the two images were aligned so that each pixel in the depth
image is aligned with the RGB image. The cameras were
centered and placed approximately one meter away from
the kitchen table with the entire kitchen lab inside the field
of view. Each collected frame was indexed, timestamped
and stored in two separate image streams both 640x480
pixels in resolution, at an average of 6.5 frames per sec-
ond. Figure 2 shows both the RGB (left) and depth (right)
streams for a given frame.

Figure 3: Kinect data frame showing RGB and depth streams.

Environmental Sensors RFID tags were attached to ob-
jects in the scene that were interacted with. The sub-

1http://www.openni.org/

ject wore an RFID sensing iBracelet on each wrist, which
records the RFID tag closest to the subject’s wrist. Only
one RFID tag was detected at any given time, and the cur-
rent tag being detected was sampled every .2 seconds. The
RFID detection was somewhat unreliable as nearby tags
can interfere with each other, and often tags went unde-
tected for periods of time. In an attempt to overcome these
limitations, we attached multiple tags to each object to im-
prove detection rates.
Other sensors were attached to kitchen appliances and cabi-
nets to provide additional data as the subject interacted with
the environment. The electronic tea kettle was attached to a
Watts up PRO ES Electricity meter which recorded power
consumption in real time (at the rate of about 1 Hz). In-
steon contact sensors were placed on the kitchen cabinet
doors and drawers as well as the refrigerator door to detect
when they were opened and closed.

5. Annotation
We use the ANVIL annotation tool (Kipp, 2001) to create
a multi-layered representation of the session data. Our data
annotations consist of the speech transcript, a logical form
for each utterance, an event description extracted from the
logical form, gesture annotations for actions, objects, paths
and locations, as well as object and agent tracking data ex-
tracted from the Kinect. Each layer is described below.

Speech The speech was transcribed based on the lapel
microphone recording and the transcription was segmented
into utterances. Breaking points were typically at the end
of sentences. However, since the speech was spontaneous,
we had many utterances that were not complete sentences
(e.g., missing predicates); in such cases, we considered
long pauses to mark utterance boundaries. There were a
few instances when several sentences were uttered in a con-
tinuous sequence, with very short or no discernible pause
between them; for these we considered the whole segment
to be a single utterance, rather than breaking it up into sen-
tences.
Language The speech transcriptions were parsed with
the TRIPS parser (Allen et al., 2008) to create a deep se-
mantic representation of the language, the logical form
(LF). The parser uses a semantic lexicon and ontology to
create an LF that includes thematic roles, semantic types
and semantic features, yielding richer representations than
“sequence of words” models. Figure 3 shows a graphical
representation of the logical form for the utterance Today
I’m going to make a cup of tea. In triples of the form (:*
CREATE MAKE), the second term is the semantic type in the
ontology for the word, which is the third term. Nodes are con-
nected by edges indicating dependencies, with labels for the re-
lation, such as the thematic role of the argument. Tense, aspect
and modality information is used as input for temporal reasoning,
described below as future work.
The parser-generated LFs were hand-corrected for the gold stan-
dard annotation. This was particularly necessary for utterances
where multiple sentences were transcribed as a single utterance.
To facilitate using language representation as features in activity
recognition models, we added new semantic types in the ontol-
ogy to correspond to objects and actions in the domain, such as
tea, cup, steep. The new labels were usually specific subtypes
of already existing semantic types. For example, the word tea



(SPEECHACT V32056 SA_TELL)

(F V30764 (:* CREATE MAKE))

:CONTENT

(A V30821 (:* QUANTITY VOLUME-SCALE))

(PRO V30682 (:* PERSON I))
:AGENT

(F V30662 (:* EVENT-TIME-REL TODAY))

:MOD

PRES

+

:PROGR
(:* GOING-TO GOING-TO)

:MODALITY:OF

(IMPRO V30845 (:* TIME-LOC TODAY))

:VAL

:SUCHTHAT

TODAY

:PROFORM

I

:PROFORM

USER

:COREF

(SM V30833 (:* TEA TEA))

:QUANTITY

:UNIT

(:* VOLUME-MEASURE-UNIT CUP)

:SCALE

VOLUME-SCALE

:TENSE :THEME

Figure 2: Logical form for Today I’m going to make a cup of tea.

was in the ontology under the general type TEAS-COCKTAILS-
BLENDS, so we created the specific subtype TEA. This extension
gives us greater transparency in the surface representation, but we
retain the richness of the hierarchical structure and semantic fea-
tures of our language ontology.
The LFs are input to the TRIPS Interpretation Manager (IM),
which computes crucial information for reasoning in the domain,
including reference resolution. The IM extracts a concise event
description from each clause, derived from each main verb and its
arguments. The event descriptions are formulated in terms of the
more abstract semantic types in the LF, resulting in short phrases
such as CREATE TEA, CLOSE LID, and POUR WATER INTO
CUP. These phrases will be used as language features in our ac-
tivity recognition models. Figure 4 shows an example of an ex-
traction from the LF for Place tea bag in the cup. The objects bag
and cup are identified as REFERENTIAL by the IM and it also
includes the coreferential index for the first mention of the term.

(EXTRACTION-RESULT
:VALUE ((EVENT V38801)
(PUT V38801) (:THEME V38801 V38818)
(:SHORT-DESCRIPTION V38801 (PUT (:* BAG BAG) INTO CUP))
(:INTO V38801 V38887)
(:TEMPORAL-RELATION V38801 >NOW) (:TENSE V38801 PRES)
(REFERENTIAL V38818) (BAG V38818)
(:ASSOC-WITH V38818 V38814) (:COREF V38818 V38185)
(REFERENTIAL V38887) (CUP V38887)
(:COREF V38887 V33594)
(NONREFERENTIAL V38814) (TEA V38814))
:WORDS (PUT THE TEA BAG INTO THE CUP))

Figure 4: Extraction for the utterance Place tea bag in the cup.

Activity For activity annotation, ground truth was created man-
ually by observing recorded videos and annotating actions per-
formed by test subjects. Domain actions, their attributes and
admissible attribute values were pre-defined and stored in the
ANVIL specification, allowing annotators to easily select them
with the GUI.
The duration of each activity was annotated with start and end
time relative to the video with centisecond accuracy. Each video
was observed several times and some segments were observed
more than ten times to produce accurate annotation. On average,
it took about 25 minutes to annotate a video. Nevertheless, for
actions not clearly visible in the video, the timing information can
have a certain degree of error (mostly less than a second). Simul-
taneous actions (e.g., opening a kettle while moving it) were also
annotated with overlapping time duration.
Actions (move, put, fill, ...) and their attributes, such as objects
(cup, kettle, spoon ...) and paths (to, from, into) are annotated as
separate tracks so that they can be accessed programmatically for
a compositional analysis. The argument structure of the activity
annotation follows linguistic structure as closely as possible. The
actions take a theme, possibly followed by a relation with its own

associated entity (e.g., ACTION:pour THEME:the water RELA-
TION:into ASSOCIATED-ENTITY:the cup). We annotated the
composite actions as a separate track for ease of viewing the over-
all activity annotation.
Figure 5 shows an example of the language and activity annotation
for the action of putting the tea bag into the cup. Here the extrac-
tion (EX) tier for the language annotation is highlighted. The con-
cise activity description (PUT (:* BAG BAG) INTO CUP) repre-
sents the full extraction information, which appears the attributes
window (see also Figure 4). Kinect data on object tracking is also
shown.

Kinect, RFID and other sensors We have integrated anno-
tation tiers for information extracted from the Kinect data show-
ing agent location, objects, and objects held. The RFID sen-
sor data logs included the ID of the active tag and a timestamp
when the iBracelet sensed that tag. We also have an indication of
which of the two iBracelet devices sensed that particular tag, but
we ignored this information in our annotation. During the han-
dling of an RFID-tagged object, there would be multiple readings
of the attached tag(s); typically 3-4 sensing events per second.
We annotated intervals of use of an object, between the first and
the last continuous readings for that object; pauses of at least 1s
were considered positive evidence that the object was not longer
held/touched.
The sessions included in the corpus only included contact sen-
sor data for one kitchen cabinet (where the tea and the cups were
stored), and the refrigerator (where there was milk) For these, we
marked up the intervals of use. Contact sensor data is recorded
when an opening or closing event happens; typically such an event
will trigger the sensor a few times, depending on how fast the
opening/closing was. We took the first record of an opening ac-
tion as indicating the start of “using” the cabinet/appliance; con-
versely, the last record of a closing action was taken to indicate
the end of “using” the cabinet/appliance.
The recorded power sensor data provides wattage information, at
the rate of about 1 Hz, for the electric kettle. We did not use
the actual values of the power. Rather, we simply marked up the
intervals with positive power consumption. In our case the elec-
tric kettle was the only appliance connected to the sensor, which
makes the power-on intervals excellent indicators of when the ket-
tle was turned on and off. The time it took for the kettle to boil
varied (it depends on how much water was used) from 27s to 67s,
with an average of 46.3s.

6. Discussion and Future Work
We have described our gold-standard corpus for research on in-
tegrated learning by demonstration from natural language, activ-
ity recognition and reasoning. The ten annotated sessions of our
corpus comprise 184 transcribed utterances with logical form and



Figure 5: Language and activity annotation for Place tea bag in the cup.

extraction annotations, 345 annotated activities and 1.2GB (ap-
proximately 7200 frames) of Kinect data.
The use of RGB with depth data makes it possible to more eas-
ily segment and recognize human and object interactions. From
the dataset we extract generally useful and “meaningful” features,
such as semantic visual features, (e.g.,“left hand is directly above
cup”). Using features at this level of abstraction, we plan on exper-
imenting with more complex models of recognition and learning.
As noted above, we do not have the ground-truth data for all of the
tag-object assignments, so we use an algorithm to assign the most
probable object name for each RFID tag detected in the scene us-
ing the subject’s description of the task. To learn the name of
a given ID, we gather the nouns mentioned by the subject while
each object is being interacted with, convert the nouns to ontolog-
ical concepts using the gold-standard parse data, and determine
the concept with the highest probability of being mentioned when
that ID is detected. While we only have a small amount of data,
the labels generated by this algorithm agreed with a human anno-
tator, who used the video to determine the mappings, for six out
of the eight tags. In the future, we hope to extend this algorithm
to the Kinect data, making use of language to provide names for
detected objects without the need for hand annotation.
Other research with our corpus involves computing temporal re-
lations between the natural language descriptions and the actions
performed using Markov Logic Networks and information in the

event extractions. We are adding hand-annotated gold-standard
temporal relations for each event extraction for evaluation.
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