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Abstract

In the search for high performance, most transactional memory (TM) systems execute atomic blocks
concurrently and must thus be prepared for data conflicts. These conflicts must be detected and the
system must choose a policy in terms of when and how to manage the resulting contention. Conflict
detection essentially determines when the conflict manager is invoked, which can be dealt with eagerly
(when the transaction reads/writes the location), lazily at commit time, or somewhere in between.

In this paper, we analyze the interaction between conflict detection and contention manager heuris-
tics. We show that this has a significant impact on exploitation of available parallelism and overall
throughput. First, our analysis across a wide range of applications reveals that simply stalling before
arbitrating helps side-step conflicts and avoid making the wrong decision. HTM systems that don’t sup-
port stalling after detecting a conflict seem to be prone to cascaded aborts and livelock. Second, we show
that the time at which the contention manager is invoked is an important policy decision: lazy systems
are inherently more robust while eager systems seem prone to pathologies, sometimes introduced by the
contention manager itself. Finally, we evaluate a mixed conflict detection mode that combines the best
of eager and lazy. It resolves write-write conflicts early, saving wasted work, and read-write conflicts
lazily, allowing the reader to commit/serialize prior to the writer while executing concurrently.

1 Introduction

In order to utilize transactional memory (TM), at the high level a programmer or compiler simply marks
sections of code as atomic. The underlying system (1) ensures memory updates by the atomic section are
seen to occur in an “all-or-nothing” manner, (2) maintains isolation with respect to other transactions, and (3)
guarantees data consistency. Essentially, the higher level system is guaranteed to see all transactions in some
global serial order. In order to maximize performance, most TM systems execute transactions concurrently
and must thus be prepared for data conflicts (which might break the illusion of serializability). A conflict is
said to have occurred between two or more concurrent transactions when they access the same location and
at-least one of them is a write.

Currently there is very little consensus on the right way to implement transactions. Hardware proposals
display less variation than software proposals. However, this stems in large part not from a clear analysis
of the tradeoffs, but rather from a tendency to embed more straightforward policies in hardware. In general,
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TM research to a large extent has focused on implementation tradeoffs, performance issues, and correctness
constraints while assuming conflicts are infrequent. Table 1 shows that the assumption that conflicts are
infrequent doesn’t seem to hold for the first wave of TM applications that employ coarse-grain transactions.
This paper seeks to analyze the interaction of TM design decisions with the existence of conflicts and make
recommendations on appropriate policies. In the absence of conflicts, policy decisions take a backseat and
most systems perform similarly. However, in the presence of conflicts, performance varies widely (orders
of magnitude, see Section 7) based on conflict resolution policy. We focus on the interaction between
two design decisions that affect performance in the presence of conflicts, conflict detection and contention
management. We will now informally describe these two critical design decisions.

Table 1: Transaction Conflict Rate
Benchmark % Conf. tx Benchmark % Conf. Tx
Bayes 85% Vacation 73%
Delaunay 85% STMBench7 68%
Intruder 90% LFUCache 95%
Kmeans 15% Graph 94%
% Conf. tx - Fraction of total txs that encounter a conflict
see Section 6 for Workload description

Conflict detection refers to the mechanism by which data conflicts are identified. TM systems record the
locations read and written in order to check for overlap. Conflict detection policies vary based on when
the read, write sets are examined to detect overlap. In eager systems (pessimistic) the TM system detects a
conflict when a transaction accesses a location. In lazy systems (optimistic), the transaction that reaches its
commit point first will detect the conflict. We study the tradeoffs between these two policies in detail and
show that the best policy is mixed, advocating the use of different policies for reads and writes.

Contention management is the other design dimension that we explore in this paper. Once a conflict is
detected, the TM system invokes the contention manager which determines the response action. It employs
a set of heuristics to decide which transaction has to stall/retry and which can progress. Its actions are
different based on whether it was invoked before the conflict occurred (eager systems) or at commit (lazy
systems). The job of a good contention manager is to mediate access to conflicting locations and maximize
throughput while ensuring some level of fairness.

We employ the recently developed hardware-accelerated TM framework, FlexTM [23], to analyze the
interaction between conflict detection and contention management.1 Some form of hardware support for
TM seems inevitable and has already started to appear. [24] However, there seems to be very little under-
standing and analysis of TM policies in a HTM context. Our work seeks to remedy this situation. Armed
with a reasonable set of transactional workloads and a base TM system that supports flexible conflict and
contention management policy, we attempt to answer some fundamental questions (1) Which conflict detec-
tion policy is good? (2) Which contention manager should we deploy? Our study makes the following key
contributions. First, we analyze the influence of introducing backoff (stalling) into the contention manager
and how it affects deadlock/livelock issues. As part of this we discovered that a requester-always wins pol-
icy (w/o backoff)2, introduces cascaded aborts and livelock. Second, we implement and compare a variety
of contention manager heuristics and their interaction with conflict detection. Finally, we present a novel
mixed conflict detection policy that combines the best features of eager and lazy. It resolves write-write
conflicts eagerly to save wasted work and resolves read-write conflicts lazily to exploit concurrency.

1Section 4 enumerates the reasons why we choose FlexTM.
2Base policy in the best-effort TM of Rock. [24]
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2 Contention Manager Basics

We briefly define the terms and describe the options available to a contention manager when invoked under
various conflict scenarios.

The contention manager (CM) is called upon any conflict and has to choose from a range of actions when
interacting with the different conflict detection schemes. In abstract, the objective of a contention manager
can be described as (1) If possible, don’t abort a transaction in favor of one that has a lower likelihood of
committing, and (2) If possible, don’t abort transactions that have done a lot of work already. The contention
manager is decentralized and is invoked by the transaction that detects the conflict, which we’ll label the
attacking transaction (Ta). The other transaction that participates in the arbitration is labeled the enemy
transaction (Te). On a conflict, the attacker invokes the contention manager, which decides the order it

wants to serialize them (based on some heuristic), Ta
be f ore−−−→ Te or Te

be f ore−−−→ Ta. The actions carried out by
the contention manager may also depend on when it was invoked, i.e., the conflict detection mode.

There are primarily two conflict detection modes, Eager and Lazy, which vary in their approach to con-
current accesses. Eager mode enforces the single-writer rule and allows only multiple-readers while Lazy
mode permits multiple writers and multiple readers to coexist until a commit. Transactions need to acquire
exclusive permission to the written locations sometime prior to commit. Eager systems acquire this permis-
sion at the time of the access and Lazy systems acquire this permission at the time of the commit 3 Thus,
Eager helps save wasted work via early detection of transactions that cannot concurrently commit, for ex-
ample, two transactions writing to the same location. However, in Eager the attacker might abort an enemy
only to be aborted later. In Lazy mode, it is only when the attacker is ready to commit that it aborts enemies,
thereby reducing the window of opportunity for cascaded aborts. Furthermore, in Lazy mode, it is possible
for readers to commit when concurrently executed with potential writer attackers by executing the commit
protocol earlier in time. Figure 1 shows the generic set of options available to a contention manager. We
now discuss in detail the option exercised for a specific conflict type. Table 2 summarizes the details. Any
transaction can encounter three types of conflicts: Read-Write, Write-Read, or Write-Write. We consider
these in order.
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WAITa - Backoff on conflict in Eager systems
WAITc - Backoff before commit in Lazy systems
ABrem - Abort remote transaction
ABsel f - Self abort
COsel f - Commit the transaction

Figure 1: Contention Manager Actions

Read-Write: Read-Write conflicts are noticed by reader transactions, where the reader plays the role of
the attacker. If in Eager mode, the contention manager can try to avoid the conflict by waiting and allowing
the enemy transaction to commit before it reads. Alternatively, it could take the action of either (1) ABsel f
to release isolation on other locations it may have accessed or (2) ABrem on the writer in-order to make
progress. With Lazy systems, when the reader reaches the commit point, the reader can commit without
conflict.

3There is, of course, a sliding scale between acquire and commit time, but we have chosen the two end points for evaluation.
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Write-Read: A Write-Read conflict at the high level is the same as Read-Write, except that the writer
takes on the mantle of the attacker. If the contention manager decides to commit the reader before the writer
then the writer has to stall irrespective of the conflict detection scheme (Eager or Lazy ). Eager systems
would execute a WAITa while Lazy systems would execute a WAITc only if the reader has not committed
prior to the writer’s commit. If the writer is to serialize ahead of the reader, the only option available is to
abort the reader. In this scenario aborting early in Eager systems might potentially save more wasted work.

Write-Write: Unlike read-write or write-read conflicts, there is no serial history in which both transac-
tions can concurrently commit. One of them has to abort. However, since Eager systems manage conflicts
before access, they can WAITa until the conflicting transaction commits. Lazy systems have no such option
and in this case will waste work. Both Eager and Lazy may also choose to abort either transaction.

Table 2: Contention Manager and Conflict Detection Interaction
Objective Ta

be f ore−−−−→ Te Te
be f ore−−−−→ Ta

E L E L
R(Ta)-W(Te) ABrem : Te COsel f : Ta WAITa : Ta WAITc : Ta
W(Ta)-R(Te) WAITa : Ta WAITc : Ta ABrem : Te ABrem : Te
W(Ta)-W(Te) WAITa : Ta WAITc : Ta ABrem : Ta ABrem : Ta
R(tx) - Tx has read the location; W(tx) - Tx has written location
Ta - Attacker transaction manages conflict; Te - At-
tacker’s conflicting enemy transaction

3 Related Work

The seminal DSTM paper by Herlihy et al. [12] introduced the concept of “contention management”. They
put forth the notion that obstruction-free algorithms enable the separation of correctness (no deadlock) and
progress conditions (avoidance of livelock), and that a contention manager is expected to help only with
the latter. Scherer et al. [20] investigated a collection of arbitration heuristics on the DSTM framework.
Each thread has its own contention manager and on conflicts, transactions gather information (e.g., priority,
read/write set size, number of aborts) to decide whether aborting enemy transactions will improve system
performance. This study did not evaluate an important design choice available to the contention manager,
that of conflict resolution time (i.e., Eager or Lazy). Shriraman et al. [22] and Marathe et al. [14] observed
that laziness in conflict resolution can significantly improve the throughput for certain access patterns. How-
ever, these studies did not evaluate contention management. In addition, evaluation in all these studies was
limited to microbenchmarks. Scott [21] presents a classification of possible conflict detection modes, in-
cluding the mixed mode, but does not discuss or evaluate implementations.

Contention management can also be viewed as a scheduling problem. Yoo et al. [26] and CAR-STM [6]
use centralized queues to order and control the concurrent execution of transactions. These queueing tech-
niques preempt conflicts and save wasted work by serializing the execution of conflicting transactions. Yoo
et al. [26] use a single system-wide queue and control the number of transactions that run concurrently
based on the conflict rate in the system. Dolev et al. [6] use per-processor transaction issue queues to
serially execute transactions that are predicted to conflict. While they can save wasted work, these cen-
tralized scheduling mechanisms require expensive synchronization and could unnecessarily hinder existing
concurrency. Furthermore the existing scheduling mechanisms serialize transactions on all types of conflict.
Serializing transactions that only have read-write overlap significantly hurts throughput and could lead to
convoying [1, 23].

It would be fair to say that hardware supported TM systems have mainly focused on implementation
tradeoffs and have largely ignored contention manager issues. Bobba et al. [1] demonstrated the occur-
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rence of certain types of performance pathologies when transaction conflicts interplay with specific conflict
resolution and versioning policies.

In this paper, we analyze the interplay between contention manager heuristic and conflict detection time
across a wide variety of benchmarks. Our results indicate that (1) Lazy systems are typically more robust and
less reliant on the contention manager than Eager systems; (2) backoff (or stalling) is a simple but important
optimization that helps eliminate conflicts in some instances. Simple conflict policies as implemented by
ROCK [24] for best-effort transactions (requester wins without backoff) are prone to cascaded aborts; and
(3) The best performing conflict resolution mode is a hybrid between Eager and Lazy. Scott defines the
semantics and behavior expected from this style of mixed conflict detection. [21]

4 FlexTM Framework

We used the recently-proposed FlexTM transactional memory framework in this study [23]. It provides a set
of decoupled hardware primitives that each have a well-defined API to put software in charge of controlling
TM policy. Specifically, it deploys four decoupled hardware primitives: (1) Bloom filter signatures [2, 25]
to track an unbounded number of a transaction’s read and written locations; (2) conflict summary tables
(CSTs) to concisely capture conflicts between transactions and expose them to the contention manager; (3)
transactional caches that buffer speculative data along with a hardware-maintained hash-table to capture
overflows; and (4) RTM’s Alert-On-Update [22] that tracks invalidation of marked cache lines and triggers
handlers to help transactions detect when they are aborted. We describe how each of these mechanisms
interact to support transactions.

Versioning: FlexTM buffers transactional writes and makes them visible only at commit time. Bounded
transactions can use private L1 caches to buffer transactional data and eliminate buffering-copyback over-
head. Note that the old value is resident in cache coherent memory at the shared level, and can be supplied to
concurrent accessors. Transactional data overflows from the cache are maintained by a hardware controller
in a hash table which is allocated/deallocated by software. Data is bypassed from the overflow table on
subsequent access. To commit, cache-buffered data just require a flash-update of the state while the hash
table buffered entries need to be flushed back to the original locations.

Conflict Detection: To maintain read and write sets for a large number of locations every processor
maintains a read signature (Rsig) and a write signature (Wsig) for the current transaction. Signatures are
updated by the processor on transactional loads (TLoads) and stores (TStores). The cache controller checks
these signatures on forwarded coherence messages and responds with the appropriate message type in the
event of a potential conflict.

Unlike conventional HTMs, FlexTM separates conflict detection from management: hardware always
detects conflicts and records them in the CSTs, but software chooses when to notice, and what to do about
it. FlexTM tracks conflicts on a processor-by-processor basis (virtualized to thread-by-thread). Specifically,
each processor has three Conflict Summary Tables (CSTs), each of which contains one bit for every other
processor in the system. Named R-W, W-R, and W-W, the CSTs indicate that a local read (R) or write (W)
has conflicted with a read or write (as suggested by the name) on the corresponding remote processor. On
each coherence request, the controller reads the local Rsig and Wsig, sets the local CSTs accordingly, and
includes information in the response that allows the requestor to set its own CSTs.

Transactions: Every transaction is represented by a software descriptor containing, among other
fields, the transaction status word (TSW). The transaction is delimited by BEGIN_TRANSACTION and
END_TRANSACTION macros and our prototype implementation follows typical HTM practice and inter-
prets all loads and stores within a transaction as speculative. Transactions of a given application can operate
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in either Eager or Lazy conflict detection mode. In Eager mode, when conflicts appear through response
messages, the processor effects a subroutine call to the contention manager handler. The contention manager
can exercise any option specified in Section 2. The remote transaction can be aborted by atomically updating
its TSW from active to aborted, thereby triggering an alert (since the TSW is always ALoaded). In
Lazy mode, transactions are not alerted into the contention manager. The hardware simply updates requestor
and responder CSTs. At commit time, a transaction T needs to abort only the transactions found in its W-R
and W-W CSTs. Those enemy transactions could be racing and trying to commit themselves, but since both
operations involve the enemy’s TSW, cache coherence guarantees serialization. Since Eager transactions
manage conflicts as soon as they are detected, at commit time the CST for such transactions will be empty
and the only action required is to atomically update its TSW to committed. (see Sections 3.5 and 3.6 in [23]
for more details).

Why the FlexTM framework? Here we briefly summarize the reasons that the FlexTM framework is
important to this study.

• As demonstrated by Shriraman et al. [23] FlexTM provides high performance comparable to rigid-
policy HTMs. Under this set-up we expect the contention manager overheads and performance varia-
tions due to the heuristics to be clearly exposed.

• Since it doesn’t embed any policy in hardware, the implementation itself is free of any performance
pathologies. Other HTM system implementations have inherent pathologies [1], which would have
introduced noise in our analysis.

• It provides a base framework that supports a wide range of policy options, all of which can be con-
trolled from software. FlexTM supports all the actions discussed in Section 2. Other high performance
HTMs suffer from some limitation. For example, existing Eager HTMs (e.g., LogTM [18]) do not
support abort of remote transactions.

• FlexTM’s CST bitmaps provide information on contending transactions, which helps support the same
level of policy freedom as STMs. Other Lazy TM systems (e.g., TCC [11] or XTM [4]) can’t invoke
sophisticated policies since readers are entirely invisible to writer transactions.

5 Contention Manager Interface

Our interface is inspired by the polymorphic contention manager framework proposed by Guerraoui et
al. [7]. Every specific contention manager policy inherits from the skeleton (shown in Figure 2) and defines
the Call-In and Call-Out methods. A contention manager object associated with every transaction exports
two kinds of methods, Call-Ins and Call-Outs. Call-In methods are used by transactions to inform the
contention manager of the progress of the transaction. This is used to update the priority variable that may
be used for arbitration. The Call-Outs are used by the contention manager to instruct the transaction to take a
specific action. Attacking transactions invoke the conflict Call-Outs and inform the method of the enemy’s
transaction id. The contention manager of the attacking transaction may decide in this case, according
to its specific policy, whether to abort the enemy transaction or itself, or whether to stall the attacking
transaction to give the enemy more time to finish. We designed the interface taking care that the CM
functions don’t interpose themselves too often and hurt performance (see Figure 2). For example, compared
to STM contention managers [7], FlexTM’s CM does not include Call-Ins for read and write events, which
impose significant overhead [22]. Instead, we approximate those statistics with a few hardware performance
counters.
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enum ConflictAction {AbortSelf, AbortOther, Wait};
enum ConflictDetection {Eager, Lazy};
class ContentionManager

{
protected:
int my_priority;
int my_id;
ConflictDetection c;

public:
ContentionManager() : priority(0) { }
int getPriority() { return priority; }

// Transaction-level call-in
virtual void onBegin() { };
virtual void onCommit() { };
virtual void onCommitted() { };
virtual void onAborted() { };
virtual void onStall() { };

// Transaction-level call-out
void boolean canBegin();

// Conflict Event call-out
virtual ConflictAction onRW(int enemy_id);
virtual ConflictAction onWR(int enemy_id);
virtual ConflictAction onWW(int enemy_id);

virtual ˜ContentionManager() { }
};

Figure 2: Contention manager skeleton.

5.1 Design Space

Exploring the design spectrum of contention manager heuristics is not easy since the objectives are abstract.
In some sense, the contention manager heuristic has the same goals as the heuristics that arbitrate a lock.
Just as a lock manager tries to maximize concurrency and provide progress guarantees to critical sections
protected by the lock, the contention manager seeks to maximize transaction throughput while guaranteeing
some level of fairness. We have tried to adopt an organized approach: a five dimensional design space
guides the contention managers that we develop and analyze. We enumerate the design dimensions here
while describing the specific contention managers in our evaluation Section 7.

1. Conflict type (C): This dimension specifies whether the contention manager distinguishes between
various types of conflict. For example, with a write-write conflict the objective might be to save
wasted work while with read-write conflicts the manager might try to optimize for higher throughput.
Options: Read-Write, Write-Read, or Write-Write

2. Implementation (I): The contention manager design is a tradeoff between concurrency and implemen-
tation overheads. For example, each thread could invoke its own instance of the contention manager
(as we have discussed in this paper) or there could be a centralized contention manager that is usually
closely coupled with both conflict detection and commit protocol (e.g., lazy HTM systems [11]). The
latter enables global consensus and optimizations while the former imposes less performance penalty
and is arguably cheaper to implement.
Options: Centralized or De-centralized
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3. Conflict Detection (D): This controls when the contention manager is invoked, i.e., the conflict reso-
lution time.
Options: Eager, Lazy, or Mixed (see Section 7.4)

4. Election (E): This arbitrates and decides which transaction wins the conflict. There are a number of
heuristics that can be employed, such as timestamps, read-set and write-set sizes, transaction length
etc. Early work on contention management [20] explored only this design axis. In this paper, we build
on their proposals to develop some new heuristics based on the tradeoff between implementation
complexity, ability to maximize throughput, and progress guarantees.
Options: Timestamp, Read/Write set size, etc.

5. Action (A): Section 2 included a detailed discussion on the action options available to a contention
manager when invoked under various conflict scenarios. These have a critical influence on progress
and fairness properties. A contention manager that always only stalls is prone to deadlock while one
that always aborts the enemy is prone to livelock. A good option probably lies somewhere in between.
We show in our results that aside from progress guarantees, waiting a bit before making any decision
is important to overall throughput.
Options: abort victim, abort self, stall

6 Application Characteristics

While microbenchmarks help stress-test an implementation and identify pathologies, designing and under-
standing policy requires a comprehensive set of realistic workloads. In this study, we have assembled six
benchmarks from the STAMP workload suite [17] v0.9.9, STMBench7 [9] (a CAD database workload), and
two microbenchmarks from RSTMv3.3 [15]. Table 3 specifies the input parameters and their and highlights
their transaction characteristics. We also briefly describe the benchmarks, where transactions are employed,
and present their runtime statistics (see Table 4). The statistics include transaction length, read/write set
sizes, read and write event timings and average conflict levels (number of locations on which and the num-
ber of transactions with which conflicts occur) amongst other things.

Table 3: Application Input parameters and Qualitative Characteristics
Application Input Read/Write set Contention level

Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2 Large High
Delaunay -a20 -i inputs/633.2 Large Moderate
Genome -g256 -s16 -n16384 Moderate Low
Intruder -g256 -s16 -n16384 Moderate High
Kmeans -m10 -n10 -t0.05 -i inputs/random2048-d16-c16.txt Small Low
Vacation -n4 -q45 -u90 -r1048576 -t4194304 Moderate Moderate

STMBench7 Reads-60%, Writes-40%. Short Traversals-40%.
Long Traversals 5%, Ops. - 45%, Mods. 10%

X-Large High

LFUCache 100% webcache operations Small X-High
RandomGraph 33% lookup, 33% insert, 33% delete Small X-High

Bayes: The bayesian network is a directed acyclic graph that tries to represent the relation between variables
in a dataset. This algorithm is based on the hill climbing strategy described in [3]. All operations (e.g.,
adding dependency subteens, splitting nodes) on the acyclic graph occur within transactions. There is
plenty of concurrency but at the fine-grain level.
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Table 4: Transactional Workload Characteristics
Benchmark Inst/tx Wset Rset Wr1 Rd1 WrN RdN CST

conflict
per-tx

Avg.
per-tx
W-W

Avg.
per-tx
R-W

Bayes 70K 150 225 0.6 0.05 0.8 0.95 3 0 1.7
Delaunay 12K 90 178 0.5 0.12 0.85 0.9 1 0.10 1.1
Genome 1.8K 9 49 0.55 0.09 0.99 0.85 0 0 0
Intruder 410 41 14 0.5 0.04 0.99 0.8 2 0 1.4
Kmeans 130 4 19 0.65 0.1 0.99 0.7 0 0 0
Vacation 5.5K 12 89 0.75 0.02 0.99 0.8 1 0 1.6

STMBench7 155K 310 590 0.4 0 0.85 0.9 3 0.5 3.6
LFUCache 125 1 2 0.99 0 0.99 0.78 6 0.8 0.8

RandomGraph 11K 9 60 0.6 0 0.9 0.99 5 0.6 3
Setup: 16 threads with lazy conflict detection; Inst/Tx- Instructions per transaction. K-Kilo
Wrset(Rdset): Number of written (read) cache lines
Wr 1 (Wr N): First (last) write event time; Measured as fraction of tx execution time. Rd-Read
CST per tx: Number of CST bits set. Median number of conflicting transactions encountered
W-W (R-W): - Total No. of W-W (R-W) bits set

No. of conflict tx . Avg. number of common locations between pair-wise conflicting txs.

Delaunay: There have been multiple variants of the Delaunay benchmark that have been released [13, 22].
This version implements the Delaunay mesh refinement [19]. There are primarily two data structures (1) a
Set for holding mesh segments and (2) a graph that stores the generated mesh triangles. Transactions protect
access to these data structures. The operations on the graph (adding nodes, refining nodes) are complex and
involve large read/write sets which leads to significant contention.

Genome: This benchmark processes a list of DNA segments (short strings of alphabets A,T,C,G) and
matches them up to construct the longer genome sequence. It uses transactions for (1) picking the input
segments from a shared table and (2) pairing them up with existing segments using a string matching algo-
rithm. In general the application is highly parallel and contention free.

Intruder: Haagdorens et al. [10] present various techniques for implementing network-intrusion detection.
This benchmark implements “Design5”, which splits the algorithm into three stages to exploit pipelined
parallelism. There are also multiple packet-queues that try to use the data-structures in the same pipeline
stage. Transactions are used to protect the FIFO queue in stage 1 (capture phase) and the dictionary in stage
2 (reassembly phase).

Kmeans: This workload implements the popular clustering algorithm that tries to organize data points into
K clusters. This algorithm is essentially data parallel and can be implemented with only barrier-based
synchronization. In the STAMP versio,n transactions are used to update the centroid variable, for which
there is very little contention.

Vacation: Implements a travel reservation system. Client threads interact with an in-memory database that
implements the database tables as a Red-Black tree. This workload is similar in design to SPECjbb2000.
Transactions are used during all operations on the database.

STMBench7: STMBench7 [9] was developed by the SwissTM group from EPFL. It was designed to mimic
a transaction processing CAD database system. Its primary data structure is a complex multi-level tree in
which internal nodes and leaves at various levels represent various objects. It exports up to 45 different
operations with varying transaction properties. It is highly parametrized and can be set up for different
levels of contention. Here, we simulate the default read-write workload. This benchmark has high degrees
of fine-grain parallelism at different levels in the tree.
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µbenchmarks We chose two data structure benchmarks from RSTMv3.3, LFUCache and RandomGraph.
Marathe et al. [15] describe these workloads in detail. Our intent with these workloads is to highlight the
performance variations between the policy decisions and bombard the system with contention scenarios
absent from other workloads.

7 Results

7.1 Simulation Parameters

We implement the FlexTM framework using a full system simulation of a 16-way chip multiprocessor
(CMP) with private L1 caches and a shared L2 (see Table 5(a)), on the GEMS/Simics infrastructure [16].
Our base protocol is an adaptation of the SGI ORIGIN 2000 directory protocol for a CMP, extended to
support FlexTM’s requirements. We chose a 16-processor system since it provided enough of a heavy load
to highlight performance tradeoffs between contention managers while keeping simulation time reasonable.
We implement all the contention manager methods and interface entirely in software. Transactions access
the contention manager specific performance counters through memory mapped locations. There are many
different heuristics that can be employed for conflict detection and contention managers. To better under-
stand the usefulness of each heuristic we integrate them in a step-by-step fashion to the base system. First,
in Section 7.2 we analyze the usefulness of randomized-backoff in three basic systems. Following this, in
Section 7.3 we focus on the tradeoffs between the various arbitration heuristics (e.g., timestamp, transaction
size). In these experiments we analyze these schemes under both Eager and Lazy conflict detection modes.
Finally, in Section 7.4 we describe the Mixed conflict detection mode, and analyze its performance against
Eager and Lazy modes, keeping the contention manager heuristic fixed.

Table 5: Target System Parameters
16-way CMP, Private L1, Shared L2

Processor Cores 16 1.2GHz in-order, single issue;
non-memory IPC=1

L1 Cache 32KB 2-way split, 64-byte blocks,
1 cycle,
32 entry victim buffer, 2Kbit
signature [2, S14]

L2 Cache 8MB, 8-way, 4 banks, 64-byte blocks, 20
cycle

Memory 2GB, 250 cycle latency
Interconnect 4-ary tree, 1 cycle, 64-byte links,

7.2 Randomized Backoff: Is it useful ?

Randomized backoff is perhaps best known in the context of the Ethernet access-control framework. In the
context of transactional memory, it is a technique used to mitigate repeated transaction conflicts on a shared
location. It can also be used to stall an access prior to actual conflict and thereafter elide the conflict entirely.
There seems to be a general consensus that backoff is useful — most STM contention managers use it [20]
and some HTMs fix it as their default [18]. In this section, we present a comprehensive evaluation of the
benefits of backoff. This study is important especially in the context of HTMs because integrating “stalling”
into coherence protocols is not straightforward (requires NACKs, which most protocols avoid) [24]. Even
high performance STMs [5] require out-of-band techniques to support stalling within a transaction context.
If backoff is not essential, these systems can be simplified a great deal.
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Figure 3: Stalling conflict management to improve performance. Y-axis: Normalized throughput. 1 thread
throughput = 1. +B - with randomized Backoff

To evaluate randomized-backoff, we study three simple contention managers, Reqwin Reqlose and Comwin,
with and without backoff. In Reqwin the attacker (transaction that noticed the conflict) always wins immedi-
ately and aborts the enemy. In Reqlose the attacker always loses, aborting itself in the process. Both of these
are invoked when a conflict is detected on access (i.e., Eager systems). Comwin is the simple committer
always-wins policy in Lazy. The Reqwin and Reqlose when combined with backoff (indicated by +B), wait
a bit, retrying the access periodically before falling back to their default action.4 Comwin manages conflict
after the access just prior to commit point. Backoff just prior to a commit cannot evade write-write conflicts
since by the commit point both transactions have already performed their respective speculative updates. In
this situation, one of them has to abort. Backoff can help with read-write conflicts: it can stall the writer
transaction at the commit point and try to ensure the reader’s commit occurs earlier, thereby eliminating the
conflict entirely (see Figure 1(b)).

Figure 3 shows the performance plots. Y-axis plots normalized speedup compared to sequential execution.
Each bar in the the plot represents a specific contention manager.

Result 1a: Backoff is an effective technique to elide conflicts and randomization ensures progress in
4Stalling perennially without aborting can lead to deadlock, hence we use a conservative avoidance technique similar to the

greedy manager [8].
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the face of conflicts. Introduction of backoff in existing contention managers can significantly improve
performance

Result 1b: Backoff is essential to eager systems, which livelock even at moderate levels of conflict.
Commit-time conflict detection inherently serves as backoff in lazy systems.

Implication: HTM systems that rely on coherence protocols for conflict detection should include a mech-
anism to stall and retry a memory request when a conflict is detected. STMs should persist with the out-of-
band techniques that permit stalling.

As the plots in Figure 3 show, at anything over moderate levels of contention (benchmarks other than
Kmeans and Genome) both Reqlose and Reqwin perform poorly. Reqlose’s immediate aborts on conflicts
does serve as backoff, but in these benchmarks it ends up wasting more work. Reqwin suffers from two
pathologies: “Cascaded aborts” and “Livelocks”. “Cascaded aborts” occurs when an attacker transaction
aborts an enemy only for itself to be aborted later by another transaction. “Livelocking” occurs when an
aborted enemy restarts, takes on the mantle of the attacker, and aborts the transaction that aborted it.

Introducing backoff helps thwart these issues (see Figures 3 (a),(b),(f),(g))): waiting a bit prevents us
from making the wrong decision and also tries to ensure someone makes progress. Backoff does have its
limitations. RandomGraph doesn’t make progress for any of the Eager systems. The Lazy system, Comwin

performs well even without backoff. It provides progress in the face of conflicts (Lazy’s narrow conflict
window ensures transactions in commit usually don’t abort) and exploits concurrency (allows readers and
writers to execute concurrently and commit). The only pathology that can arise is when multiple transactions
contend to write the same location. STMBench7 is an interesting workload in which Comwin introduces
starvation problems. In this workload there are long running writer transactions interspersed by short writer
transactions. The short writers complete early aborting the long-running writer. Before the long writer gets a
chance to progress more writers appear in the system. Randomized-backoff helps Comwin avoid both convoy
and starvation problems (see Figure 3(g)).

7.3 Conflict Detection and Management

Even with simple backoff, Eager and Lazy schemes behave differently. In this section we develop a set
of contention managers and study their interaction with conflict detection. All managers in this section
integrate backoff with other election heuristics. These heuristics determine which transaction progresses in
the event of a conflict (refer to Section 5 for the design space). Reqlose and Reqwin were simple heuristics
biased towards either the attacker transaction or the enemy. Most TM studies have tried to focus on managers
that either maximize throughput or ensure progress. Our objective here is to investigate a subset that (1) help
us understand tradeoffs between heuristics that aid transaction progress and those that optimize for system
throughput and (2) can excite pathological behaviors in the conflict detection and highlight the inherent
performance variations between Eager and Lazy. We investigate three heuristics: transaction age, read-set
size, and number of aborts. We investigate these heuristics under both Eager and Lazy conflict detection.
We have also included Reqlose+B and Comwin+B from the previous section as a baseline. We now describe
the heuristics.

• Age: The Age manager attempts to be fair to transactions. Every transaction at the BEGIN_Trans
atomically increments a shared counter and notes down the previous value of the counter. This num-
ber represents the start-time of a transaction, and Age seeks to avoid blocking or aborting older trans-
actions. On a conflict, if the attacker transaction is younger it waits hoping to thwart the conflict,
periodically retrying the access. After a fixed backoff period (in our case the average commit time of
a transaction), it aborts and restarts. If an older transaction notices the conflict it aborts the younger
transaction without waiting.

12



• Size: The Size manager tries to ensure that a transaction that has progressed further and is closer to
committing doesn’t need to abort. This aids system throughput by helping a larger number of trans-
actions commit. This heuristic approximates transaction progress with the number of read accesses
made by the transaction. Size’s backoff heuristic is similar to Age, it approximates progress with
number of locations read and the number of read operations in the transaction. To avoid software
instrumentation overheads, this manager requires a performance counter.5 We try to consider the
work done before the transaction aborted. Hence, transactions restart with performance counter value
retained from previous aborts.

• Aborts: The Abs contention manager tries to help with transactions that are aborted repeatedly. It
does not try to provide progress guarantees such as Age but instead tries to increase the priority of
aborted transactions. Transactions accumulate the number of times a transaction has been aborted. On
a conflict the manager uses this count to make a decision. Unlike Size it does not need a performance
counter since abort events are infrequent and can be counted in software. Similar to Age and Size it
always waits a bit before making the decision.
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Figure 4: Contention manager heuristics with L-Lazy, E-Eager conflict detection. Y axis: Normalized
throughout. 1 thread throughput = 1

Figure 4 shows the results of our study on policy. ’-E’ refers to eager systems and ’-L’ refers to lazy
systems. We have removed Kmeans and Genome from the plots since they have very low conflict levels and
all policies demonstrate good scalability.

Result 2a: Lazy systems are inherently more robust than Eager and rely less on the contention manager
to ensure expected performance.

Result 2b: Ordering mechanisms like Age help with progress but hurt throughput and average case
performance.

Result 2c: Conflict detection policy choice seems to be more important than contention management. The
contention manager policies can help with pathologies but not weaknesses inherent in the conflict detection
design.

5When arbitrating, the contention manager would need to read performance counters of transactions on remote processors. For
this, we use a mechanism similar to the SPARC %ASI registers.
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As shown in Figure 4, a specific contention manager may help some workloads while they hurt the
performance in others. Size performs reasonably well across all the benchmarks. It seems to help with both
Eager and Lazy alike, (1) it maximizes concurrency and tries to ensure readers commit early. This helps
with benchmarks that have plenty of reader-writer sharing (e.g., vacation) and (2) Size heuristic also helps
with writer progress since it tries to commit the writer that has done more work. This is because the number
of reads is also a good indication of number of writes since most code sequences read locations before they
write them.

Age helps with workloads that have heavy contention (LFUCache and RandomGraph). These workloads
essentially have no concurrency and Age’s timestamps ensure some transaction makes progress. On other
benchmarks, Age hurts performance when interacting with Eager while performing comparably with the
base policy in Lazy. This is due to the following dual pathologies (1) In Eager mode, Age can cause reader
convoying behind a long running older writer. In Lazy since reads are optimistic, no such convoying results.
and (2) It can also result in wasteful waiting behind an older transaction that gets aborted later on. With
Lazy usually the transaction that reaches the commit point first is also the older transaction and it commits
ensuring progress.

As for the Abs manager, its performance falls between Size and Age. This is expected since it does not
necessarily try to help with concurrency and throughput like Size but does not hurt them with serialization
like Age.

It is worthwhile noting that although the contention manager can help eliminate pathologies and improve
performance, it does not change the tradeoffs between Eager and Lazyİn general, Lazy seems to be able to
exploit more concurrency and avoid conflicts better than Eager. However for some specific workloads (e.g.,
STMBench7) neither conflict detection nor contention management tweaks seem to have any noticeable
impact. We analyze the reasons and propose solutions in the next section.

7.4 Mixed Conflict Detection

As shown in Figure 4, none of the contention managers seem to have any noticeable positive impact on
STMBench7’s scalability. Despite the high level of conflicts both Eager and Lazy perform similarly. STM-
Bench7 has an interesting mix of transactions: unlike other workloads, it has a mix of transactions of varying
length. It has long running writer transactions interspersed with short readers and writers. This requires an
unhappy tradeoff between the desire to allow more concurrency and avoid high-levels of wasted work on
abort. Eager cannot exploit the concurrency since the presence of the long running writer blocks out other
transactions. With Lazy the aborting of long writers by other long writers and short writers starves them
and wastes useful work. We preview a new conflict detection policy in HTM systems,Mixed, that combines
the best of Eager and Lazy conflict detection. Mixed uses separate policies for Write-Write and Write-Read
conflicts. 6 For Write-Write conflicts it prioritizes wasted work since there is no valid execution in which
two writers can concurrently commit. Mixed detects and manages them eagerly. For Read-Write conflicts it
postpones detection and management to commit, tying to exploit concurrency inherent in the application. If
the reader’s commit occurs before the writer’s then both transactions can concurrently commit.

Figure 5 plots the performance of Mixed against Eager and Lazy. To isolate and highlight the performance
variations due to conflict detection, we use the same Size contention manager across all the runs.

Result 3: Mixed combines the best features of Eager and Lazy. It can improve performance in workloads
where both Lazy’s and Eager’s inherent weaknesses are exposed.

As the results (see Figure 5) demonstrate, Mixed is able to provide a significant boost to STMBench7 over
both Eager and Lazy. It ensures that writer-aborts waste less work compared to Lazy while ensuring more

6In FlexTM [23] this requires minor tweaks to the conflict detection mechanism. In Lazy mode, where the hardware would have
just noted the conflict in the W-W list, it now causes a trigger to the contention manager handler.
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reader-writer concurrency compared to Eager. On benchmarks were there’s significant reader-writer overlap
(Bayes, Delaunay, Intruder, and Vacation), its performance is comparable to the Lazy system. LFUCache
has no parallelism and contention is mainly due to write-write conflicts. Mixed performs only slightly better
than Eager. This is essentially due to livelocking. On RandomGraph, Mixed’s ability to exploit read-write
sharing helps it ensure some level of progress in the overall system relative to Eager but Lazy— still does
better. We do expect Mixed to livelock at higher thread levels. However, the important thing to note is that
these issues can be mitigated by changing the contention manager to something like Age, unlike Eager’s
design weaknesses (inability to exploit reader-writer concurrency), which no contention manager heuristic
can overcome.
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Figure 5: Impact of conflict detection on performance. Y-axis- Normalized speedup, throughput normalized
to sequential thread runs. The runs employed 16 threads. RDG: RandomGraph

8 Conclusions

Many hardware transactional memory systems have been proposed that integrate a single conflict detection
and management policy (usually the simplest to implement in hardware) without a methodical evaluation
of how other combinations perform. Finding the ideal manager for contention is difficult and the solutions
required for individual pathologies are not necessarily compatible with each other.

In this paper, we have studied the interaction between policies on “When to detect” and “How to manage”
conflicts. Having used a spectrum of workloads to evaluate the policy decisions on a flexible TM framework,
we believe that our conclusions and recommendations are applicable to a variety of systems. Our first
set of experiments revealed that Backoff (or stalling) before managing conflicts is an important heuristic
to avoid conflicts entirely and avoid making the wrong decision. We recommend that all transactional
memory systems (hardware, software, or hybrid) include mechanisms that allow an access to stall and retry
when a conflict is detected. Our analysis of the interplay between transaction-arbitration heuristics and
conflict detection schemes indicates that Lazy systems are inherently more robust than Eager systems. They
seem to be able to provide better performance guarantees because, (1) they permit more concurrency than
Eager especially highly useful reader-writer overlap and (2) they narrow the conflict window, which helps
to ensure that some transaction in the system makes progress. Furthermore, as policy decisions go, conflict
detection or conflict resolution time seems to be more important than the contention manager policy. There
are inherent tradeoffs between Eager and Lazy that contention managers cannot help with. Finally, we
previewed and evaluated a mixed mode, a conflict detection mode for HTMs that combines the best features
of Eager and Lazy.
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