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Abstract. As the amount of on-chip cache increases as a result of
Moore’s law, cache utilization is increasingly important as the number
of processor cores multiply and the contention for memory bandwidth
becomes more severe. Optimal cache management requires knowing the
future access sequence and being able to communicate this information
to hardware. The paper addresses the communication problem with two
new optimal algorithms for Program-directed OPTimal cache manage-
ment (P-OPT), in which a program designates certain accesses as by-
passes and trespasses through an extended hardware interface to effect
optimal cache utilization. The paper proves the optimality of the new
methods, examines their theoretical properties, and shows the poten-
tial benefit using a simulation study and a simple test on a multi-core,
multi-processor PC.

1 Introduction

Memory bandwidth has become a principal performance bottleneck on modern
chip multi-processors because of the increasing contention for off-chip data chan-
nels. Unlike the problem of memory latency, the bandwidth limitation cannot
be alleviated by data prefetching or multi-threading. The primary solution is to
minimize the cache miss rate. Optimal caching is NP-hard if we consider com-
putation and data reorganization [8, 12]. If we fix the computation order and
the data layout, the best caching is given by the optimal replacement strat-
egy, MIN [2]. Since MIN cannot be implemented purely in hardware, today’s
machines use variations of LRU (least recently used) and random replacement.
This leaves room for significant improvement—LRU can be worse than optimal
by a factor proportional to the cache size in theory [14] and by a hundred folds
in practice [6].
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Recent architectural designs have added an interface for code generation at
compile time to influence the hardware cache management at run time. Beyls and
D’Hollander used the cache-hint instructions available on Intel Itanium to specify
which level of cache to load a data block into [5]. Wang et al. studied the use of
the evict-me bit, which, if set, informs the hardware to replace the block in the
cache first when space is needed [15]. The techniques improve cache utilization
by preserving the useful data in cache either explicitly through cache hints or
implicitly through the eviction of other data. The advent of collaborative cache
management raises the question of whether or not optimal cache management
is now within reach.

In the paper, we will prove that in the ideal case where the operation of each
access can be individually specified, two simple extensions to the LRU manage-
ment can produce optimal results. We will first discuss the optimal algorithm
MIN and its stack implementation OPT. We then describe a new, more efficient
implementation of OPT called OPT* and the two LRU extensions, bypass LRU
and trespass LRU, that use OPT* in off-line training and to generate annotated
traces for the two LRU extensions. We will show an interesting theoretical dif-
ference that bypass LRU is not a stack algorithm but trespass LRU is. Finally,
we will demonstrate the feasibility of program annotation for bypass LRU and
the potential improvement on a multi-core, multi-processor PC.

2 Two new optimal cache management algorithms

In this paper an access means a memory operation (load/store) at run time and
a reference means a memory instruction (load/store) in the executable binary.
An access is a hit or miss, depending whether the visited data element is in
cache immediately before the access.

The operation of an access has three parts: the placement of the visited
element, the replacement of an existing element if the cache is full, and the shift
of the positions or priorities of the other elements. The shift may or may not be
an actual action in the hardware, depending on implementation.

Following the classic model of Mattson et al. [11], we view cache as a stack
or an ordered array. The data element at the top of the array has the highest
priority and should be the last to evict, and the data element at the bottom is
the next to evict when space is needed.

The original MIN solution by Belady is costly to implement because it re-
quires forward scanning to find the cache element that has the furthest reuse [2].
Noting this problem, Mattson et al. described a two-pass stack algorithm, which
computes the forward reuse distance in the first pass and then in the second pass
maintains a priority list based on the pre-computed forward reuse distance [11].
Mattson et al. gave a formal proof the optimality in the 7-page appendix through
four theorems and three lemmata. They called it the OPT algorithm. The main
cost of OPT is the placement operation, which requires inserting an element into
a sorted list. In comparison, the cost of LRU is constant. It places the visited ele-
ment at the top of the LRU stack, which we call the Most Recently Used (MRU)
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Policies Placement Cost Shift Cost Replacement Cost Optimal? Stack Alg?
MIN constant none O(N + M) for forward Yes Yes

scanning plus selection
OPT O(M) list insertion O(M) update constant Yes Yes
LRU constant none constant No Yes
OPT* O(log M) list insertion none constant Yes Yes

bypass LRU constant none constant Yes No
trespass LRU constant none constant Yes Yes
Table 1. The time complexity of cache-management algorithms in terms of the
cost per access for placement, shift, and replacement operations. N is the length
of the trace, and M is the size of cache.

position, and it evicts the bottom element, which we call the Least Recently Used
(LRU) position.

Table 1 compares six cache-management algorithms mentioned in this paper,
where M is the cache size and N is the length of the access sequence. The first
three rows show the cost of MIN, OPT, and LRU, and the next three rows show
the algorithms we are to present: OPT*, bypass LRU, and trespass LRU. It
shows, for example, that the original OPT algorithm requires an update cost of
O(M) per data access, but OPT* needs no such update and that bypass and
trespass LRU have the same cost as LRU. Note that the cost is for the on-line
management. The two LRU extensions require running OPT* in the training
analysis. All but LRU can achieve optimal cache utilization. All but bypass
LRU are stack algorithms.

Bypass and Trespass LRU algorithms use training analysis to specify the
type of each cache access. Next we describe the three types of cache access and
the OPT* algorithm used in training.

2.1 Three Types of Cache Access

We describe the normal LRU access and define the hardware extensions for
bypass LRU access and trespass LRU access.

– Normal LRU access uses the most-recently used position for placement and
the least-recently used position for replacement
• Miss: Evict the data element Sm at LRU position (bottom of the stack)

if the cache is full, shift other data elements down by one position, and
place w, the visited element, in the MRU position (top of the stack). See
Figure 1.

• Hit: Find w in cache, shift the elements over w down by one position,
and re-insert w at the MRU position. See Figure 2. Note that search
cost is constant in associative cache where hardware checks all entries in
parallel.

– Bypass LRU access uses the LRU position for placement and the same posi-
tion for replacement. It is similar to the bypass instruction in IA64 [1] except
that its bypass demotes the visited element to LRU position when hit.
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Fig. 1. Normal LRU at a miss: w is
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Fig. 2. Normal LRU at hit: w, assum-
ing at entry S3, is moved to the top of
the stack
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Fig. 3. Bypass LRU at a miss: the by-
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stack, evicting Sm
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Fig. 4. Bypass LRU at a hit: the bypass
moves S3(w) to the bottom of the stack

• Miss: Evict Sm at the LRU position if the cache is full and insert w into
the LRU position. See Figure 3.

• Hit: Find w, lift the elements under w by one position, and place w in
the LRU position. See Figure 4.

– Trespass LRU access uses the most-recently used position for placement
and the same position for replacement. It differs from all cache replacement
policies that we are aware of in that both the cache insertion and eviction
happen at one end of the LRU stack.
• Miss: Evict the data element S1 at the MRU position if the cache is not

empty and insert w in the MRU position. See Figure 5.
• Hit: If w is in the MRU position, then do nothing. Otherwise, evict

the data element S1 at the MRU position, insert w there, and shift the
elements under the old w spot up by one position. See Figure 6.

2.2 OPT* Algorithm

Given a memory access sequence, the original OPT algorithm has two passes [11]:
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Fig. 5. Trespass LRU at a miss: the
trespass posits w at the top of the stack,
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Fig. 6. Trespass LRU at a hit: the tres-
pass raises S3(w) to the top of the stack,
evicting S1

– First pass: Compute the forward reuse distance for each access through a
backward scan of the trace.

– Second pass: Incrementally maintain a priority list based on the forward
reuse distance of the cache elements. The pass has two steps. First, if the
visited element is not in cache, find its place in the sorted list based on its
forward reuse distance. Second, after each access, update the forward reuse
distance of each cache element.

The update operation is costly and unnecessary. To maintain the priority list,
it is sufficient to use the next access time instead of the forward reuse distance.
At each point p in the trace, the next access time of data x is the logical time
of the next access of x after p. Since the next access time of data x changes
only at each access of x, OPT* stores a single next access time at each access
in the trace, which is the next access time of the element being accessed. OPT*
collects next access times through a single pass traversal of the trace. The revised
algorithm OPT* is as follows.

– First pass: Store the next reuse time for each access through a backward
scan of the trace.

– Second pass: Maintaining the priority list based on the next reuse time. It
has a single step. If the visited element is not in cache, find its place in the
sorted list based on its next access time.

The cost per operation is O(log M) for cache of size M , if the priority list
is maintained as a heap. It is asymptotically more efficient than the O(M) per
access cost of OPT. The difference is computationally significant when the cache
is large. While OPT* is still costly, it is used only for pre-processing and adds
no burden to on-line cache management.

2.3 The Bypass LRU Algorithm

In bypass LRU, an access can be a normal access or a bypass access, which are
described in Section 2.1. The type of each access is determined using OPT* in



6 P-OPT: Program-directed Optimal Cache Management

the training step. To ensure optimality, the trace of the actual execution is the
same as the trace used in training analysis. For each miss in OPT*, let d be the
element evicted and x be the last access of d before the eviction, the training
step would tag x as a bypass access. After training, the untagged accesses are
normal accesses.

The training result is specific to the cache size being used. We conjecture
that the dependence on cache size is unavoidable for any LRU style cache to
effect optimal caching. The result is portable, in the sense that the performance
does not degrade if an implementation optimized for one cache size is used on a
machine with a larger cache. A compiler may generate code for a conservative
size at each cache level or generate different versions of the code for different
cache sizes for some critical parts if not whole application. Finally, the training
for different cache sizes can be made and the access type specified for each cache
level in a single pass using OPT*.

Two examples of bypass LRU are shown in Table 2 to demonstrate the case
where the cache is managed with the same constant cost per access as LRU, yet
the result is optimal, as in OPT*.

Bypass LRU is not a stack algorithm This is shown using a counter exam-
ple. By comparing the two sub-tables in Table 2, we see that at the first access
to e, the stack content, given in bold letters, is (e,d) in the smaller cache and
(e, c, b) in the larger cache. Hence the inclusion property does not hold and
bypass LRU is not a stack algorithm [11].

(a) cache size = 2

Trace a b c d d c e b e c d

Bypasses X X X X X X

Bypass c d c d e b b b d
LRU Stack a b c d c d e e c b

Misses 1 2 3 4 5 6 7 8

OPT* a b c d d c e b e c d
Stack a b c c d c e b b b

Misses 1 2 3 4 5 6 7 8

(b) cache size = 3

Trace a b c d d c e b e c d

Bypasses X X X

Bypass b c d c c e b e e d
LRU b c b b c e b b e
Stack a b d d b c c c b

Misses 1 2 3 4 5 6

a b c d d c e b e c d
OPT* a b c c d c e b e e
Stack a b b b b c c b b

Misses 1 2 3 4 5 6

Table 2. Two examples showing bypass LRU is optimal but is not a stack
algorithm

Bypass LRU is optimal In Figure 2, bypass LRU has the same number of
cache misses as OPT*, which is optimal. We next prove the optimality for all
traces.

Lemma 1 If the bottom element in the bypass LRU stack is last visited by a
normal access, then all cache elements are last visited by some normal accesses.
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Proof. If some data elements are last visited by bypass accesses, then they appear
only at the bottom of the stack. They can occupy multiple positions but cannot
be lifted up over an element last visited by a normal access. Therefore, if the
bottom element is last visited by a normal access, all elements in the cache must
also be.

Theorem 1 Bypass LRU generates no more misses than OPT*. In particular,
bypass LRU has a miss only if OPT* has a miss.

Proof. We show that there is no access that is a cache hit in OPT* but a miss in
Bypass LRU. Suppose the contrary is true. Let z′ be the first access in the trace
that hits in OPT* but misses in Bypass LRU. Let d be the element accessed
by z′, z be the immediate previous access to d, and the reference trace between
them be (z, ..., z′).

The access z can be one of the two cases.

– z is a normal access. For z′ to miss in bypass LRU, there should be a miss y
in (z, ..., z′) that evicts d. From the assumption that z′ is the earliest access
that is a miss in bypass LRU but a hit in OPT*, y must be a miss in OPT*.
Consider the two possible cases of y.
• y occurs when the OPT* cache is partially full. Since the OPT* cache

is always full after the loading of the first M elements, where M is the
cache size, this case can happen only at the beginning. However, when
the cache is not full, OPT* will not evict any element. Hence this case
is impossible.

• y occurs when the OPT* cache is full. The element d is at the LRU
position before the access of y. According to Lemma 1, the bypass LRU
cache is full and the last accesses of all data elements in cache are normal
accesses. Let the set of elements in cache be T for bypass LRU and T ∗ for
OPT*. At this time (before y), the two sets must be identical. The reason
is a bit tricky. If there is an element d′ in the bypass LRU cache but not
in the OPT* cache, d′ must be replaced by OPT* before y. However,
by the construction of the algorithm, the previous access of d′ before y
should be labeled a bypass access. This contradicts to the lemma, which
says the last access of d′ (and all other elements in T ) is normal. Since
both caches are full, they must be identical, so we have T = T ∗. Finally,
y in the case of OPT* must evict some element. However, evicting any
element other than d would violate our lemma. Hence, such y cannot
exist and this case is impossible.

– z is a bypass access in Bypass LRU. There must be an access y ∈ (z, ..., z′)
in the case of OPT* that evicts d; otherwise z cannot be designated as a
bypass. However, in this case, the next access of d, z′ cannot be a cache hit
in OPT*, contradicting the assumption that z′ is a cache hit in OPT*.

Considering both cases, it is impossible for the same access to be a hit in
OPT* but a miss in bypass LRU.
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Since OPT* is optimal, we have the immediate corollary that bypass LRU
has the same number of misses as OPT* and is therefore optimal. In fact, the
misses happen for the same accesses in bypass LRU and in OPT*. Last, we show
that Bypass LRU as a cache management algorithm has a peculiar feature.

Corollary 1 Although Bypass LRU is not a stack algorithm, it does not suffer
from Belady anomaly [3], in which the number of misses sometimes increases
when the cache size becomes larger.

Proof. OPT is a stack algorithm since the stack content for a smaller cache is
a subset of the stack content for a larger cache [11]. The number of misses of
an access trace does not increase with the cache size. Since bypass LRU has the
same number of misses as OPT*, it has the same number of misses as OPT and
does not suffer from Belady anomaly.

2.4 The Trespass LRU Algorithm

In trespass LRU, an access can be a normal access or a trespass access. The
two obvious choices for efficient LRU stack replacement are evicting from the
bottom, as in bypass LRU just described, or evicting from the top, as in trespass
LRU. Both are equally efficient at least asymptotically. We will follow a similar
approach to show the optimality of trespass LRU. The main proof is actually
simpler. We then show an unexpected theoretical result—trespass LRU is a stack
algorithm, even though bypass LRU is not.

Similar to bypass LRU, trespass LRU uses a training step based on simulating
OPT* for the given cache on the given trace. For each miss y in OPT*, let d be
the evicted cache element and x be the last access of d before y. The training
step tags the access immediately after x as a trespass access. It is trivial to show
that such an access exists and is unique for every eviction in OPT*.

Two example executions of trespass LRU execution are shown in Table 3 for
the same trace used to demonstrate bypass LRU in Table 2. .

Trespass LRU is Optimal The effect of a trespass access is less direct than
that of a bypass access. We need four additional lemmata. First, from the way
trespass accesses are identified, we have

Lemma 2 If a data element w is evicted by a trespass access x, then x happens
immediately after the last access of w.

Lemma 3 If a data element is in trespass LRU cache at point p in the trace,
then the element is also in OPT* cache at p.

Proof. Assume that a data element w is in the trespass LRU cache but is evicted
from the OPT* cache. Let x be the last access of w. Consider the time of the
eviction in both cases. The eviction by trespass LRU happens right after x. Since
the eviction by OPT* cannot be earlier, there must be no period of time when
an element w is in the trespass LRU cache but not in the OPT* cache.
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(a) cache size = 2

Trace a b c d d c e b e c d

Trespasses X X X X X X

Trespass a b c d d c e b e c d
LRU Stack c c e b b b

Misses 1 2 3 4 5 6 7 8

OPT* a b c d d c e b e c d
Stack a b c c d c e b b b

Misses 1 2 3 4 5 6 7 8

(b) cache size = 3

Trace a b c d d c e b e c d

Trespasses X X X

Trespass a b c d d c e b e c d
LRU b c c b c e b e e
Stack b b b c c b b

Misses 1 2 3 4 5 6

a b c d d c e b e c d
OPT* a b c c d c e b e e
Stack a b b b b c c b b

Misses 1 2 3 4 5 6

Table 3. Two examples showing trespass LRU is optimal and is a stack algo-
rithm (unlike bypass LRU)

Lemma 4 If a data element is evicted by a normal access in trespass LRU, then
the cache is full before the access.

This is obviously true since the normal access cannot evict any element unless
the cache is full. Not as obvious, we have the following

Lemma 5 A normal access cannot evict a data element from cache in trespass
LRU.

Proof. Assume y is a normal access that evicts data w. Let T and T ∗ be the set
of data elements in the Trespass LRU cache and the OPT* cache before access
y. By Lemma 3, T ⊆ T ∗. By Lemma 4, the Trespass LRU cache is full before
y. Then we have T = T ∗. In OPT*, y has to evict some element d ∈ T ∗. Let x
be the last access of d before y. Since Trespass LRU evicts d right after x, the
content of the cache, T and T ∗ cannot be the same unless y is the next access
after x, in which case, d is w, and y must be a trespass access.

Theorem 2 Trespass LRU generates no more misses than OPT*. In particular,
trespass LRU has a miss only if OPT* has a miss.

Proof. We show that there is no access that is a cache hit in OPT* but a miss in
trespass LRU. Suppose the contrary is true. Let z′ be the first access in the trace
that hits in OPT* but misses in Trespass LRU. Let d be the element accessed
by z′, z be the immediate previous access to d, and the reference trace between
them be (z, ..., y, ..., z′), where y is the access that causes the eviction of d in
trespass LRU.

By Lemma 5, y is a trespass access. By Lemma 2, y happens immediately
after z. Since y is a trespass after z, then the next access of d, z′ must be a miss
in OPT*. This contradicts the assumption that z′ is a hit in OPT*. Therefore,
any access that is a miss in trespass LRU must also be a miss in OPT*.

Corollary 2 Trespass LRU has the same number of misses as OPT* and is
therefore optimal.
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Trespass LRU is a stack algorithm Given that bypass LRU is not a stack
algorithm, the next result is a surprise and shows an important theoretical dif-
ference between trespass LRU and bypass LRU.

Theorem 3 Trespass LRU is a stack algorithm.

Proof. Assume there are two caches C1 and C2. C2 is larger than C1, and the
access sequence is Q = (x1, x2, ..., xn). Let T1(t) be the set of elements in cache
C1 after access xt and T2(t) be the set of elements in cache C2 after the same
access xt. The initial sets for C1 and C2 are T1(0) and T2(0), which are empty
and satisfy the inclusion property. We now prove the theorem by induction on t.

Assume T1(t) ⊆ T2(t) (1 ≤ t ≤ n − 1). There are four possible cases based
on the type of the access xt+1 when visiting either of the two caches. We denote
the data element accessed at time xi as D(xi).

– If xt+1 is a trespass access both in C1 and C2, we have

T1(t + 1) = T1(t)−D(xt) + D(xt+1)
⊆ T2(t)−D(xt) + D(xt+1)
= T2(t + 1)

– If xt+1 is a trespass access in C1 but a normal access in C2, then by Lemma 5,
xt+1 does not cause any eviction in cache C2 and therefore

T1(t + 1) = T1(t)−D(xt) + D(xt+1)
⊆ T2(t) + D(xt+1)
= T2(t + 1)

– The case that xt+1 is a normal access in C1 but a trespass access in C2 is
impossible. Since xt+1 is a trespass in C2, D(xt) would be evicted by some
access y in C2 using OPT*. However, xt+1 is a normal access in C1, which
means that D(xt) is in C1 after access y when using OPT*. This in turn
means that at the point of y, the inclusion property of OPT* no longer
holds and contradicts the fact that OPT* is a stack algorithm.

– If xt+1 is a normal access both in C1 and C2, then by Lemma 5, xt+1 does
not cause an eviction either in C1 or C2, and therefore

T1(t + 1) = T1(t) + D(xt+1)
⊆ T2(t) + D(xt+1)
= T2(t + 1)

From the induction hypothesis, the inclusion property holds for Trespass
LRU for all t.

The next corollary follows from the stack property.

Corollary 3 Trespass LRU as a cache management algorithm does not suffer
from Belady anomaly [3].
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In Table 3, we have revisited the same data trace used to show that bypass
LRU was not a stack algorithm. It shows that the inclusion property holds when
trespass LRU is used. The example also shows that trespass LRU cache can
become partially empty after it becomes full. Trespass LRU keeps the visited
data element and the data elements that will be visited. When the amount of
data that have a future reuse is less than the cache size, OPT* and bypass LRU
may contain extra data elements that have no future reuse. In OPT* the extra
data do not destroy the inclusion property, but in bypass LRU they do.

2.5 Limitations

Bypass LRU and trespass LRU solve the problem of efficient on-line cache man-
agement, but their optimality depends on specifying the type of individual ac-
cesses, which is not feasible. In practice, however, a compiler can use transfor-
mations such as loop splitting to create different memory references for different
types of accesses. We will show this through an example in the next section.

Another problem is the size of program data may change in different exe-
cutions. We can use the techniques for predicting the change of locality as a
function of the input [9, 16] and use transformations such as loop splitting to
specify caching of only a constant part of the (variable-size) program data.

Throughout the paper, we use the fully associative cache as the target. The
set associative cache can be similarly handled by considering it as not just one
but a collection of fully associative sets. All the theorems about the Bypass and
Trespass LRU hold for each fully associative set, and the optimality results stay
the same, so are the stack properties.

The training analysis can also be extended naturally to tag bypass or trespass
accesses for each set. There is an additional issue of the data layout, especially
if it changes with the program input. Though we have not developed any con-
crete solutions, we believe that these problems can be approached by more so-
phisticated training, for example, pattern analysis across inputs, and additional
program transformations such as loop splitting.

Bypass LRU is better than trespass LRU because the latter is sensitive to the
order of accesses. It is possible that a trespass access is executed at an unintended
time as a result of instruction scheduling by the compiler and the out-of-order
execution by the hardware. In comparison, the effect of bypass is not sensitive
to such reordering.

3 The Potential Improvements of P-OPT

3.1 A Simulation Study

While controlling the type of each access is impractical, we may use simple
transformations to approximate bypass LRU at the program level based on the
result of training analysis. Assume the fully associative cache has 512 blocks,
and each block holds one array element. The code in Figure 7, when using
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int a[1000]

for(j=1;j<=10;j++)

for(i=1;i<=997;i++)

a[i+2]=a[i-1]+a[i+1];

Fig. 7. Original Code

int a[1000]

for(j=1;j<10;j++) {
for(i=1;i<=509;i++)

a[i+2]=a[i-1]+a[i+1];

for(;i<=996;i++)

a[i+2]=a[i-1]+a[i+1];

for(;i<=997;i++)

a[i+2]=a[i-1]+a[i+1];

}

Fig. 8. Transformed Code

LRU, causes 10000 capacity misses among the total 29910 accesses. The minimal
number of misses is half as much or, to be exact, 5392, given by OPT*. There
are three array references in the original loop. OPT* shows that the accesses by
reference a[i+1] are all normal accesses except for three accesses. The accesses
by reference a[i+2] are all normal accesses. Finally reference a[i-1] has a cyclic
pattern in every 997 accesses with about 509 normal accesses and 488 bypass
accesses in each period.

Based on the training result, we split the loop into three parts as shown
in Figure 8. In the first loop, all three references are normal references, which
means the accesses by them are all normal accesses. In the second loop, the
references a[i+1] and a[i+2] are normal references but reference a[i-1] is tagged
with the bypass bit, which means that it is a bypass reference and its accesses are
all bypass accesses. In the third loop, the references a[i+2] are normal references
but references a[i-1] and a[i+1] are bypass references. The transformed program
yields 5419 cache misses, an almost half reduction from LRU and almost to same
as the optimal result of 5392 misses. After the transformation, it looks like we
retain the first part of array a in cache but bypass the second part. Effectively
it allocates the cache to some selected data to utilize cache more efficiently.

Not all programs may be transformed this way. Random access is an obvious
one for which optimal solution is impossible. However, for regular computations,
this example, although simple, demonstrates that P-OPT with training based
bypass LRU may obtain near optimal cache performance.

3.2 A Simple But Real Test

We use a program which repeatedly writes to a contiguous area the size of which
is controlled by the input as the data size. The access has the large stride of 256
bytes so the average memory access latency is high. The second input parameter
to the program is the retainment size specifying how large piece of data should
be retained in the cache. Since the access to the rest of the data takes space
in cache, the retainment size is smaller than the cache size. Considering the
set-associativity of the cache structure, we set the retainment size to 3

4 of the
total cache size. When multiple processes are used, the total retainment size is
divided evenly among them. Our testing machine has two Core Duo chips, so
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Fig. 9. Ratio of running time between using bypassing stores and using normal
stores in 4 processes. The lower the ratio is, the faster the bypassing version.
The machine has two Intel Core Duo processors, and each has two 3GHz cores
and 4MB cache.

cache contention only happens when four processes run together. In that case,
we give half of the total retainment size to each process. The running time is
measured for 50 million memory accesses.

Figure 9 shows the effect of cache bypassing running four processes. The
instruction movnti on Intel x86 processors is used to implement the cache by-
passing store. With four processes and contention for memory bandwidth, the
improvement is observed at 3.2MB and higher data sizes. The worst is 4% slow-
down at 3.8MB, the best is 24% at 4.8MB, and the average is 13%. The result is
tantalizing: the bypassing version runs with 13% less time or 15% higher speed,
through purely software changes. Our store bypassing is a heuristic that may not
be optimal. Therefore the potential improvement from bypass LRU is at least
as great, if not greater.

4 Related Work

The classic studies in memory management [2,11] and self-organizing data struc-
tures [14] considered mostly uniform data placement strategies such as LRU,
OPT, and MIN. This paper establishes a theoretical basis for selective replace-
ment strategies that are optimal yet can be implemented on-line with the same
cost as LRU. The cost of annotation is shifted to an off-line step.

The use of cache hints and cache bypassing at the program level is pioneered
by two studies in 2002. Beyls and D’Holander used a training-based analysis
for inserting cache hints [4]. By instructing the cache to replace cache blocks
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that have long-distance reuses, their method obtained 9% average performance
improvement on an Intel Itanium workstation [4]. Wang et al. published a set
of compiler techniques that identified different data reuse levels in loop nests
and inserted evict-me bits for references for which the reuse distance was larger
than the cache size [15]. Beyls and D’Holander later developed a powerful static
analysis (based on the polyhedral model and integer equations and called reuse-
distance equations) and compared it with training-based analysis for scientific
code [5].

Our scheme differs from the two earlier methods because bypass and trespass
LRU are designed to preserve in cache data blocks that have long-distance reuses.
Intuitively speaking, the goal of the previous methods is to keep the working
set in the cache if it fits, while our goal is to cache a part of the working set
even if it is larger than cache. At the implementation level, our method needs to
split loop iterations. Beyls and D’Holander considered dynamic hints for caching
working sets that fit in cache [5]. Qureshi et al. recently developed a hardware
scheme that selectively evicted data based on the predicted reuse distance [13].
The study showed significant benefits without program-level inputs. As a pure
run-time solution, it naturally incorporates the organization of the cache and
the dynamics of an execution, but it is also inherently limited in its predictive
power.

One important issue in training based analysis is the effect of data inputs.
Fang et al. gave a predictive model that predicted the change of the locality
of memory references as a function of the input [9]. They showed on average
over 90% accuracy across program inputs for 11 floating-point and 11 integer
programs from the SPEC2K CPU benchmark suite. Their result suggested that
training based analysis can accurately capture and exploit the reuse patterns at
the memory reference level. Marin and Mellor-Crummey demonstrated the cross-
input locality patterns for larger code units such as loops and functions [10].
In addition for scientific code, compiler analysis can often uncover the reuse-
distance pattern, as demonstrated by Cascaval and Padua [7] and Beyls and
D’Holander [5], and eliminate the need of training analysis.

5 Summary

In this paper we have presented two new cache management methods, bypass
LRU and trespass LRU, which are programmable by software, require similar
hardware support as LRU, and may produce the same result as optimal cache
management. Bypass LRU is not a stack algorithm while trespass LRU is. Both
require training analysis, for which we have presented OPT*, asymptotically the
fastest implementation of optimal cache management. We have demonstrated
preliminary evidence that bypass LRU can be effectively used by a combination
of off-line training and program transformation. The better utilization of cache
has led to significant performance improvement for parallel memory traversals
on multi-core processors.
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