
EFFICIENT SELECTIVE MULTI-CHANNEL MEMORY PROTECTION  
 

Renzo Bustamante, Rouhuang Zheng, Michael C. Huang  
{rbustama,rzheng3}@ur.rochester.edu and mihuang@ece.rochester.edu 

University of Rochester 
 
 

Abstract—Dynamic Random Access Memory (DRAM) is 
used as the main form of storage in main memory. DRAM is 
susceptible to cosmic radiation, alpha particles, voltage 
variations and aging. All of these factors might cause bit 
faults, word faults, and even entire chip faults. As more main 
memory is needed on desktops, servers and supercomputers, 
the chances of finding faults on DRAM will also increase. 

Redundant Array of Independent Memories (RAIM) is an 
approach to protect DRAM. By adding additional parity 
channels to the main memory, RAIM is able to protect main 
memory against the failure of an entire channel, which makes 
the main memory a lot more robust compared to memory 
systems with only Error-Correcting Code (ECC) protection.  

In this paper, we examine the impact on performance and 
energy that RAIM schemes have on a system, while also 
proposing a new type of RAIM implementation that reduces 
on- and off-chip traffic and energy consumption. Compared to 
contemporary RAIM implementations, our proposed scheme 
can reduce traffic and energy consumption by more than 2x. 

1. Introduction  
Computer System’s main memory is made up in its majority 
by DRAM. DRAM’s basic cell, as shown in Figure 1, contains 
a transistor and a capacitor; the transistor is used as a switch to 
access the capacitor that stores binary information in the form 
of an electric charge. Figure 2 shows transistor cells connected 
in the form of an array. This two dimensional array of several 
rows and columns creates a bank, several banks create DRAM 
Chips, and finally DRAM Chips are ganged up together to 
create a Dual In line Memory Modules (DIMM), which are 
used in computers, servers, smartphones and supercomputers. 
 
 

 
Figure 1. Basic 1T DRAM cell 

 
Figure 2. DRAM Chip Bank 

 
Alpha particles, cosmic radiation, voltage variations, 

process variations and aging have been identified as causes for 
malfunction of the DRAM chip [1]-[4]. At the same time, 
studies have shown several other types of faults that can occur 
within DRAM chips [5][6]. Xin et al. [5] show the types of 
faults that were found during an evaluation of memory 
hardware errors of an Internet server farm. The study showed 
that the type of faults that might occur range from single bit 
errors in a dram chip to total dram chip failure.  Figure 3 
shows the findings of that study on DRAM chips; Machine 7 
reported column failures, Machine 8 reported whole chip 
failure, Machine 10 reported one single bit error, and Machine 
12 reported a word error.  

Vilas et al. [7] performed a study on a supercomputer and 
presented Failure Rate for the types of error they found.  
To protect systems against these types of faults found in 
DRAM chips, protection schemes that allow error detection 
and error protection have devised; such as SEC-DED [8] and 
Chipkill [9]. 
 



 
Figure 3. Types of Error found on DRAM Chips. Each cross 
represents an erroneous cell at its row/column addresses [5]. 

 

2. Higher Level Protection Schemes 
On top of ECC, higher protection schemes have been devised 
in order to supply more reliability and availability to computer 
systems such as memory scrubbing, DIMM sparing and 
memory mirroring. Figure 4 shows different higher-level 
protection schemes. Figure 4A shows a regular memory system 
with four channels, with no data protection where different data 
blocks A, B, C & D reside in different channels. Figure 4B 
shows memory mirroring; all the information that is located in 
channels 0 &1 is duplicated in channels 2& 3. Should one 
channel fail, data can be recovered from the mirrored channel. 
 

 
Figure 4. Four types of implementations for higher level 

protection schemes. 

Figure 4C shows how a data block is stripped among channels 
0-3 and channel 4 is used to store the parity data obtained from 

the partitioned data block. Should one channel fail, it can 
recover by reading the other 3 data channels and the parity 
channel. Figure 4D shows how data from different data blocks 
are used to create the parity block, which is not fixed to an 
specific channel, but changes in order to provide better 
bandwidth. Should one channel fail it would need to read the 
data from the other three channels and the parity channel in 
order to recover. 

3. Proposed Implementations 
Our implementation has three variants and is based on a RAID 
5 like scheme where we have five independent memory 
channels as show in figure 4D. 
The basic idea is that on every memory write request, we also 
need to issue a write request to the parity channel. To calculate 
the parity, we have three approaches:  

The first one approach, which we will call raim5a, is to 
first check if the data in the parity group are in cache, this is a 
small optimization since the data in the same parity group is 
likely to be residing in cache. If a member of the parity group 
is in cache and is clean we use the data in cache to calculate 
parity, however if one or more lines in the parity group are not 
in cache, we fetch the data from memory. This 
implementation requires up to three read and two write 
operations if none of the parity group members are in cache, 
and only two write operations if all the parity group members 
are present in cache.  

The second approach, which we will call raim5b, will fetch 
the data with the address that is going to be written. This data 
is referred as “old data”, and the data that is going to overwrite 
the data are referred as “new data”. We also fetch the parity 
data corresponding to the parity group from the parity 
channel; this data is referred as “old parity”. Then we XOR 
the new data with the old data fetched from memory to yield a 
Delta. This Delta is later XOR-ed to the data read from the 
parity channel, and written back. The whole write operation 
always requires 2 reads and 2 writes. 

The final third approach is a combination of raim5a and 
raim5b and it is called raim5c. Whenever we have two or 
more of the cache lines from the data parity group we 
execution raim5a, if we only have one cache line from the data 
parity group in cache we execute raim5b. This approach 
utilizes the best case of raim5a and raim5b. This approach 
always guarantees the minimum number of extra memory 
accesses 
 

4. Experimental Setup  
We used GEM5 [10], a cycle accurate system simulator 
coupled with the ruby memory model and DRAMSim2 [11]. 
We evaluated the PARSEC benchmarks suite [13] using full 
system simulation. Our simulated machine has 16 cores with 
2D mesh interconnect and MESI coherence protocol. The last 
level cache is 16 banked distributed shared. The size of each 
bank is 256KB and therefore the whole L2 size is 4MB. We 
ran 2 billion instructions (excluding kernel instructions) for 
each scheme.  



Table 1. Experimental Setup Parameters 

Cores 
OoO, 2GHz, 16-core, 2D-mesh interconnect, 

MESI  

Width 8-wide issue and commit 

Issue Queue 64-entry unified 

LSQ 32-entry load queue and 32-entry store queue 

ROB 192-entry 

Physical Reg. 128-int, 128-fp 

L1 ICache Private, 32-KB, 4-way, 2-cycle latency 

L1 Dcache Private, 32-KB, 4-way, 2-cycle latency 

L2 Cache 
Distributed shared, 4-MB, 16-way, 20-cycle 

latency 

Main Memory 5 channels (4-data + 1-parity), 1-GB per channel 

DRAM Chip DDR3-1600 
Branch 

Predictor Tournament, 2K-entry local, 8K-entry global,  
 

5. Results 
 

Our baseline is a four-channel memory system with no 
protection scheme whatsoever, raim5_none is a five-channel 
memory system with no protection scheme either, raim3 is an 
industry implementation of raim scheme, similar to the one on 
Figure 4C. 
 
5.1 Performance Impact 
Figure 5 shows the impact on IPC for our implementations. On 
average, none of the implementations have a significant impact 
on IPC.  
 

 
Figure 5. Useful IPC normalized to baseline. 

 
5.2 Traffic impact 
Figure 6 shows the impact for on-chip traffic for our 
implementations. We see that raim5a has a 16% increase in on-
chip traffic; this is due to the fact that it is getting data from 
cache instead of going all the way down to memory for the 
data parity group. Raim5b shows no increase in on-chip traffic 
because it goes to memory to obtain the parity group, while 
raim5c shows a 1% increase in traffic, striking a balance 

between going all they way to memory and fetching parity data 
group from cache.  

 
Figure 6. On-chip traffic normalized to baseline. We count the 

total number of flits 

 
Figure 7 shows the impact of our implementation in off-chip 
traffic. Raim5a has average increase in traffic of 2.1x, this is 
due to the fact that whenever a write operation is issued it will 
perform three reads and one write operation. Raim5b shows an 
average increase in traffic of 1.6x while Raim5c shows an 
average increase in traffic of 1.55x. Raim5c doesn’t have to go 
to memory all the time to obtain its data parity group, thus 
generates less traffic than raim5a. 
 

 
Figure 7. Off-chip traffic normalized to baseline. We count the 

total amount of data transferred between main memory and 
cores 

 
5.3 Energy Impact 
Figure 8 shows the impact of our implementations on energy 
consumption on the Memory System. Raim3 consumes an 
average of 2.8x baseline, this is due to the fact that on a read 
request 4 channels are activated and on a write request 5 
channels are activated. Raim5a shows an increase of 1.7 
baseline while our optimized scheme raim5c shows 1.4x 
increase in energy consumption. Raim5c shows an energy 
improvement of 2x over raim3. Raim5c also consumes 40% 
less energy than raim5a.  
 



 
Figure 8. Total memory energy consumption normalized to 

baseline. 

 
6. Conclusions 

 
• Our optimized raim5c scheme reduced the overhead 

produced by off-chip traffic in comparison to raim5a.  
• Energy reductions of raim5c are significant when 

compared to industry implementations and also to 
scheme raim5a.  

• The impact in performance of all our schemes is 
negligible, this is due to the ratio of reads/writes and 
also that writes are not on the critical path. 

• We the implementation of raim5c we can map data 
that needs the most protection to address ranges that 
raim5c is implemented on, giving us selective 
protective memory.  
 

References 
[1] J.F Ziegler. Terrestrial cosmic rays. IBM Journal of 

Research and Development, 40(1):19-39 
[2] J.F Ziegler et al. Accelerated testing for cosmic soft-

error rate. IBM Journal of Research and Development, 40(1): 
51-72, 1996.  

[3] J.F Ziegler and W.A. Lanford, “The Effect of Sea Level 
Cosmic Rays on Electronic Devices”, in IEEE International 
Solid.  

[4] T.C May and M.H Woods. Alpha-particle-induced soft 
errors in dynamic memories. IEEE Trans on Electron Devices, 
26(1): 2-9, 1979 

[5] X.Lin et at. “A Realistic Evaluation of Memory 
Hardware Errors and Software Susceptibility” in USENIX, 
Boston, MA, 2010. 

[6] V. Sridharan and D. Liberty “A Study of DRAM 
Failures in the Field” in High Performance Computing, 
Networking, Storage and Analysis (SC) 2012 International 
Conference for, pp. 1-11, 2012. 

[7] V. Sridharan et al. “Feng shui of supercomputer 
memory: Positional effects in dram and sram faults”, in 
Porceedings of SC13: International Conference for High 
Performance Computing, Networking, Storage and Analysis, 
SC ’13, pp. 22:1-22:11,2013. 

[8] R.W Hamming. “Error detecting and error correcting 
codes” BELL SYSTEMS TECHNICAL  JOURNAL, vol 29, 
no. 2, pp. 147-160, 1950. 

[9] T.J Dell “A white paper on the benefits of chipkill-
correct ecc for pc server main memory” Tech . Rep. 11/19/97, 
IBM, 1997. 

[10] N. Binkert et at. “The gem5 simulator,” SIGARCH 
Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011. 

[11] P. Rosenfeld et al. “DRAMSim2: A Cycle accurate 
Memory Simulator” Computer Architecture Letters, 
PP(99):1,2011. 

[12] C. Bienia et al. “The PARSEC Benchmark Suite: 
Characterization and Architectural Implications. In PACT, 
2008.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


