Transactional Memory Semantics

Michael L. Scott

University of Rochester
www.cs.rochester.edu/research/synchronization/

(EC)? Workshop, July 2008

with contributions from
Mike Spear, Virendra Marathe, Luke Dalessandro,
Sandhya Dwarkadas, and Arrvindh Shriraman

MLS

Transactional Memory

e Simplify synchronization for explicitly || programs
e Draw inspiration from the DB community

® Avoid standard problems with locks
» obtain composability
» avoid deadlock, priority inversion
» eliminate clarity / concurrency tradeoff
» (maybe) tolerate page faults & preemption; avoid convoying

atomic {
< your code here >

¥

® Assumed implementation: speculation & rollback

MLS

A Privatization Puzzle

shared node* p —»| 2 —+——| 3 -

shared int n = 0;
A: atomic { B: atomic {
my_nhode = p->next if (p->next)
p->hext = nil p->hext->val = 4
1 =n n=1
¥ ¥

print 1, my_node->val
delete my_node

® What might this code print?
» @ 3 (A first) » 1 4 (B first)
» 1 3 2? » @ 4 ??
» bus error ??

MLS

MLS

What's Going On?

® Lack of agreement about how TM should behave

»

»

o Lots of sticky issues

»

»

»

»

»

»

»

»

esp. if data can be accessed both inside and outside txns
nowhere near as easy as we once thought

hesting

exceptions

condition synch. (retry)
irreversible ops / inevitable txns
progress guarantees

interaction w/ locks, NB data structures
ability to “leak” info from aborted txns source: slurmed.com
privatization and publication

Outline

® Additional background
» implementation realities
» the publication / privatization problem
» non-solutions

e Candidate semantics
» serializability (database)
» lock-based [Menon et al.]
» ordering-based

e Distinguishing private use from error (time permitting)
® Conclusions / open questions

MLS

Starting Assumptions

Transactions, at least in SW, may always have
nontrivial OH
will we be willing o pay? (GC analogy?)

if not, "always use transactions” may be unacceptable
(much as I like STM Haskell) — consider mesh app.

zero OH for private use (or close) may demand
publication & privatization

But SW txns serialize by reading & writing
metadata that nontxnal accesses ignore
Resulting problems

delayed cleanup @ privatization

doomed txns @ privatization

early reads @ publication

MLS

Delayed Cleanup @ Privatization

[Marathe, '06; Larus & Rajwar, '07]

initially x == @; x_is_public == true

B: atomic {
if (x_is_public)

X =1
}
A: atomic {
X_1s_public = false
}
X ==0 77 // or X == 1 but B aborted?

MLS

Doomed Txns @ Privatization
[Wang et al., CGO'07; Spear et al., '07]

initially p == &; Xx_is_public == true

B: atomic {
i1f (p_is_public) {
A: atomic {
p_is_public = false

}

p == nil

MLS

Early Reads @ Publication

[Menon et al., TRANSACT/SPAA'Q7]

initially x == @; x_is_public == false
B: atomic {
a==~0
t = prefetch(x)
A: x =1
atomic {
X_1is_public = true
}
1f (x_is_public) {
a=t
}

}

MLS

MLS

Non-Solutions

Static data partitioning (unless cost is very low
or perceived benefit is very high)

forces txnal OH on all accesses to shared data

doesn't mix well with legacy code

has much of the complexity of the general case to

enforce (don't want to partition the type system)
Strong isolation (nontxnal accesses serialize wrt
transactions) [Blundell et al., CAL'06]

unclear what an access is at the language level

prevents compiler reordering of nontxnal accesses

is very expensivel

10

MLS

Issues for Publication/
Privatization-Safe TM

What are permissible programming idioms?
How should correct programs behave?

Is the language impl. required to catch bad
programs? Statically?

If not, are there constraints on what bad
programs can do?

Policy choices
» txnal / nontxnal races are bugs

» consequences of bugs are limited — no "catch fire"
semantics

- in particular, no out-of-thin-air reads

NO
YES

11

Outline

® Candidate semantics
» serializability (database)
» lock-based [Menon et al.]
» ordering-based

e Distinguishing private use from error (time permitting)
® Conclusions / open questions

MLS 12

Database Semantics

Serializability (S)
Observed history must be equivalent to (same ops, same

results) some serial history (no overlapping txns) with
the same thread subhistories

Strict Serializability (SS)

Additionally, if 2 txns (of different threads) do not
overlap in the observed history, they must appear in the
same order in the serial history

Motivation: prevent threads from using outside events to
observe txns in the "wrong" order — plane ticket example

MLS 13

Single Lock Atomicity

(SLA) Transactions behave "as if" they acquired a
single global lock
» Equivalent to SS:

- serial txn order = lock acquisition order
- locks force order of wrt nontxnal accesses

» Too expensive to implement

- At begin_txn, must ensure no peer has prefetched
published data

- At end_txn, must ensure all previous txns have
cleaned up, and all doomed txns aborted

MLS

14

Relaxing Order [Menon et al'07]

3 progressive relaxations of transaction order

ALA (asymmetric lock atomicity) the most appealing:
txns behave “as if"
there is a separate reader-writer lock for every datum
we acquire read locks on all to-be-read data at begin_txn
we acquire write locks on to-be-written data at write time

Asymmetry reflects the fact that
flow dependences are easier to catch than anti-
nobody wants to publish by antidependence anyway

MLS 15

MLS

Problems w/ ALA, etfc.

Explains behavior in terms of (multiple) locks —
which txns were supposed to replacel!

Abandons serial order for txns — arguably the key
to success in the DB world

Permits temporal loops (next slide)

16

Unorderable ALA Transactions

initially T2_used_x == false; X ==
// T1 // T2
C: atomic { // RL x
t = prefetch(x)
A: x =1
B: atomic { // RL x, T2_used_x
f = T2_used_x
1 =X
}
T2_used_x = true // WL T2_used_x
j =t
}
e atend:
» A < B because a == @ is B<(C<Bokin
» B ‘<’ C because of anti-dep a buggy program?

» C < A because j ==

MLS

An Alternative Proposal

Define semantics in terms of ordering (Cf: Java, C++)

Keep transactions serial; make txnal-nontxnal ordering
optional

SSS (selective strict serializability)
transactions appear to occur in a serial order, <,
consistent with program order, <,

some txns are marked "publishing” &/or "privatizing"
- may be either, both, or neither

global order, <g. is an extension (superset) of <. also
- if T1 is publishing and A <pT1 < T2, then A <9T2
- if T2 is privatizing and T1 <, T2 <, B, then T1 <;B

MLS

MLS

SSS (cont.)

Read R is permitted to return the value of write W iff
R and W are unordered by <, or
W <,RorW<;R, and there is no intervening write
If all txns are publishing and privatizing,
SSS=SS=SLA
If no txns are publishing or privatizing (e.g., w/ static
data partitioning), SSS = S

=2 You pay for what you need

19

MLS

Unfortunately...

Publishing txns still pay for safe publication by
antidependence, which we don't need
SFS (selective flow serializability)

T1 <(T2 if T2 (follows a txn that) reads a value T1 wrote

replace previous publication rule with

- if Tl is publishing and A <, T1 <¢T2, then A <, T2

This is

cheaper than SSS

similar in spirit (but not equivalent) to ALA

- racy programs subject to temporal loops
- but correct programs pay for only what they need

20

Unorderable SFS Transactions

initially T2_used_x == false; X ==
// T1 // T2
C: atomic { // RL x
t = prefetch(x)
A: x =1
B: atomic { // RL x, T2_used_x
f = T2_used_x
a=x
}
T2_used_x = true // WL T2_used_x
b =1t
}
® atend:
» A < B because a == ® s B < C<Bokin
» B < C because of anti-dep a buggy program?

» C ‘<’ A because b ==

MLS

MLS

Implementation

We have publication / privatization-safe variants of
TL2
JudoSTM
RingSTM
“Sequence lock” (single orec) STM
These achieve their safety in very different ways

We are currently collecting data on the costs
of (S)SS and (S)FS

22

MLS

Outline

Additional background
implementation realities
the publication / privatization problem
non-solutions

Candidate semantics
serializability (database)
lock-based [Menon et al.]
ordering-based

e Distinguishing private use from error (time permitting)
® Conclusions / open questions

23

MLS

Privatization v. Errors

Policy: by default, nontxnal use of X is an error if
X is ever accessed by more than one thread

Require programmer to annotate private use
But want to share code across contexts; can't say
p = private p->hext
Possible solution:
p = private with next* head
Define rules for propagation of privateness
property of the reference, not the object

Clone subroutines for realized combinations of
private and shared args

24

MLS

Truly Private v. Sharable

Performance issue, not correctness
Property of the object, not the reference
Can be deduced in many cases by the compiler

Can be checked at run time OW
has cost, but often amortizable

Can be refined to cover
private and local to txn
private and long-lived
sharable but not yet used in current txn
sharable and already read
sharable and already written
leaky?

25

MLS

Conclusions

TM is not as easy as it looks (even to explain)

Ordering-based semantics seem more promising than
lock-based
positive experience from DB and language communities
(relatively) simple rules on readable values

Selective enforcement of txnal-nontxnal ordering
pays for publication/privatization only when needed

Language and compiler integration of TM will be
essential

26

MLS

Open Questions

Is there a restricted version of the
data race detection problem that
would be tractable & suited to TM?

Are there verification issues that should -
influence the choice of TM semantics?

Are we on the right track with SFS?

How do we verify that a TM implementation
provides the chosen semantics?
» ordering: A-C-I

» progress: deadlock freedom, hopefully livelock freedom,

ideally starvation freedom

27

1@ I
N4
ROCHEST

www.cs.rochester.edu/research/synchronization/

