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Abstract

In this paper we present a mixed-initiative planning approach
to human-robot interaction in a rescue domain. We deploy a
model-based executive monitoring system to coordinate the
operator’s interventions and the concurrent activities of a res-
cue rover. We show that this approach can enhance both oper-
ator situation awareness and human-robot interaction for the
execution and control of the diverse activities needed in res-
cue missions. We have implemented this control architecture
on a robotic system (DORO) and tested it in rescue arenas
comparing its performances in different settings.

Introduction
Urban search and rescue (USAR) deals with response ca-
pabilities for facing urban emergencies, and it involves the
location and rescue of people trapped because of a struc-
tural collapse. Starting in 2000, the National Institute of
Standard Technology (NIST) together with the Japan Na-
tional Special Project for Earthquake Disaster Mitigation
in Urban Areas (Tadokoro et al. 2000; Tadokoro 2000;
Maxwell et al. 2004; Jacoff, Messina, & Evans 2001) has
initiated the USAR robot competitions. NIST, in particular,
features future standards of robotics infrastructures, pioneer-
ing robotics participation to rescue missions. RoboCup Res-
cue contests are a test-bed of the technology development
of NIST project, and are becoming a central international
event for rescue robots, and a real challenge for the robotics
community. Rescue robots uphold human operators explor-
ing dangerous and hazardous environments and searching
for survivors.

A crucial aspect of rescue environments, discussed in
(Burke et al. 2004) and (Murphy 2004) concerns the op-
erator situation awareness and human-robot interaction. In
(Murphy 2004) the difficulties in forming a mental model
of the “robot eye” are endorsed, pointing out the role of the
team. Differently from real tests, like the one in Miami (see
(Burke et al. 2004)), during rescue competitions the oper-
ator is forced to be alone while coordinating the robot ac-
tivities, since any additional team member supporting the
operator would penalize the mission. The operator can fol-
low the robot activities only through the robot perception of
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the environment, and its internal states. In this sense, the
overall control framework has to capture the operator atten-
tion towards “what is important” so as to make the correct
choices: follow a path, enter a covert way, turn around an
unvisited corner, check whether a visible victim is really
reachable, according to some specific knowledge acquired
during the exploration. In this setting, a fully manual con-
trol over a robot rescue is not effective (Bruemmer et al.
2003): the operator attention has to be focused over a wide
range of activities, losing concentration on the real rescue
mission objective, i.e. locating victims. Moreover, a sig-
nificant level of training is needed to teleoperate a rescue
rover. On the other hand, fully autonomous control systems
are not feasible in a rescue domain where too many capabil-
ities are needed. Therefore, the integration of autonomous
and teleoperated activities is a central issue in rescue scenar-
ios and has been widely investigated (Kiesler & Hinds 2004;
Yanco & Drury 2002; Drury, Scholtz, & Yanco 2003;
Michael Baker & Yanco 2004; Yanco & Drury 2002).

In this work we describe a mixed-initiative planning
approach (Ai-Chang et al. 2004; Myers et al. 2003;
Allen & Ferguson 2002; Burstein & McDermott 1996) to
Human-Robot Interaction (HRI) in a rescue domain and il-
lustrate the main functionalities of a rescue robot system1.
We deploy a model-based executive monitoring system to
interface the operators’ activities and the concurrent func-
tional processes in a rescue rover. In this setting, the user’s
and the robot’s activities are coordinated by a continuos re-
active planning process which has to (i) check the execution
status with respect to a declarative model of the system; (ii)
provide proactive activity while mediating among conflict-
ing initiatives. In particular, we show that this approach can
enhance both the operator situation awareness and human-
robot interaction for the execution and control of the diverse
activities needed during a complex mission such as the res-
cue one.

The advantage of this approach can be appreciated con-
sidering the HRI awareness discussed in (Drury, Scholtz, &
Yanco 2003):

• robot-human interaction: given a declarative model of
the robot activities, the monitoring system can be “self-
aware” about the current situation, at different levels of

1Doro is the third award winner in Lisbon contest (2004)



Figure 1: The mobile robot DORO, in a yellow arena.

abstraction; in this way, complex and not nominal inter-
actions among activities can be detected and displayed to
the operator;

• human-robot interaction: the operator can take advantage
of basic functionalities like mapping, localization, learn-
ing vantage points for good observation, victim detection,
and victim localization; these functionalities purposely
draw his attention toward the current state of exploration,
while he interacts with a mixed initiative reactive planner
(Ai-Chang et al. 2004).

Finally, the humans’ overall mission can take advantage of
the model, that keeps track of the robot/operator execution
history, goals, and subgoals. Indeed, the proposed control
system provides the operator with a better perception of the
mission status.

Rescue Scenario
NIST has developed physical test scenarios for rescue com-
petitions. There are three NIST arenas, called yellow, or-
ange, and red, of varying degrees of difficulty. A yel-
low arena represents an indoor flat environment with mi-
nor structural damage (e.g. overturned furniture), an orange
arena is multilevel and has more rubble (e.g. bricks), a red
one represents a very damaged unstructered environment:
multilevel, large holes, rubber tubing etc. The arenas are
accessible only by mobile robots controlled by one or more
operators from a separated place. The main task is to locate
as many victims as possible in the whole arena.

Urban search and rescue arena competitions are very hard
test-beds for robots and their architectures. In fact, the
operator-robot has to coordinate several activities: exploring
and mapping the environment, avoiding obstacles (bumping
is severely penalized), localizing itself, searching for vic-
tims, correctly locating them on the map, identifying them
through a numbered tag, and finally describing their own
status and conditions.

For each mission there is a time limit of 20 minutes, to
simulate the time pressure in a real rescue environment. In
this contest human-robot interaction has a direct impact on
the effectiveness of the rescue team performance.

We consider the NIST yellow arena as the test-bed for
our control architecture. It is mounted on our robotic plat-
form (DORO) whose main modules are: Map, managing
the algorithm of map construction and localization; Navi-
gation, guiding the robot through the arena with exploration
behaviour and obstacle’s avoidance procedures; Vision, used
in order to automatically locate victims around the arena.

In this context, (Murphy 2004) propose a high level se-
quence tasks cycle as a reference for the rescue system be-
haviour: Localize, Observe general surroundings, look spe-
cially for Victims, Report (LOVR). Our interpretation of the
cycle corresponds to the following tasks sequence: map con-
struction, visual observation, vision process execution and
victim’s presence report.

Human Robot Interaction and Mixed
Initiative Planning in Rescue Arenas

There have been several efforts to establish the essential
aspects of human-robot interaction, given the current find-
ings and state of the art concerning robot autonomy and
its modal-abilities towards humans and environments (see
e.g.(Dautenhahn & Werry 2000; Kiesler & Hinds 2004;
Burke et al. 2004; Sidner & Dzikovska 2002; Lang et al.
2003) and the already cited (Murphy 2004; Michael Baker &
Yanco 2004; Yanco & Drury 2002; Drury, Scholtz, & Yanco
2003), specifically related to the rescue environment. It is
therefore crucial to model the interaction in terms of a suit-
able interplay between supervised autonomy (the operator is
part of the loop, and decides navigation strategies according
to an autonomously drawn map, and autonomous localiza-
tion, where obstacle avoidance is guaranteed by the robot
sensory system) and full autonomy (e.g. visual information
is not reliable because of darkness or smoke etc., and the
operator has to lean upon the robot exploration choices).

In order to allow the tight interaction described above, we
designed a control system where the HRI is fully based on
a mixed-initiative planning activity. The planning process is
to continuously coordinate, integrate, and monitor the oper-
ator interventions and decisions with respect to the ongoing
functional activities, taking into account the overall mission
goals and constraints. More precisely, we developed an in-
teractive control system which combines the following fea-
tures:

• Model-based control. The control system is endowed
with declarative models of the controllable activities,
where causal and temporal relations are explicitly rep-
resented (Muscettola et al. 2002; Williams et al. 2003;
Muscettola et al. 1998). In this way, hard and soft con-
straints can be directly encoded and monitored. Further-
more, formal methods and reasoning engines can be de-
ployed either off-line and on-line, to check for consis-
tency, monitor the executions, perform planning or diag-
nosis. In a mixed-initiative setting the aim of a model-
based system is twofold: on the one hand the operator ac-



tivities are explicitly modeled and supervised by the con-
trol system; on the other hand, the model-based monitor-
ing activity exports a view of the system that is intuitive
and readable by humans, hence the operator can further
supervise the robot status in a suitable human robot inter-
face.

• Reactive executive monitoring. Given this model, a re-
active planning engine can monitor both the system’s low-
level status and the operator’s interventions by continu-
ously performing sense-plan-act cycles. At each cycle the
reactive planner has to: (i) monitor the consistency of the
robot and operator activities (w.r.t. the model) managing
failures; (ii) generate the robot’s activities up to a planning
horizon. The short-range planning activity can also bal-
ance reactivity and goal-oriented behaviour: short-term
goals/tasks and external/internal events can be combined
while the planner tries to solve conflicts. In this way,
the human operator can interact with the control system
through the planner in a mixed initiative manner.

• Flexible interval planning. At each execution cycle a
flexible temporal plan is generated. Given the domain
uncertainty and dynamics, time and resources cannot be
rigidly scheduled. On the contrary, it is necessary to ac-
count for flexible behaviours, allowing one to manage dy-
namic change of time and resource allocation at execution
time. For this reason the start and end time of each sched-
uled activity is not fixed, but the values span a temporal
interval.

• High-level agent programming. The high-level agent
programming paradigm allows one to integrate procedu-
ral programming and reasoning mechanisms in a uniform
way. In this approach, the domain’s first principles are
explicitly represented in a declarative relational model,
while control knowledge is encoded by abstract and par-
tial procedures. Both the system’s and the operator’s pro-
cedural operations can be expressed by high-level partial
programs which can be completed and adapted to the ex-
ecution context by a program interpreter endowed with
inference engines.

Control Architecture
In this section, we describe the control system we have de-
fined to incorporate the design principles introduced above.
Following the approach in (Muscettola et al. 2002; Williams
et al. 2003; Volpe et al. 2001; Finzi, Ingrand, & Muscet-
tola 2004) we introduce a control system where decision
processes (including declarative activities and operator’s in-
terventions) are tightly coupled with functional processes
through a model-based executive engine. Figure 2 illus-
trates the overall control architecture designed for DORO.
The physical layer devices are controlled by three functional
modules associated to the main robots activities (mapping
and localization, visual processing, and navigation). The
state manager and task dispatcher in the figure are designed
to manage communication between the executive and func-
tional layers.
The state manager gets from each single module its current
status so that any module can query the state manager about
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Figure 2: Control architecture

the status of any another module. The state manager updates
its information every 200 msec., the task dispatcher sends
tasks activation signals to the modules (e.g. map start)
upon receiving requests from the planner or the human op-
erator. The overall computational cycle works as follows:
the planner gets the modules status querying the state man-
ager. Once the state manager provides the execution context,
the planner produces a plan of actions (planning phase about
0.5 sec.) and yields the first set of commands to the task dis-
patcher. In the execution phase (about 0.5 sec.), each module
reads the signals and starts its task modifying its state. At the
next cycle start, the planner reads the updated status through
the state manager and can check whether the tasks were cor-
rectly delivered. If the status is not updated as expected, a
failure is detected, the current plan is aborted and a suitable
recovery procedure is called.

Functional Modules. As mentioned above, the functional
layer is endowed with three main modules: Mapping and
Localization, Navigation, and Vision. These modules pro-
vide different tasks that can be activated or stopped accord-
ing to the start or end actions communicated by the task
dispatcher.

A functional module is a reactive component that changes
its internal status with respect to the action received from
the task dispatcher. Nevertheless, it can also provide some
proactiveness, by suggesting the planner/operator an action
to be executed. For instance, the Slam module assumes a
particular mode in order to communicate to the system that
a map’s construction cycle is ended, and then the control
system can decide an action to stop the mapping phase. Mo-
rover, some modules can directly interact among them by
communicating some low-level information bypassing the



state manager (and the executive layer), e.g. Slam devises to
Navigation the coordinates of the nearest unexplored point
during the exploration phases.

User interaction. The human operator can interact with
the control loop both during the plan and the act phase. In
the planning phase, the operator can interact with the control
system by: (i) posting some goals which are to be integrated
in the partial plan already generated; (ii) modifying the gen-
erated plan through the user interface; (iii) on-line changing
some planning parameters, like the planning horizon, the
lenght of the planning cycle, etc.. In the executive phase,
the user can directly control some functional modules (e.g.,
deciding where the rover is to go, or when some activities
are to stop). In this case, the human actions are assimilated
to exogenous events the monitoring system is to manage and
check. Finally, the operator’s actions can be accessed by the
state manager, and, analogously to the functional modules,
can be monitored by the model-based control system.

Model-Based Monitoring
The role of a model-based monitoring system is to enhance
both the system safeness and the operator situation aware-
ness. Given a declarative representation of the system causal
and temporal properties, the flexible executive control is
provided by a reactive planning engine which harmonizes
the operator activity (commands, tasks, etc.) with the mis-
sion goals and the reactive activity of the functional mod-
ules. Since the execution state of the robot is continuously
compared with a declarative model of the system, all the
main parallel activities are integrated into a global view and
subtle resources and time constraints violations can be de-
tected. In this case the planner can also start or suggest re-
covery procedures the operator can modify, neglect, or re-
spect. Such features are implemented by deploying high-
level agent programming in Temporal Concurrent Golog
(Reiter 2001; Pirri & Reiter 2000; Finzi & Pirri 2004) which
provides both a declarative language (i.e. Temporal Concur-
rent Situation Calculus (Pinto & Reiter 1995; Reiter 1996;
Pirri & Reiter 2000)) to represent the system properties and
the planning engine to generate control sequences.

Temporal Concurrent Situation Calculus. The Situation
Calculus (SC) (McCarthy 1963) is a sorted first-order lan-
guage representing dynamic domains by means of actions,
situations, i.e. sequences of actions, and fluents, i.e. situ-
ation dependent properties. Temporal Concurrent Situation
Calculus (TCSC) extends the SC with time and concurrent
actions. In this framework, concurrent durative processes
(Pinto & Reiter 1995; Reiter 1996; Pirri & Reiter 2000) can
be represented by fluent properties started and ended by du-
rationless actions. For example, the process going(p1, p2)
is started by the action startGo(p1, t) and it is ended by
endGo(p2, t

′).

Declarative Model in TCSC. The main processes and
states of DORO are explicitly represented by a declarative

dynamic-temporal model specified in the Temporal Con-
current Situation Calculus (TCSC) . This model represents
cause-effect relationships and temporal constraints among
the activities: the system is modeled as a set of components
whose state changes over time. Each component (including
the operator’s operations) is a concurrent thread, describing
its history over time as a sequence of states and activities.
For example, in the rescue domain some components are:
pant-tilt, slam, navigation, visualPerception, etc.

Each of these is associated with a set of processes, for in-
stance some of those are the following: SLAM can perform
slmMap to map the environment and slmScan to acquire
laser measures; visualPerception can use visProcess(x) to
process an image x. navigation can explore a new area
(nvWand) or reach a target point x (nvGoTo); pan-tilt
can deploy ptPoint(x) (moving toward x ) and ptScan(x)
(scanning x). The history of states for a component over a
period of time is a timeline. Figure 3 illustrates a possible
evolution of navigation, slam, and pan-tilt up to a plan-
ning horizon.
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MAPIDLEMAP
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Figure 3: Timelines evolution

Hard time constraints among activities can be defined
by a temporal model using Allen-like temporal relations,
e.g.: ptPoint(x) precedes ptScan(x), ptScan(x) during
nvStop, etc..

Temporal Concurrent Golog. Golog is a situation
calculus-based programming language which allows one to
define procedural scripts composed of primitive actions ex-
plicitly represented in a SC action theory. This hybrid
framework integrates procedural programming and reason-
ing about the domain properties. Golog programs are de-
fined by means of standard (and not so-standard) Algol-like
control constructs: (i) action sequence: p1; p2, (ii) test: φ?,
(iii) nondeterministic action choice p1|p2, (iv) condition-
als, while loops, and procedure calls. Temporal Concurrent
Golog (TCGolog) is the Golog version suitable for durative
and parallel actions, it is based on TCSC and allows parallel



action execution: a‖b. An example of a TCGolog procedure
is:

proc(observe(x),
while (nvStop ∧ ¬obs(x)) do π(t1, start(t1)? :
[if (ptIdle(0)) do π(t2, startPoint(x, t1) : (t2 − t1<3)?)|
if (ptIdle(x)) do π(t3, startScan(x, t3) : (t3 − t1<5)?))).

Here the nondeterministic choice between startPoint and
startScan is left to the Golog interpreter which has to de-
cide depending on the execution context. Note that, time
constraints can be encoded within the procedure itself. In
this case the procedure definition leaves few nondetermistic
choices to the interpreter. More generally, a Golog script can
range from a completely defined procedural program to an
abstract general purpose planning algorithm like the follow-
ing:

proc(plan(n),
true? | π(a, (primitive action(a))? : a) : plan(n− 1))

The semantics of a Golog program δ is a situation calculus
formula Do(δ, s, s′) meaning that s′ is a possible situation
reached by δ once executed from the situation s. For exam-
ple, the meaning of the a|b execution is captured by the log-
ical definition Do(a|b, s, s′) .= Do(a, s, s′) ∨ Do(a, s, s′).

Flexible behaviours. Our monitoring system is based on a
library of Temporal Concurrent Golog scripts representing a
set of flexible behaviour fragments. Each of them is associ-
ated to a task and can be selected if it is compatible with the
execution context. For example a possible behaviour frag-
ment can be written as follows:

proc(explore(d),
[π(t1, startMap(t1))‖π(t2, startWand(t2) :
π(t3, endWand(t3) : π(x, startGoto(x, t3)) : (t3 − t2<d)?))].

This Golog script is associated with the exploration task, it
starts both mapping and wandering activities; the wandering
phase has a timeout d, after this the rover has to go some-
where. The timeout d will be provided by the calling process
that can be either another Golog procedure or a decision of
the operator.

Reactive Planner/Interpreter As illustrated before, for
each execution cycle, once the status is updated (sensing
phase), the Golog interpreter (planning phase) is called to
extend the current control sequence up to the planning hori-
zon. When some task ends or fails, new tasks are selected
from the task library and compiled into flexible temporal
plans filling the timelines.

Under nominal control, the robot’s activities are sched-
uled according to a closed-loop similar to the LOVR (Local-
ize, Observe general surroundings, look specially for Vic-
tims, Report) sequence in (Murphy 2004). Some of these
activities can require the operator initiative that is always al-
lowed.

Failure detection and management Any system mal-
functioning or bad behaviour can be detected by the reactive
planner (i.e. the Golog interpreter) when world inconsisten-
cies have to be handled. In this case, after an idle cycle a
recovery task has to be selected and compiled w.r.t the new
execution status. For each component we have classified a
set of relevant failures and appropriate flexible (high-level)
recovery behaviours. For example, in the visual model, if the
scanning processes fails because of a timeout, in the recov-
ery task the pan-tilt unit must be reset taking into account
the constraints imposed by the current system status. This
can be defined by a very abstract Golog procedure, e.g.

proc(planToPtuInit,
π(t, time(t)? : plan(2) : π(t1, P tIdle(0) :

time(t1)? : (t1 − t < 3)?))).

In this case, the Golog interpreter is to find a way to compile
this procedure getting the pan-tilt idle in less than two steps
and three seconds. The planner/Golog interpreter can fail
in its plan generation task raising a planner timeout. Since
the reactive planner is the engine of our control architecture,
this failure is critical. We identified three classes of recov-
eries depending on the priority level of the execution. If the
priority is high, a safe mode has to be immediately reached
by means of fast reactive procedures (e.g. goToStandBy).
In medium priority, some extra time for planning can be ob-
tained by interleaving planning and execution: a greedy ac-
tion is executed so that the interpreter can use the next time-
slot to end its work. In the case of low priority, the failure
is handled by replanning: a new task is selected and com-
piled. In medium and low level priority the operator can be
explicitly involved in the decision process in a synchronous
way. During a high-priority recovery (i.e. goToStandBy)
the autonomous control is to manage the emergency, unless
the operator wants to take care of it disabling the monitoring
system.

Mixed-Initiative Planning
The control architecture introduced before allows us to de-
fine some hybrid operative modalities lying between au-
tonomous and teleoperated modes and presenting some ca-
pabilities that are crucial in a collaborative planning setting.
In particular, following (Allen & Ferguson 2002), our sys-
tem permits incremental planning, plan stability, and it is
also open to innovation.

The high-level agent programming paradigm, associated
with the short-range planning/interpretation activity, permits
an incremental generation of plans. In this way, the user at-
tention can be focused on small parts of the problem and the
operator can assess local possible decisions, without losing
the overall problem constraints.

Plan stability is guaranteed by flexible behaviours and
plan recovery procedures, which can harmonize the modi-
fication of plans, due to the operator’s interventions or ex-
ogenous events. Minimal changes to plans lead to short re-
planning phases minimizing misalignments.

Concerning the open to innovation issue, the model-based
monitoring activity allows one to build novel plans, under
human direction, and to validate and reason about them.



Depending on the operator-system interaction these fea-
tures are emphasized or obscured. We distinguish among
three different mixed-initiative operational modalities.
• Planning-based interaction. In this setting, the planning

system generates cyclic LOVR sequences and the oper-
ator follows this sequence with few modifications, e.g.
extending or reducing process durations. Here task dis-
patching is handled in an automated way and the oper-
ator can supervise the decisions consistency minimizing
the interventions. The human-operator can also act as an
executor and manually control some functional activities
scheduled by the planner. For example, he can decide to
suspend automated navigations tools and take the control
of mobile activities, in this way he can decide to explore
an interesting location or escape from difficult environ-
ments. In this kind of interaction the operator initiative
minimally interferes with the planning activity and plan
stability is emphasized.

• Cooperation-based interaction. In this modality, the
operator modifies the control sequence produced by the
planner by skipping some tasks or inserting new actions.
The operator’s interventions can determine a misalign-
ment between the monitoring system expectations (i.e.
the control plan) and the state of the system; this is cap-
tured at beginning of the next execution cycle when the
state monitor provides the current state of the modules. In
order to recover the monitor-system adherence, the plan-
ner has to start some recovery operations which are pre-
sented to the operator. Obviously, these activities are to
be executed in real-time by verifying the satisfiability of
the underlaying temporal and causal constraints.
This modality enables maximal flexibility for the plan-
ner’s and operator’s initiatives. Indeed, they can dialogue
and work in a concurrent way contributing to the mis-
sion completion (incremental planning): while the opera-
tor tries to modify the plan in order to make it more effec-
tive (i.e. the system is open to innovation), the monitoring
system can validate the operator’s choices. Moreover, in
the case of safety constraints violations, it warns the user
and/or suggests suitable corrections.

• Operator-based interaction. This modality is similar
to teleoperation, the system activities are directly man-
aged by the operator (some minor autonomy can always
be deployed when the operator attention is to be focused
on some particular task, e.g. looking for victims). The
operator-based interaction is reached when the operators’
interventions are very frequent, hence the planner keeps
replanning and cannot support the user with a meaningful
proactive activity. In this operative scenario, the planner
just follows the operators’ choices playing in the role of
a consistency checker. The monitoring system can no-
tify the user only about safety problems and, in this case,
recovery procedures can be suggested (incremental plan-
ning can be used only to generate non-critical planning
procedures).

Each of these modalities is implicitly determined by the way
the operator interacts with the system. Indeed, in a mixed-
initiative setting, if the operator is idle, the monitor works

Figure 4: DORO graphical interface showing the current
global map, the victims detected and localized, the path-
history: in blue the whole history, and in yellow the most
recent one.

in the planner-based mode. Instead, the operator’s interven-
tions can disturb such a status bringing the system toward
the operator-based interaction. However, the operator can
always directly set the latter interaction mode by setting to
zero the planning horizon and disabling the planner proac-
tive activity. Note that for each mixed-initiative mode, the
monitoring system continuously checks the activities per-
formed, including human-operator actions, and when nec-
essary it replans or provides suggestions to the operator.

Mixed-initiative approach at work
The architecture discussed in this article is implemented on
our robotic platform (DORO) and here we present some tests
performed in a yellow rescue arenas.

Robotic Platfrom. The hardware platform for DORO is
a two wheeled differential drive Pioneer from ActivMedia
with an on-board laptop hosts navigation, map building, re-
active planning routines and the on-board sensors control
processing. An additional PC, for remote control, is also
used for image processing. The two PCs running Windows
XP are linked with an Ethernet wireless LAN (802.11a) to
enable remote control and monitoring of the mobile robot.
Two color cameras are mounted on top of the robot on a
pant-tilt head. A laser range finder DISTO pro is mounted
on the pan-tilt between the two cameras.

Robot Software. The robot motion control (speed and
heading) and sonar readings are provided by a serial connec-
tion to the Pioneer controller using the Aria API facilities.
Video streaming and single frames are acquired through the
Image Acquisition Toolbox from Matlab (TM). Inertial data
and laser measurements are acquired through dedicated C++
modules that manage the low level serial connections.

Experiences in our domestic arenas. We tested the con-
trol architecture and the effectiveness of the mixed-initiative
approach in our domestic arenas comparing three possible
settings: (i) fully teleoperated: navigation, slam, and vision



disabled; (ii) mixed-initiative control: the monitoring sys-
tem was enabled and the operator could supervise the rover
status and take the control whenever this was needed; (iii)
autonomous control.

During mixed-initiative control tests, we considered also
the percentage of time spent by the operator in operator-
based mode (see operator in the table below). We deployed
these three settings on yellow arenas considering increasing
surface areas, namely, 20 m2, 30 m2, 40 m2 (see surface
in the table below), associated with increasingly complex
topologies. For each test, there were 4 victims to be discov-
ered. We limited the exploration time to 10 minutes. We
performed 10 tests for each modality. Different operators
were involved in the experiments in order to avoid an opera-
tor visiting the same arena configuration twice.

For each test class we considered: (i) the percentage of
the exlored arena surface; (ii) the number of visited and
inspected topological environments (rooms, corridors, etc.)
w.r.t. the total number; (iii) the overall number of encoun-
tered obstacles (i.e. arena bumps); (iv) the number of de-
tected victims; (v) the operator activity (percentage w.r.t. the
mission duration). The results are summarized in the Table
1 reporting the average values of each field.

Fully Teleop Supervised Autonomous
Surface (m2) 20 30 40 20 30 40 20 30 40

Explored (%) 85 78 82 85 82 79 49 80 75
Visited env. 5/6 7/9 7/9 6/6 8/9 7/9 3/6 7/9 6/9
Bumps (tot.) 11 7 9 3 2 2 2 1 2
Victims (x/4) 3.0 2.1 2.2 2.5 2.6 2.1 1.3 1.4 1.2
Operator (%) 100 100 100 10 15 15 0 0 0

Table 1: Experimental results for the three operational
modalities.

Following the analysis schema in (Scholtz et al. 2004) here
we discuss the following points: global navigation, local
navigation and obstacle encountered, vehicle state, victim
identification.

Concerning global navigation, the performance of the
mixed-initiative setting are quite stable while the au-
tonomous system performs poorly in small arenas because
narrow environments challenge the navigation system which
is to find how to escape from them. In greater and more
complex arenas the functional navigation processes (path
planner, nearest unexplored point system, etc.) start to be
effective while the fully teleoperated behaviour degrades:
the operator gets disoriented and often happens that already
visited locations and victims are considered as new ones,
while we never experienced this in the mixed-initiative and
autonomous modes. The effectiveness of the control sys-
tem for local navigation and vehicle state awareness can be
read on the bumps row; indeed the bumps are significantly
reduced enabling the monitoring system. In particular, we
experienced the recovery procedures effectiveness in warn-
ing the operator about the vehicle attitude. E.g. a typical
source of bumping in teleoperation is the following: the vi-
sual scanning process is interrupted (timeout) and the op-
erator decides to go on in one direction forgetting the pan-

tilt in a non-idle position. Enabling the monitor, a recov-
ery procedure interacts with the operator suggesting to re-
set the pan-tilt position. The victim identification effective-
ness can be assessed considering the founded victims in the
autonomous mode; considering that visual processing was
deployed without any supervision, these results seem quite
good (we experienced some rare false-positive).

Our experimental results show that the system perfor-
mances are enhanced with the presence of an operator super-
vising the mission. It seems that the autonomous activities
are safely performed, but the operator can choose more ef-
fective solutions in critical situations. For instance, the num-
ber of visited environments in supervised mode (see Table 1)
is greater than that one in the autonomous mode, while the
victims detected are approximately the same. Furthermore,
the number of bumps in teleoperated mode is greater than
in both supervised and autonomous settings, and this can be
explained by the cognitive workload on the operator during
the teleoperation. Thus, we can trade off high performances
and low risks by exploiting both human supervision and ma-
chine control .

Conclusion
Human-robot interaction and situation awareness are crucial
issues in a rescue environment. In this context a suitable
interplay between supervised autonomy and full autonomy
is needed. For this purpose, we designed a control system
where the HRI is fully based on a mixed-initiative planning
activity which is to continuously coordinate, integrate, and
monitor the operator interventions and decisions with re-
spect to the concurrent functional activities. Our approach
integrates model-based executive control, flexible interval
planning and high level agent programming.

This control architecture allows us to define some hybrid
operative modalities lying between teleoperated mode and
autonomous mode and presenting some capabilities that are
crucial in a collaborative planning setting.

We implemented our architecture on our robotic platform
(DORO) and tested it in a NIST yellow arena. The com-
parison between three possible settings (fully teleoperated,
mixed-initiative control, autonomous control) produce en-
couranging results.
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