
MLS 3/8/09 1

Don’t Start with Dekker’s
Algorithm: Top-Down

Introduction of Concurrency

Michael L. Scott

Multicore Programming Education Workshop
8 March 2009

MLS 3/8/09 2

Bottom-Up Concurrency
  AKA Concurrency for Wizards
  Usually taught in the OS course

»  Dekker’s algorithm
»  Peterson’s algorithm
»  (maybe) Lamport’s bakery and fast (no contention) locks
»  TAS
»  T&TAS
»  (maybe) MCS
»  semaphores, monitors, (maybe) CCRs

MLS 3/8/09 3

But...

  Where did the threads come from?
  Why do I care?

(What are they for ?)
  Can mere mortals make

any of this work?

MLS 3/8/09 4

Concurrency First?

  Sequentiality as a special case
»  See Arvind’s talk after lunch
»  A backlash, perhaps, against concurrency for wizards

  I’m going to suggest an intermediate approach
»  Learn what you need when you need it
»  “Top-down”, but not “concurrency first”

MLS 3/8/09 5

Suggested Principles

  Integrate parallelism & concurrency into the whole
curriculum

  Introduce it gradually where it naturally fits
  Provide clear motivation and payoff at each step
  Recognize that

»  everybody needs benefits from multicore
»  many need to deal with events (concurrency)
»  some need to develop concurrent data structures
»  few need to implement synchronization mechanisms

or other race-based code

MLS 3/8/09 6

Thinking about Parallelism

  Is it more or less fundamental than sequentiality?
  May be a silly question

»  Dependences among algorithm steps form a partial order
»  I don’t care if you call it

–  a restriction of the empty order
–  or a relaxation of some total order

  Both are ways of thinking about the ordering of
algorithmic steps (state transformers)

MLS 3/8/09 7

Concurrency as Control Flow
  My languages text/course talks about

»  sequencing
»  selection
»  iteration
»  procedural abstraction
»  recursion
»  concurrency
»  exception handling

 and speculation
»  nondeterminacy

MLS 3/8/09 8

Top-Down Concurrency

parallel libraries

deterministic parallelism

event-driven thread-based message-based

low-level races

explicitly synchronized

MLS 3/8/09 9

  Use
»  par-do or spawn/sync w/compiler-

enforced dynamic separation
»  speculation in sequential programs
»  futures in pure functional languages
»  safe futures in impure languages

  And maybe
»  par-do, spawn/sync, or unsafe futures,

w/out enforced separation
»  HPF for-all

  Consider
»  locality
»  granularity
»  load balance
»  design patterns

  Straightforward

MLS 3/8/09 10

  Use
»  atomic blocks
»  PO-iterators
»  loop post-wait
»  map-reduce
»  condition sync
»  locks, monitors, CCRs
»  send/receive/rendezvous

  Consider
»  progress
»  happens-before
»  data race freedom
»  2-phase commit
»  consensus, self-

stabilization, Byzantine
agreement, etc.

MLS 3/8/09 11

  Build
»  implementation of threads,

locks, monitors, transactions,
etc.

»  nonblocking data structures
»  non-DRF algorithms

  Consider
»  memory models/

consistency
»  linearizability,

serializability
»  consensus

hierarchy

MLS 3/8/09 12

Where in the Curriculum?

languages, SW engg., sci. comp.

graphics, HCI,
web computing

computer literacy
data structures

networks,
dist. comp.

OS, arch., par. comp., DBMS

MLS 3/8/09 13

Motivation and Rewards

  Need clear payoff, at each step of the way,
to motivate further investment/refinement
»  speedup (even if modest, e.g., on 2-core machine)
»  clarity (for event-driven and naturally multithreaded

code)
  Will benefit greatly from access

to parallel machines
»  Simulators are lousy motivation
»  Niagara boxes are cheap

 

MLS 3/8/09 14

What Language Do We Use?

  Lamport: This is the wrong question.
»  “Imagine an art historian answering ‘how would you

describe impressionist painting?’ by saying ‘in French’.”

  MLS: This is the
wrong analogy.
»  Imagine an art

teacher answering
“how would you
introduce pointillism?”
by saying “in oils”.

  Notation matters!

MLS 3/8/09 15

Algol 68

[]REAL M = (0.0, 0.0);	
...	
BEGIN	
 M[0] := f(M[0]), # note comma	
 M[1] := g(M[1])	
END	

MLS 3/8/09 16

Java 5
static class A implements Runnable {	
 double M[];	
 A(double m[]) {M = m;}	
 public void run () {	
 M[0] = f(M[0]);	
 }	
}	
...	
double M[] = new double[2];	
ExecutorService pool = Executors.newFixedThreadPool(2);	
pool.execute(new A(M));	
pool.execute(new B(M));	
pool.shutdown();	
try {	
 boolean finished = pool.awaitTermination(10, TimeUnit.SECONDS);	
} catch (InterruptedException e) { }	

static class B implements Runnable {	
 double M[];	
 B(double m[]) {M = m;}	
 public void run () {	
 M[1] = g(M[1]);	
 }	
}	

MLS 3/8/09 17

C# 3.0

double[] M = new double[2];	
Parallel.Do(
 delegate { M[0] = f(M[0]); },	
 delegate { M[1] = g(M[1]); }	
);	

  Where are the other options?
»  production quality (with good IDE)
»  widely used (for practical-minded students)

MLS 3/8/09 18

Summary Recap

  Integrate parallelism & concurrency into the whole
curriculum

  Introduce it gradually where it naturally fits
  Provide clear motivation and payoff at each step
  Assign projects on real machines
  In real programming languages

www.cs.rochester.edu/research/synchronization/

