
Featherweight Transactions:
Decoupling Threads and Atomic Blocks

Transactional Memory (TM)
•  A powerful concurrent programming abstraction
•  Promises to simplify concurrent programming Exposing TM via atomic blocks

  Implicitly binds transactions to threads
  Cannot scale to support thousands/millions of
 transactions

Featherweight Transactions
  Transactions as schedulable atomic work items that
 run to a “quiescent” state (commit, abort or retry)

  Insight: Transactions in quiescent state do not
 need a thread stack

  Daemon Workers: Re-executable work items –
 re-executed by the runtime system whenever any
 of their inputs changes
  Iterative computations on a data item

Transaction Work Groups
  Group of work items work on data parallel aggregates
  Rich semantics of work groups:

  wait for all work items to reach a quiescent state
  suspend/resume groups of work items
  group level joins, splits, parallel reductions
  ordering within and among groups

  Further investigation of work group semantics
 for future

Parallelizing ZChaff, an efficient SAT Solver
  ZChaff employs several state-of-the-art heuristics for literal assignments
  Boolean constraint propagation (BCP): (i) recursively propagate implied literal assignments;
 (ii) 80% of running time
  Target BCP (fine-grain parallelism) in our parallelization (coarse-grain parallelism: no reliable
 performance gains)
  Conventional TM abstractions do not aid programmer in coordinating clauses for implied literal assignments

Using our new TM abstractions
  BCP parallelization is simple
  Assign distinct work item to
 each clause
  Main thread makes explicit literal
 assignments, and waits for BCP to finish

Atomic Work Item
 read all literals
 if an implied literal assignment
 make it explicit and re-execute
 else
 retry

Implementation of runtime in progress in MSR’s Bartok backend research compiler

Virendra J. Marathe
(University of Rochester)

Tim Harris and James R. Larus
(Microsoft Research)

Using TM for fine-grain parallelism
e.g. parallel SAT Solver
  Large numbers of short interacting pieces of work
  TM-based abstractions do not help much
  Challenge: Complex coordination among
 concurrent computations

Observations

Language Constructs
 atomic {
 ... // arbitrarily complex code
 if (cond)
 retry; // conditional waiting
 ... // more complex code
 }

Our Solution

Large-Scale Fine-Grain Parallelism

Parallel Computation Coordination

Main Thread
 while new literal assignment possible
 make an explicit literal assignment
 wait for work group to finish BCP

(x V y) Λ (¬x V y V z) Λ (x V ¬z)

An Example

T1 T2 T3

Atomic Work Items

retry enables coordination among transactions,
but does not help much in controlling an
aggregate group

Large-Scale Fine-Grain Parallelism
via Transaction Work Groups

Atomic Work Items

Coordination via retry

Initiate Group Activity

Group reaches a
 quiescent state

Transaction
Work Group

mls
poster session, PoPP 2007

