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Abstract

Parallel programs frequently use barriers to synchronize suc-
cessive steps in an algorithm. In the presence of multipro-
gramming the choice of spinning versus blocking barriers
can have a significant impact on performance. We demon-
strate how competitive spinning techniques previously de-
signed for locks can be extended to barriers, and we evalu-
ate their performance. We design an additional competitive
spinning technique that adapts more quickly in a dynamic
environment. We then propose and evaluate a new method
that obtains better performance than previous techniques by
using scheduler information to decide between spinning and
blocking. The scheduler information technique makes op-
timal choices incurring little overhead.

1 Introduction

Although the decision between spinning and blocking at syn-
chronization events is straightforward on a dedicated multi-
processor, multiprogramming introduces significant difficul-
ties in many cases. Past work [3, 11, 14] has shown that
on a multiprogrammed multiprocessor the best scheduling
method is dynamic hardware partitioning. In such an envi-
ronment it is not possible to determine a priori the number
of processors on which an application will run. In fact, this
number may vary over the execution of the program.

There are several techniques for barrier synchronization
ranging from always spin to always block. In a dynamic
environment the best techniques lie somewhere between the
extremes. A competitive algorithm is an online algorithm
whose worst-case performance is within a constant factor of
the best offline algorithm. Competitive spinning for barriers
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tries to approximate the best offline algorithm by heuristi-
cally determining the overall distribution of spinning times.
Competitive spinning uses this information to choose the ap-
propriate policy and to minimize the expected cost over all
executions of a barrier. Keeping track of this information
is costly so there are several approximation algorithms that
attempt to determine this distribution based on recent execu-
tions of the barrier.

The main difficulty in chosing an appropriate strategy in a
hardware partitioned environment is that the number of pro-
cessors devoted to a particular application varies with time.
However, if the program could be made aware of how many
processors it was allotted when it reached a particular barrier,
a better performing choice could be made between blocking
and spinning. We propose a method whereby the scheduler
provides this information to the application. When the ap-
plication is attempting to cross a barrier it will know how
many processors are currently in its partition. A particular
thread will block when it reaches a barrier if the number of
threads not yet at the barrier is greater than the number of
processors in its partition, else it will spin. A technique that
decides either to block all threads or to have all threads spin,
even if it does so very well, will not perform as well as possi-
ble. To perform well in a hardware partitioned environment,
a method must allow some processes at a barrier to spin, and
others to block. The scheduler information technique is
optimal, meaning that, in addition to allowing the maximum
possible number of processes to spin, it always chooses the
correct action between blocking or spinning incurring only
the small overhead needed to check the number of remaining
threads against the number of processors in the partition.

The rest of this paper is organized as follows. Section 2
discusses related work and distinguishes our approach from
previous ones. Section 3 presents the programming model
used for the experiments, describes the competitive spin-
ning techniques, and explains how scheduler information is
used to perform barrier synchronization. Section 4 presents
results comparing the scheduler information technique to
other techniques. Finally, Section 5 summarizes our work,
and suggests directions for future research.



2 Related Work

Previous work on synchronization under multiprogramming
has considered the performance effects of: multiprogram-
ming on synchronization events, alternative implementations
of synchronization data structures, and alternative schedul-
ing strategies on synchronization events.

Early work by Tucker and Gupta [11] has shown that the
main reason for performance degradation on a time-shared,
multiprogrammed multiprocessor is the existence of more
processes than physical processors. They have proposed a
scheme of hardware partitioning that prevents the number
of processes systemwide from exceeding the number of pro-
cessors. However, this scheme requires applications to ad-
just the number of processes they use. For many programs it
would be difficult to dynamically adjust the number of pro-
cesses used, especially for the class of programs with coarse
grained threads and barrier synchronization.

Using simulation, modeling, and experimentation, Crov-
ella et al [3], Leutenegger and Vernon [7], and Zahorjan and
McCann [14] have shown that dynamic hardware partitions
are preferable to timesharing, co-scheduling, and static hard-
ware partitions. Other work by Gupta et al [5] has studied the
behavior of a multiprogrammed multiprocessor environment
by simulating the concurrent execution of four applications.
Their results indicate that hardware partitioning outperforms
other policies most of the time.

Zahorjan, Lazowska, and Eager [12, 13] have determined
the worst case performance degradation due to spinning in
parallel systems when the number of processors available
to the application varies with time. They have shown that
although for locks, spinning introduces only moderate over-
head, in the case of barriers spinning can degrade perfor-
mance severely. They propose that processor allocation and
individual thread scheduling be handled cooperatively by the
system and the application.

Other work suggesting cooperation between the operat-
ing system scheduler and the runtime environment or the
application includes the work of Black [2], Edler et al [4],
Marsh et al [9], and Anderson et al [1]. Black has suggested
that the application provide hints to the scheduler indicat-
ing which application thread to schedule next. Edler et al
have suggested temporarily preventing a thread from being
preempted while it is in a critical section. Marsh et al and
Anderson et al have suggested that preemption information
be communicated from the kernel to user space.

Markatos et al [8] have analyzed the suitability of alterna-
tive barrier data structures in a multiprogramming environ-
ment. They conclude that combination barriers, using block-
ing synchronization within a node and spinning across nodes,
perform the best.

Karlin et al [6] have developed and tested a set of different
competitive spinning techniques for a multiprocessor envi-
ronment. Competitive spinning assumes that the behavior of
a lock does not change rapidly with time, and that past be-
havior is an appropriate indicator of future behavior. While

their techniques were developed for spinlocks, they can eas-
ily be extended to barriers. These techniques are most useful
in a hardware partitioned environment where scheduling de-
cisions are infrequent and many barriers are reached between
scheduling decisions.

Our work extends previous work in several ways. Based
on work by Karlin et al, we build and test several competi-
tive spinning algorithms for barriers and conclude they have
a significant performance benefit over always spinning or
always blocking. Further, we propose that with only a little
information (i.e. the size of the partition) from the kernel
scheduler, it is possible to implement an efficient policy for
barriers that performs better than all other policies. We verify
this hypothesis on an Iris 4D/480 eight node multiprocessor
using two real applications and a synthetic program.

3 Algorithms

As discussed in the previous sections, this work focuses on
building barriers for a multiprogrammed environment. Since
most researchers agree that the best way to multiprogram a
multiprocessor is dynamic hardware partitions, this will be
the environment assumed for the rest of the paper. It is unre-
alistic to assume that all programs can be written to dynami-
cally adjust the number of processes they use to the number
of processors provided. It is therefore not possible to ob-
tain good barrier performance in these programs by always
blocking or always spinning. Well performing barrier meth-
ods in a hardware partitioned environment must use a com-
bination of spinning and blocking. The difficulty is dynam-
ically determining the appropriate method for a particular
thread in a particular instance of a barrier.

Patterned after the competitive spinning techniques used
by Karlin et al [6] for locks, we built a set a competitive
spinning techniques for barriers. These techniques decide
whether to spin or block based on information from the last
several barriers. The success of this technique stems from
the fact that the hardware partition of an application will
change considerably less frequently than the rate barriers are
encountered. Pseudocode for the different competitive spin-
ning algorithms is presented in the Appendix. These algo-
rithms heuristically decide whether to block or spin based
on their view of the hardware partition. Our final technique
uses scheduler information. Instead of requiring the appli-
cation to guess the partition configuration, this technique al-
lows the size of the partition to be known, allowing the appli-
cation to make a better decision than any technique limited to
heuristically determining the partition. The rest of this sec-
tion describes the different competitive spinning approaches
and their motivation followed by the scheduler information
technique.

All the competitive spinning techniques have a similar
structure. They spin for a certain amount of time, and then
block. Barriers that spin for a constant amount of time and
then block are called fixed spinning barriers. Those that vary
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Figure 1: Competitive barriers for the synthetic
program
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Figure 2: Scheduler information barrier for the
synthetic program

the amount of time they spin before blocking are called adap-
tive. Without precise information of the hardware partition,
adaptive techniques heuristically determine how the hard-
ware partition is configured. The adaptive techniques esti-
mate whether they spent longer or shorter at the barrier than
expected. Based on this, they adjust their spin time for the
next instance of the barrier. In the algorithms presented in
the Appendix, whenever the command “block” occurs, the
process that blocks will remain blocked until the last process
enters the barrier and unblocks the other processes.

A complete description and motivation behind the fixed
spinning, last one, and average three can be found in Kar-
lin et al [6]. Briefly, fixed spinning implies that a process
spins for a constant amount of time before blocking. It re-
quires low overhead and is easy to implement. Average
three, which adapts the spinning period based on the last
three barrier episodes, avoids the excessive cost of storing
the entire distribution while still maintaining the smoothing
effect. Last one is patterned after average three but has
lower overhead since it retains only information from one
barrier. The pseudocode for these are in figures 9 through 11
respectively (in Appendix).

The last adaptive technique, coarse adjustment is similar
to the last one in that it only uses data from the previous
barrier. However instead of slowly moving the spin time up
or down, it adjusts it entirely at once. The reasoning behind
this strategy is that partition changes are infrequent and af-
ter a partition change the desired barrier behavior is fixed.
Rapidly adjusting the spin time could lead to instability and
poor performance if there are very few barriers per schedul-
ing decision. However, for normal programs this proved to
be an effective method. The pseudocode for coarse adjust-
ment is in figure 12 (in Appendix).

With only a little bit of information about the size of the
partition, it is possible to design a barrier with much better

performance than the competitive spinning techniques. The
scheduler was modified to constantly provide a shared vari-
able containing the number of processors in a partition. The
barrier was designed so that when any thread reached a syn-
chronization point it compared the number of processors in
the partition to the number of remaining threads needed to
pass through the barrier. If the number of remaining threads
was less than the number of processors in the partition, the
checking thread chose spinning, else it blocked. This ap-
proach makes optimal choices and incurs only the little over-
head required to check the number of processes left against
the number of processors in the partition. Pseudocode for
the Scheduler Information barrier appears in figure 13, and
code for a process of a typical application using barriers can
be seen in figure 14 (in Appendix).

In the general barrier case there are N processes trying to
get through the barrier using P processors where N ≥ P. If
the work section is roughly the same for each thread, then
all the threads can be separated into groups of size P, and
the threads in each group can execute simultaneously. When
those P threads reach the barrier point they can either spin
for the remainder of their quantum or yield and let the next
P threads run. Under these assumptions the optimal pol-
icy would force the first N − P threads to block so that the
remaining P can run. However blocking is not necessary
for the last P threads since there is no remaining thread to
perform any work. Blocking in this case would only in-
cur the extra overhead of having to switch the thread back
in when the barrier is completed. The scheduler informa-
tion technique uses this method, yielding an optimal cost
of Costsched =

� N−P
P � ∗ c + overhead, where overhead is the

cost of checking the number of threads against the number
of available processors, c is the cost of a context switch, and
Cost is the amount of time spent at a barrier in spinning or
context switching when useful work could have been done.



42

44

46

48

50

52

54

56

4 6 8 10 12 14 16
Number of processes

blocking
compet4
compet3
compet2
compet1

Figure 3: Competitive barriers for successive
overrelaxation

35

40

45

50

55

60

65

4 6 8 10 12 14 16

m
se

c/
ph

as
e

Number of processes

blocking
compet4
spinning

scheduler

Figure 4: Scheduler information barrier for
successive overrelaxation

4 Experiments and Results

We tested each technique on three different programs. The
first was a synthetic program allowing us to isolate barrier
performance. Each process of the synthetic program exe-
cutes a loop that performs a controlled amount of work and
then enters a barrier. The other two programs used were
successive over-relaxation (SOR) and Gaussian elimination.
These programs are the intensive portion of larger applica-
tions; thus, they represent a typical bottleneck in the perfor-
mance of some important applications. This section shows
results for each of these programs using the different barri-
ers.

In order to verify our claims, a user level scheduler was
developed and linked into all programs. The scheduler was
prevented from interfering with the user program by restrict-
ing it to a single processor and disallowing other processes
to run on that processor. A shared data structure between
the scheduler and the program provided the application with
the current number of processors in its partition. Processes
were created using the Silicon Graphics parallel program-
ming primitives, which are adequate for expressing coarse
grain heavy-weight process parallelism. A production qual-
ity implementation of our ideas could be accomplished by us-
ing a shared data structure between the kernel scheduler and
the user application, an approach suggested by some modern
multiprocessor operating systems [1, 9, 10].

The different implementations of barrier synchronization
that we tested were: plain blocking, plain spinning, different
competitive strategies, and the scheduler information policy.
Other parameters included the time between scheduling de-
cisions and the minimum number of processors allotted to
an application. Another parameter that might have been im-
portant in this analysis was the quantum of processes within
a partition. However, since the experiments indicated that

only the plain spinning approach was affected by this, and
this effect is well understood, we have omitted results that
explore this parameter. The default quantum size of thirty
milliseconds was used in the experiments.

In many cases speedup is used to measure the effective-
ness of tuning parallel programs. However, in a multipro-
gramming environment, speedup is not well defined. To best
illustrate the comparative performance of different barriers,
our results are presented on a time per phase basis. For the
synthetic program, we factored out the work delay, thus the
time presented represents solely barrier overhead. For Gauss
and SOR, the time presented includes work and barrier over-
head. Time was determined by measuring wall time on ded-
icated processors.

The graphs in figures 1 through 6 show the performance
of a synthetic program and Gauss elimination and SOR ap-
plications as the number of processes varies. For clarity, a
pair of graphs is presented for each application. The first
graph compares the performance of the different competi-
tive algorithms with blocking, and the second graph com-
pares spinning, blocking, the best competitive strategy, and
the scheduler information policy. All three applications use
barrier synchronization between their phases. The schedul-
ing policy makes decisions every eighty milliseconds, and
gives the application seven processors for five percent of the
time. The other 95% of the time the application is given be-
tween two and six processors with equal probability. This ef-
fectively simulates a hardware partitioned environment with
applications arriving and leaving at the rate of the scheduling
decision frequency. By collecting the history of scheduling
decisions, it was verified that the average number of pro-
cessors in a partition agreed with the statistically expected
result computed from the probabilities stated above. As can
be seen, the competitive approaches outperform both spin-
ning and blocking in many cases, and deviate very little from
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Figure 6: Scheduler information barrier for
Gaussian elimination

the best of the two in the rest. Competitive spinning often
outperforms both blocking and plain spinning in the cases
of five and seven process applications because the schedul-
ing policy will give the application anywhere between two
and seven processors. When there are as many processors
as processes, spinning outperforms blocking, otherwise the
converse is true. Since the competitive approaches are able
to adjust, they can outperform both plain spinning and block-
ing. When the number of processes increased to the point
where there were always more processes than processors,
the competitive approaches approximated blocking (with a
small overhead) and were significantly better than spinning.

In addition to the above experiments, others were per-
formed by varying the time between scheduling decisions
from 80 to 800 milliseconds, by allowing the application full
use of the multiprocessor for as little as five percent of the
time or as much as fifty percent of the time, and by giving
the application a small number of processors. While the re-
sults were quantitatively different, the qualitative behavior
of the different barrier implementations remained the same.
Thus, the graphs presented are representative of all our ex-
periments.

The graphs in figures 7 and 8 show the performance of the
barrier implementations across different periods of schedul-
ing decisions. Varying times between scheduling decisions is
different from varying the quantum of process execution, and
that is why spinning is not affected as much as might be an-
ticipated. As expected, the competitive approaches improve
when the time between scheduling decisions increases. The
reason is that the competitive approaches need a short period
of time to adjust to the new environment after a scheduling
action. When scheduling actions are in effect for longer pe-
riods of time, the adjustment cost is amortized over more
barriers yielding better performance. Blocking is largely in-
variant to the time between scheduling decisions (figures 7

and 8). Spinning performs in a more complicated way. A
possible explanation for this behavior is the interaction be-
tween scheduling decisions and quantum duration within a
partition. This question wasn’t pursued further, since spin-
ning performs much worse than other policies and the qual-
itative analysis of a bad policy is not interesting.

The unexpected result was the small but steady improve-
ment of the scheduler information policy when the time
between scheduling decisions increased. While this policy
should have been invariant to time between scheduling de-
cisions, it is possible for the policy to err when a schedul-
ing decision occurs at the same time the application is go-
ing through a barrier. In this case, some threads will use
old information to guide their decision and thus may decide
sub-optimally. When the time between scheduling decisions
is large, this happens rarely, and is why the application has
a small performance improvement. It is possible to correct
this behavior by delaying scheduling decisions until the ap-
plication has cleared the barrier but the performance benefit
is too small to warrant this change.

5 Conclusion

We feel the work presented in this document has several in-
teresting continuations. We are interested in examining the
performance of scheduler information in conjunction with
other synchronization primitives that may be adversely af-
fected by multiprogramming, i.e., FIFO locks. We are also
interested in studying the effect of scheduler information in
systems where priorities are important, i.e., real-time appli-
cations. We believe that significant performance benefits can
be achieved by sharing information between the kernel and
application in such environments.

There are three primary contributionsof this paper. We ex-
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tended the work performed by Karlin et al on locks by show-
ing these techniques perform well for barriers. We proposed
coarse adjustment, another competitive spinning technique
that performs better than the previous competitive spinning
techniques applied to barriers. Finally, we proposed sched-
uler information, a new technique that outperformed all the
previous techniques consistently and provided considerably
better performance in many cases. This new technique is
both optimal and easy to implement.
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Appendix

global_t gsense,bar_count,numb_procs;
global_t SpinThreshold;
local_t lsense,count;
SpinThreshold = switch_time;
bar_count = AtomicAdd(bar_count,1);
if bar_count < numb_procs then

for count = 1 to SpinThreshold do
if lsense == gsense then

lsense = 1 - lsense;
exit barrier;

else
bar_count = 0;
gsense = 1 - gsense;
wakeup blocked threads;
lsense = 1 - lsense;

Figure 9: Fixed Time Competitive Barrier

global_t gsense,bar_count,numb_procs;
global_t SpinThreshold;
global_t tcount[numbprocs];
global_t ttime[numbprocs][3];
local_t lsense,count,now,tblkd,id;
bar_count = AtomicAdd(bar_count,1);
if bar_count < numb_procs then

for count = 1 to SpinThreshold do
if lsense == gsense then

tblkd = 0;
goto exit_barrier;

now = GetCurrentTime();
block;
tblkd = GetCurrentTime() - now;

exit_barrier:
ttime[id][tcount[id]%3] = tblkd;
tcount[id] = tcount[id] +1;
if Average(tcount[id]) < switch_time
then
SpinThreshold = min(switch_time,

SpinThreshold+Adjust);
else
SpinThreshold = max(0,

SpinThreshold - Adjust);
lsense = 1 - lsense;

else
bar_count = 0;
gsense = 1 - gsense;
wakeup blocked threads;
lsense = 1 - lsense;

Figure 10: Average Three Competitive Barrier

global_t gsense, bar_count, num_procs;
global_t SpinThreshold;
local_t lsense, now, t_blkd, count;

bar_count = AtomicAdd(bar_count,1);
if bar_count < num_procs then

for count = 1 to SpinThreshold do
if lsense == gsense then

tblkd = 0;
goto exit_barrier;

now = GetCurrentTime();
block;
tblkd = GetCurrentTime - now;

exit_barrier:
if tblkd < 2*switch_time
then
SpinThreshold = min(switch_time,

SpinThreshold + Adjust);
else
SpinThreshold = max(0,

SpinThreshold - Adjust);
lsense = 1 - lsense;

else
bar_count = 0;
gsense = 1 - gsense;
wakeup blocked threads;
lsense = 1 - lsense;

Figure 11: Last One Competitive Barrier



global_t gsense, bar_count, num_procs;
global_t SpinThreshold;
local_t lsense, now, t_blkd, count;
bar_count = AtomicAdd(bar_count,1);
if bar_count < num_procs then

for count = 1 to SpinThreshold do
if lsense == gsense then

tblkd = 0;
goto exit_barrier;

now = GetCurrentTime();
block;
tblkd = GetCurrentTime - now;

exit_barrier:
if tblkd < 2*switch_time ;
then
SpinThreshold = switch_time;

else
SpinThreshold = 0;

lsense = 1 - lsense;
else

bar_count = 0;
gsense = 1 - gsense;
wakeup blocked threads;
lsense = 1 - lsense;

Figure 12: Coarse Adjustment Competitive Barrier

global_t gsense, bar_count, numb_procs;
global_t numb_blocked, numb_processors;
local_t lsense;

bar_count = AtomicAdd(bar_count,1);
if bar_count < numb_procs

if (numb_procs - numb_blocked)
<= numb_processors then

while lsense <> gsense do
Spin;

else
block;

lsense = 1 - lsense;
else

bar_count = 0;
gsense = 1 - gsense;
wakeup blocked threads;
lsense = 1 - lsense;

Figure 13: Scheduler Information Barrier

for i:=0 to NUM_PHASES do
begin
work();
barrier();

end

Figure 14: Code for a typical process in a barrier application

This code is available via anonymous ftp from
cayuga.cs.rochester.edu (/pub/barrier.src.tar.Z).


