
 Non-Blocking Timeout in
Scalable Queue-Based Spin Locks

Michael L. Scott
University of Rochester

PODC 2002

�  Motivation: context and problem
�  Solution(s) and performance
�  Impossibility conjecture

�   www.cs.rochester.edu/~scott/synchronization



University of Rochester 7/22/02 2

Busy-wait mutual exclusion

� Preferable to rescheduling when
» expected wait time is small

» nothing else needs the processor

� Widely used in multiprocessor OSes;
also some user-level programs

� Scalability the traditional problem for OSes and large
scientific programs; solved with queue-based locks

� Preemption and deadlock the traditional problems in
OLTP and related apps; solved with timeout



University of Rochester 7/22/02 3

The CLH queue-based lock

A

A W

A W

W WA

process 1 enters
queue and runs

dummy node;
lock available

process 2 enters
queue and waits

process 1 leaves
queue; 2 runs

A process 2 leaves
queue; lock free� Cf TAS, MCS

» speed, space, coherence



University of Rochester 7/22/02 4

Spin locks with timeout (try-locks)

� Real time: signal error or pursue alternative code path
� OLTP

» assume transaction deadlock or preemption of lock holder

» abort current transaction

» yield processor

� Easy in test-and-set lock, but not in queue-based lock!
» must introduce neighbors to each other before leaving

�  Can we have our cake and eat it too?



University of Rochester 7/22/02 5

Queue-based try-locks

� PPoPP 2001 [Scott & Scherer]

» CLH and MCS try-locks

– O(L+T) space

– Fine for real-time or for deadlock recovery, but not for
preemption recovery: timeout is not non-blocking

� PODC 2002 (current contribution)
» CLH-NB and MCS-NB try-locks

– Preemption-safe: non-blocking timeout

– unbounded space worst case; can be modified to be
O(LxT); O(L+T) expected



University of Rochester 7/22/02 6

How to deal with preemption

� Need to be able to leave the queue without waiting
for anybody else

� Craig [1993] proposed abandoning queue node, to be
reclaimed at head of queue
» Unbounded space if theads can re-request same lock;

O(LxT) otherwise

� CLH-NB and MCS-NB-try locks
» immediate reclamation of abandoned nodes

(by successor, not by departing thread, except at tail of list)

» Worst-case space same as Craig, but ~(L+T) in practice



University of Rochester 7/22/02 7

CLH-NB-try lock

A B C

W W W

W L W

W L W

B marks its node
and leaves

C dereferences B’s
node and reclaims it

W W

A B Q

W W

W L

W L

B marks its node

B updates tail pointer,
reclaims its node,
and leaves

W

� Reclaim dummy node in similar way in uncontested lock
� Complication: space management

» lose “my” node when timing out
�  need a (lock-free) pool of nodes



University of Rochester 7/22/02 8

Pathological case

� Three threads: A holds lock; initially B and C are waiting
» B and C decide to leave; stop spinning on A and B’s qnodes
» B marks own node; CAS fails; leaves queue; C is preempted

» B requests lock again; gets in line with new node; times out;
decides to leave; stops spinning on C’s node

» C wakes up; marks own node; CAS fails; leaves queue; B is
preempted

� Unbounded space worst case; O(TxL) if threads never re-try
same lock, or re-use node if they do

Thanks to Victor Luchangco of Sun Labs

QWL

B’

L LW

B C C’A

repeat



University of Rochester 7/22/02 9

0

1

2

3

4

5

6

0 1 6 3 2 4 8 6 4 8 0 9 6 112 128

MCS CLH TAS-try NCS-NB-try CLH-NB-try

Multiprocessor
lock-passing time (466MHz E10K)

� 225µs patience; 229ns critical, 440ns non-critical work

0

2 0

4 0

6 0

8 0

100

120

0 1 6 3 2 4 8 6 4
16           32           48           6416            32            48            64

unfair

µs %



University of Rochester 7/22/02 10

Modeling time-out time

� t    threads
� i    # loop iterations
� m   processors
� s    acquire success rate

� Ts   wall clock time
� Tp   patience
� Tl   loop overhead
� Tw   average lock wait time
� Th   timeout/handshake time



University of Rochester 7/22/02 11

Time-out time from model

0.00

20.00

40.00

60.00

80.00

100.00

9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Threads 

µs

CLH-try

MCS-try

MCS-NB-try

CLH-NB-try

8-processor Enterprise 4500 (336MHz)



University of Rochester 7/22/02 12

Impossibility conjecture

� Cannot guarantee O(L+T) space with queue and non-
blocking timeout:
» Imagine N threads waiting in line

» Middle N-2 decide (simultaneously) to leave

» Need to link the edges together in order to reclaim space
» Cannot do it in constant time!

QL WL LL LR W ...



University of Rochester 7/22/02 13

Conclusions

� Contention matters, more now than ever.
� Scalability and timeout are compatible.

» Potentially significant benefit for important commercial
applications

� Synchronization is still an open problem :-)

� www.cs.rochester.edu/~scott/synchronization


