Architecture Support for Data Isolation & Memory Monitoring

Arvind Shriraman, Sandhya Dwarkadas, and Michael L. Scott
Department of Computer Science, University of Rochester

Motivation
- Multi-core processors based on shared memory programming will soon dominate the computing spectrum
 - Programmer’s view
- Coordinating and synchronizing data shared across multiple threads is hard
- Tracking memory location accesses is difficult because of transparent coherence events
- Cannot issue speculative operations to memory because hardware protocol does not support undoing of writes

Shared Memory ++
- Memory Monitoring (MM) provides read/write access summaries of code blocks
 - event-style notification of desired coherence events
- Apps: Reliability, Security, Watchpoints, and Debugging

Data Isolation (DI)
- allows control over propagation of writes to remote threads
- buffer written locations and commit and undo as an atomic unit
- Apps: Sand-boxing, Transactional programming. Speculation

DIMM Hardware Support
- Decoupled hardware primitives for DIMM help
 - refine architecture incrementally
 - software evolve the API and use in varying applications
 - decouple policy from mechanism
- Memory Monitoring primitives
 - Alert-On-Update, precise but bounded size
 - Signatures: impure but unbounded
 - CST: track inter-processor conflicts for all watched locations
- Data Isolation primitives
 - PDI: private caches speculate-write buffer
 - Redo-Log: holds cache overflows in virtual memory

Conclusion
- Data-Isolation and Memory-Monitoring primitives will help multi-core chips achieve widespread use across traditional and emerging application domains
- Decoupling the hardware components will help refine the architecture incrementally and help software evolve the API
- Use simple hardware to accelerate the common case, architecture incrementally and help software evolve the API

Other Uses
- Synchronization: fast mutexes and asynchronous messages
- Debugging: watchpoints and race detectors
- Security: buffer overflow attacks, information-flow trackers & drivers/plug-in isolation
- Speculation: thread-level speculation and lock elision

Web: http://www.cs.rochester.edu/research/cosyn/

Email: ashiriram, sandhya, scott)@cs.rochester.edu