
Efficient Nonblocking Software Transactional Memory

Transactional Memory (TM)
!   A powerful concurrent programming
 abstraction
!   Promises to simplify concurrent programming
!   Evolved from earlier work in nonblocking
 concurrent data structures
!   Our work in context of Software TMs
 (STMs)

Virendra J. Marathe
University of Rochester

Mark Moir
Sun Microsystems Laboratories

The Blocking-Nonblocking Debate
!   Recent STM proposals assume blocking
 systems are inherently faster than
 nonblocking systems
!   Understanding largely based on intuition, and
 no formal lower bound proofs

Our Argument
!   Can build a nonblocking STM that mimics
 behavior of a fast blocking STM in the
 common case, resorting to more expensive
 transactional data displacement only when
 necessary to guarantee nonblocking progress

Our Idea
!   Transaction steals ownership of locations if
 necessary for forward progress

  Logical contents of stolen locations are
 displaced to a “different” place
  All transactions must lookup this alternate
 location for logical values of a stolen location
  The system merges logical values in physical
 locations when no transaction owns the
 location’s ownership record
  Inspired by Harris and Fraser’s stealing
 methodology

Design Details

Basic (blocking) Algorithm
!   Ownership Record (orec) table
!   Each location hashes into one orec
!   orec contains owner transaction’s ID, version
!   Version numbers permit reuse of the same
 transaction descriptor, and fast release
!   Transaction contains private read and write sets
!   Transaction makes buffered updates (updates are
 locally maintained in the transaction’s write set, and
 copied back to actual locations on commit)
!   Transactions acquire orecs (CAS the transaction’s
 ID and version in the orec) of updated locations
 during the first write
!   A transaction blocks when the orec it intends to
 access is owned by a COMMITTED transaction

  Means that the committed owner is copying back
 its updates

Extensions for Nonblocking Progress
!   orec contains a stolen_orec flag to identify stolen
 orecs (logical values of these are displaced in the
 stealer’s descriptor)
!   orec contains a copier_exists flag to determine
 that some transaction is merging logical values to
 physical locations that hash into the stolen orec
!   First stealer sets stolen_orec and copier_exists
 flags

  logical values of locations hashing in the stolen orec
 are in the stealer’s descriptor

!   Victim resets copier_exists flag after its copyback
!   A transaction may steal an already stolen orec
!   The second stealer checks if copier_exists flag is
 unset

  if so, sets the flag (while stealing), and assumes the
 copyback responsibility
  resets both flags after the copyback if no other
 transaction stole the orec in the interim
  means that the logical and physical contents of
 stolen locations is identical; direct access to
 locations is permitted

Illustration

Shared Heap Ownership Records

hashing ver# ID, flags
T1

COMMITTED
o1

o2

o3

o4

o5

first
owner

T2
ACTIVE

T3
ACTIVE

T1’s copyback in progress;
o1 in unstolen mode, points
to T1

1

2 T2 merges locations in
that map into o1

Steps

3

4

5

T2 steals o1, setting both
flags; logical values are in
T2’s descriptor
T1 finishes copyback,
resets copier_exists flag

second owner (stealer 1)

third
owner
(stealer 2)

T3 decides to steal o1 from
T2, aborts T2, sets
copier_exists flag, does
a copyback, and resets both
flags

6 o1 back in unstolen mode

Array of 16 Counters Binary Search Tree (256 keys)

Experimental Setup
!   144-processor SunFire E15K
 cache coherent multiprocessor
 with 1.5GHz UltraSPARC® IV+
 processors (72 dual core chips)
!   Threading levels 1 – 64 (more
 experiments conducted with
 up to 256 threads)
!   Binary Search Tree (80%
 lookups, 10% inserts, 10%
 deletes)

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

of Threads (1– 64)

Keys
Blocking STM

Nonblocking STM,
configured to never steal

Nonblocking STM

WSTM (by Harris & Fraser)

Conclusions
!   Improved significantly over
 the state-of-the-art
 nonblocking STM
!   Stealing entails noticeable
 overheads
!   Question of inherent cost for
 providing nonblocking progress
 remains unclear
!   Future Work: Adapt our ideas
 to other high performance
 STMs

mls
poster session, PoPP 2007

