
MLS 1

﻿﻿Transactional Memory Semantics
(Tracking Transactional State)

Michael L. Scott
University of Rochester

www.cs.rochester.edu/research/synchronization/
(EC)2 Workshop, July 2008

with contributions from
Mike Spear, Virendra Marathe, Luke Dalessandro,

Sandhya Dwarkadas, and Arrvindh Shriraman

MLS 2

Transactional Memory
 Simplify synchronization for explicitly || programs
 Draw inspiration from the DB community
 Avoid standard problems with locks

» obtain composability
» avoid deadlock, priority inversion
» eliminate clarity / concurrency tradeoff
» (maybe) tolerate page faults & preemption; avoid convoying

 Assumed implementation: speculation & rollback

 atomic {
 < your code here >
 }

MLS 3

 What might this code print?
» 0 3 (A first)
» 1 3 ??
» bus error ??

A Privatization Puzzle
﻿shared node* p
shared int n = 0;
A: atomic { B: atomic {
 my_node = p->next if (p->next)
 p->next = nil p->next->val = 4
 i = n n = 1
 } }
 print i, my_node->val
 delete my_node

2 3

» 1 4 (B first)
» 0 4 ??

MLS 4

What’s Going On?

 Lack of agreement about how TM should behave
» esp. if data can be accessed both inside and outside txns
» nowhere near as easy as we once thought

 Lots of sticky issues
» nesting
» exceptions
» condition synch. (retry)
» irreversible ops / inevitable txns
» progress guarantees
» interaction w/ locks, NB data structures
» ability to “leak” info from aborted txns
» privatization and publication

source: slurmed.com

MLS 5

Outline
 Additional background

» implementation realities
» the publication / privatization problem
» non-solutions

 Candidate semantics
» serializability (database)
» lock-based [Menon et al.]
» ordering-based

 Distinguishing private use from error (time permitting)
 Conclusions / open questions

MLS 6

Starting Assumptions
 Transactions, at least in SW, may always have

nontrivial OH
» will we be willing to pay? (GC analogy?)
» if not, “always use transactions” may be unacceptable

(much as I like STM Haskell) — consider mesh app.
» zero OH for private use (or close) may demand

publication & privatization
 But SW txns serialize by reading & writing

metadata that nontxnal accesses ignore
 Resulting problems

» delayed cleanup @ privatization
» doomed txns @ privatization
» early reads @ publication

MLS 7

Delayed Cleanup @ Privatization

﻿ initially x == 0; x_is_public == true

 B: atomic {
 if (x_is_public)
 x = 1
 }
A: atomic {
 x_is_public = false
 }
 x == 0 ?? // or x == 1 but B aborted?

[Marathe, ‘06; Larus & Rajwar, ‘07]

MLS 8

Doomed Txns @ Privatization

﻿ initially p == &x; x_is_public == true

 B: atomic {
 if (p_is_public) {
A: atomic {
 p_is_public = false
 }
 p == nil
 *p = 1
 }
 }

[Wang et al., CGO’07; Spear et al., ‘07]

MLS 9

Early Reads @ Publication

﻿ initially x == 0; x_is_public == false

 B: atomic {
 a = 0
 t = prefetch(x)
A: x = 1
 atomic {
 x_is_public = true
 }
 if (x_is_public) {
 a = t
 }
 }

[Menon et al., TRANSACT/SPAA’07]

MLS 10

Non-Solutions

 Static data partitioning (unless cost is very low
or perceived benefit is very high)
» forces txnal OH on all accesses to shared data
» doesn’t mix well with legacy code
» has much of the complexity of the general case to

enforce (don’t want to partition the type system)
 Strong isolation (nontxnal accesses serialize wrt

transactions) [Blundell et al., CAL’06]
» unclear what an access is at the language level
» prevents compiler reordering of nontxnal accesses
» is very expensive!

MLS 11

Issues for Publication /
Privatization-Safe TM

 What are permissible programming idioms?
 How should correct programs behave?
 Is the language impl. required to catch bad

programs? Statically?
 If not, are there constraints on what bad

programs can do?

 Policy choices
» txnal / nontxnal races are bugs
» consequences of bugs are limited — no “catch fire”

semantics
– in particular, no out-of-thin-air reads

NO

YES

MLS 12

Outline
 Additional background

» implementation realities
» the publication / privatization problem
» non-solutions

 Candidate semantics
» serializability (database)
» lock-based [Menon et al.]
» ordering-based

 Distinguishing private use from error (time permitting)
 Conclusions / open questions

MLS 13

Database Semantics

 Serializability (S)
» Observed history must be equivalent to (same ops, same

results) some serial history (no overlapping txns) with
the same thread subhistories

 Strict Serializability (SS)
» Additionally, if 2 txns (of different threads) do not

overlap in the observed history, they must appear in the
same order in the serial history

» Motivation: prevent threads from using outside events to
observe txns in the “wrong” order — plane ticket example

MLS 14

Single Lock Atomicity
 (SLA) Transactions behave “as if” they acquired a

single global lock
» Equivalent to SS:

– serial txn order ≡ lock acquisition order
– locks force order of wrt nontxnal accesses

» Too expensive to implement
– At begin_txn, must ensure no peer has prefetched

published data
– At end_txn, must ensure all previous txns have

cleaned up, and all doomed txns aborted

MLS 15

Relaxing Order [Menon et al.’07]

 3 progressive relaxations of transaction order
 ALA (asymmetric lock atomicity) the most appealing:

txns behave “as if”
» there is a separate reader-writer lock for every datum
» we acquire read locks on all to-be-read data at begin_txn
» we acquire write locks on to-be-written data at write time

Asymmetry reflects the fact that
» flow dependences are easier to catch than anti-
» nobody wants to publish by antidependence anyway

MLS 16

Problems w/ ALA, etc.
 Explains behavior in terms of (multiple) locks —

which txns were supposed to replace!
 Abandons serial order for txns — arguably the key

to success in the DB world
 Permits temporal loops (next slide)

MLS 17

Unorderable ALA Transactions
﻿ initially T2_used_x == false; x == 0
// T1 // T2
 C: atomic { // RL x
 t = prefetch(x)
A: x = 1
B: atomic { // RL x, T2_used_x
 f = T2_used_x
 i = x
 }
 T2_used_x = true // WL T2_used_x
 j = t
 }

 at end:
» A < B because a == 1
» B ‘<’ C because of anti-dep
» C < A because j == 0

 is B < C < B ok in
a buggy program?

MLS 18

An Alternative Proposal
 Define semantics in terms of ordering (Cf: Java, C++)
 Keep transactions serial; make txnal-nontxnal ordering

optional
 SSS (selective strict serializability)

» transactions appear to occur in a serial order, <t ,
consistent with program order, <p

» some txns are marked “publishing” &/or “privatizing”
– may be either, both, or neither

» global order, <g , is an extension (superset) of <t ; also
– if T1 is publishing and A <p T1 <t T2, then A <g T2
– if T2 is privatizing and T1 <t T2 <p B, then T1 <g B

MLS 19

SSS (cont.)
 Read R is permitted to return the value of write W iff

» R and W are unordered by <g or
» W <p R or W <g R, and there is no intervening write

 If all txns are publishing and privatizing,
SSS ≡ SS ≡ SLA

 If no txns are publishing or privatizing (e.g., w/ static
data partitioning), SSS ≡ S
 You pay for what you need

MLS 20

Unfortunately...
 Publishing txns still pay for safe publication by

antidependence, which we don’t need
 SFS (selective flow serializability)

» T1 <f T2 if T2 (follows a txn that) reads a value T1 wrote
» replace previous publication rule with

– if T1 is publishing and A <p T1 <f T2, then A <g T2
 This is

» cheaper than SSS
» similar in spirit (but not equivalent) to ALA

– racy programs subject to temporal loops
– but correct programs pay for only what they need

MLS 21

Unorderable SFS Transactions
﻿ initially T2_used_x == false; x == 0
// T1 // T2
 C: atomic { // RL x
 t = prefetch(x)
A: x = 1
B: atomic { // RL x, T2_used_x
 f = T2_used_x
 a = x
 }
 T2_used_x = true // WL T2_used_x
 b = t
 }

 at end:
» A < B because a == 1
» B < C because of anti-dep
» C ‘<’ A because b == 0

 is B < C < B ok in
a buggy program?

MLS 22

Implementation

 We have publication / privatization-safe variants of
» TL2
» JudoSTM
» RingSTM
» “Sequence lock” (single orec) STM

 These achieve their safety in very different ways
 We are currently collecting data on the costs

of (S)SS and (S)FS

MLS 23

Outline
 Additional background

» implementation realities
» the publication / privatization problem
» non-solutions

 Candidate semantics
» serializability (database)
» lock-based [Menon et al.]
» ordering-based

 Distinguishing private use from error (time permitting)
 Conclusions / open questions

MLS 24

Privatization v. Errors
 Policy: by default, nontxnal use of X is an error if
X is ever accessed by more than one thread

 Require programmer to annotate private use
 But want to share code across contexts; can’t say

 p = private p->next
 Possible solution:

 p = private with next* head
 Define rules for propagation of privateness

» property of the reference, not the object
 Clone subroutines for realized combinations of

private and shared args

MLS 25

Truly Private v. Sharable
 Performance issue, not correctness
 Property of the object, not the reference
 Can be deduced in many cases by the compiler
 Can be checked at run time OW

» has cost, but often amortizable
 Can be refined to cover

» private and local to txn
» private and long-lived
» sharable but not yet used in current txn
» sharable and already read
» sharable and already written
» leaky?

MLS 26

Conclusions
 TM is not as easy as it looks (even to explain)
 Ordering-based semantics seem more promising than

lock-based
» positive experience from DB and language communities
» (relatively) simple rules on readable values

 Selective enforcement of txnal-nontxnal ordering
pays for publication/privatization only when needed

 Language and compiler integration of TM will be
essential

MLS 27

Open Questions
 Is there a restricted version of the

data race detection problem that
would be tractable & suited to TM?

 Are there verification issues that should
influence the choice of TM semantics?

 Are we on the right track with SFS?
 How do we verify that a TM implementation

provides the chosen semantics?
» ordering: A-C-I
» progress: deadlock freedom, hopefully livelock freedom,

ideally starvation freedom

www.cs.rochester.edu/research/synchronization/

