
URCS 10/16/05 1

Are locks dead?

SCOOL Panel session
San Diego, 16 October 2005

 Victor Luchangco, Sun Labs
 Satnam Singh, Microsoft
 Robert Ennals, Intel
 Maged Michael, IBM

 Michael L. Scott, Rochester (moderator)

URCS 10/16/05 2

Parallelism for the Masses

 2004 a watershed year: can’t make faster
superscalars and still cool them with air

 Multiprocessors about to become commodities
 Lots of recent focus on nonblocking

synchronization and transactions

» Will they replace locks?

URCS 10/16/05 3

Locks Have Problems

 Semantics: vulnerable to
» Thread failure, preemption, page faults
» Priority inversion
» Deadlock

 Convenience/performance tradeoff:
» Coarse-grain locks convenient but slow
» Fine-grain locks fast but very hard to use

(correctness issues, deadlock)

URCS 10/16/05 4

Solutions?

 Ad-hoc nonblocking synch addresses
semantic issues, but is at least as hard to use
as fine-grain locks

 Transactions address convenience and
usually performance
» Ousterhout’95 (“Why Threads Are a Bad Idea”)

lists 8 problems, at least 4 of which are arguably
solved by transactions

 Note that nonblocking synch ≠ transactions

URCS 10/16/05 5

 But . . .

 Memory-level transactions still have problems:
» Poor common case SW performance (so far)
» Immature HW support
» Condition synchronization
» Non-transactional data
» Irreversible operations, compensation
» Nesting
» Legacy code (need to interoperate with locks?)

URCS 10/16/05 6

 So . . .

 What does the future hold?

 Perhaps our panelists can tell us.
(or you can tell them!)

 [5 min/panelist, followed by
35 min of discussion]

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Are locks dead?

Victor Luchangco
Sun Labs

A panel discussion at
the OOPSLA Workshop on

Synchronization and Concurrency in Object-Oriented Languages

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Locks are not dead

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Locks
vs.

Transactions

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Locks
vs.

TransactionsFalse dichotomy

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Why not locks?

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Why not locks?
not composable

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Why not locks?
not composable “easy concurrency”

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Why not locks?
not composable “easy concurrency”
deadlock, etc.

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Why not locks?
not composable “easy concurrency”
deadlock, etc. ???

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Obstruction-freedom
guarantee progress when running alone

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Obstruction-freedom
easier to program
better implementations

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Obstruction-freedom
obstruction-free transactional memory

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Locks have their uses

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Locks have their uses
and their problems...

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

We can do better!

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Need more work
conditional waiting
exceptions
input/output

Copyright 2005 Sun Microsystems, Inc. SCOOL 2005 panel: Are locks dead?

Need more work
conditional waiting
exceptions
input/output

Let's do it!

Satnam Singh, Microsoft

Locks are not dead
specific low-level uses

Transactions
seem promising for application code
composability
good initial results from JSR-166 -> STM work

Non-blocking code:
we’ve tried it: it’s mind bending!

Important distinction:
blocking / threads as a programming
abstraction
non-blocking / CPS as an implementation

How I learned to stop
worrying and love the

lock

How I learned to stop
worrying and love the

lock

Rob EnnalsRob Ennals
Intel Research, CambridgeIntel Research, Cambridge

Free of Locks
≠

Lock Free

Free of Locks
≠

Lock Free

Lock freedom Lock freedom –– a very useful concepta very useful concept

But the name confuses the hell out of peopleBut the name confuses the hell out of people

Atomic
≈

One Big Fat Lock

Atomic
≈

One Big Fat Lock

An easy way to explain transactionsAn easy way to explain transactions

And often the best way to implement themAnd often the best way to implement them

Sometimes Blocking is OKSometimes Blocking is OK

If transactions always shortIf transactions always short

If long transactions in separate processIf long transactions in separate process

If Mix and match blocking and nonIf Mix and match blocking and non--blockingblocking

Performance MattersPerformance Matters

Transactions aid parallelism =>Transactions aid parallelism =>

parallelism often for performance.parallelism often for performance.

Blocking Perf
≥

Non-Blocking Perf

Blocking Perf
≥

Non-Blocking Perf

““blockingblocking”” means we allow blocking, means we allow blocking,
not that we require blocking.not that we require blocking.

Respecting priorities can also reduce performance.Respecting priorities can also reduce performance.

Would Hardware make
Non-Blocking as Fast

as Blocking?

Would Hardware make
Non-Blocking as Fast

as Blocking?

It might, but then again, it might not.It might, but then again, it might not.

Hardware speeds up small transactionsHardware speeds up small transactions

But if small, then blocking is okBut if small, then blocking is ok

What do people actually need?What do people actually need?

�� SimplicitySimplicity

�� No deadlockNo deadlock

�� Non blocking?Non blocking?

�� Explicit rollback?Explicit rollback?

�� LockLock--Free?Free?

�� Respecting priorities? (not compatible with lock freedom)Respecting priorities? (not compatible with lock freedom)

�� IO in transactions? (easy if allow blocking)IO in transactions? (easy if allow blocking)

�� Nested transactions?Nested transactions?

Give the people what they want, but no more.Give the people what they want, but no more.

ConclusionsConclusions

Sometimes NonSometimes Non--Blocking is usefulBlocking is useful

But sometimes it isnBut sometimes it isn’’tt

Sometimes NonSometimes Non--Blocking is as efficient as BlockingBlocking is as efficient as Blocking

But sometimes it isnBut sometimes it isn’’tt

Atomicity does not require nonAtomicity does not require non--blockingblocking

DonDon’’t carry the bathwater round with the babyt carry the bathwater round with the baby

IBM Research

Panel: Are Locks Dead?
The Role of Blocking in Concurrency Control

Maged M. Michael
IBM Research

IBM Research

2 Maged M. Michael - Are locks dead? The role of blocking in concurrency control

Are Locks Dead?

� No. Not yet. Probably never.

� Probably will be overtaken by transactions

� Architectural trends favor transactions

– More concurrency, more efficient implementations of atomic and
memory ordering instructions

� Problems with transactions remain

– Efficient non-transactional access

– I/O and irreversible side-effects

– Composition, nesting

� Locks are not dead … But their role will be diminished

IBM Research

3 Maged M. Michael - Are locks dead? The role of blocking in concurrency control

Blocking vs Non-Blocking?

� Non-blocking progress is of primary importance only in certain
cases

� Should transactions guarantee non-blocking progress ?

– Not necessarily always … Need to figure out how to combine
non-blocking and blocking transactional interfaces to the same
objects efficiently

� Does the implementation of transactions have to be purely non-
blocking?

– No. Can use blocking mechanisms with efficient VM s upport.

� Non-blocking progress is preferable in general. But …

� There is place for blocking implementations in the VM and
application levels

IBM Research

4 Maged M. Michael - Are locks dead? The role of blocking in concurrency control

Conclusion

� Problems with transactions remain to be solved

� Eventually transactions will (hopefully) overtake l ocks as the most
common synchronization mechanism

� There is always a place for blocking

	SS.pdf
	Satnam Singh, Microsoft

