F\exno\e Decoupleo
Transactional Memory Support

Arrvindh Shriraman
Sandhya Dwarkadas

Michael L. Scott
Department of Computer Science

186 UNIVERSITY*ROCHESTER
N/

Transactions: Our GGoal

® | azy Ixs (i.e., optimistic conflict resolution)
— More concurrency

x SW coordinates conflict management
— when (i.e., eagerly or lazily)
— how (i.e., stalling, who aborts)

® | imitless Txs
— Large: cache victimization and paging
— Long: thread switches

Flexible Transactional Memory
x STM (e.g., RSTM)

100

Versioning — all software approach
(Isolation)

80

Validation
(Consistency check)

Bookkeeping
(Metadata ops.)

Execution Time

Application
(Useful Work)

Flexible Transactional Memory

[| x STM (e.g., RSTM)
b r i — all software approach

80 ——
2 ® x RTM [ISCA 07]
m— (Consisteney-check) — New cache states help bounded txs
fg’ ° — software handles large & long txs
O
2 Bookkeeping
40 (Metadata ops.)

Application
(Useful Work)
0

Flexible Transactional Memory

[| x STM (e.g., RSTM)
b r i — all software approach
80—
2 ® x RTM [ISCA 07]
m— (Consisteney-check) — New cache states help bounded txs
-% ® — software handles large & long txs
O
) .
X) — Bookkeeping
E P w FlexTM [this paper]
Good Performance
£ Application No per-location software metadata
(Useful Work) Simple hardware
0 No bulk arbiters like lazy HTMs

Allows software policy

Decoupled Hardware

Primitives (1/2)

® Separate interchangeable basic hardware ops.
that can be coordinated by software

Why ?
. Minimizes hardware state

— small footprint, simplifies virtualization

— reduces development time

® Software accessible

— to build transactions & fine-tune policy decisions
— 1o repurpose hardware for non-tx applications

Decoupled Hardware Primitives (2/2)

1. Data Isolation (delaying visibility of stores)
— caches buffer speculative values, provide fast-commit
— SW allocates overflow region & HW performs access

2. Access Summary (tracking locations accessed)
— maintains list of locations read & written
— check on coherence messages or local memory ops.

3. Conflict Summary (tracking data conflict events)
— tracks conflict occurrence and type between processors

4. Alert-On-Update
— monitor cache-blocks and trigger handlers

Outline

& Preview

@ Data Isolation (aka. Lazy Versioning)

— Lazy coherence
— QOverflow-Table

& Conflict Management
& FlexTM Software

& Evaluation

& Summary

Lazy Coherence (1/2): Approach

® | azy coherence:
— permit multiple readers & writers for a cache block
— restore coherence for multiple lines simultaneously

x Current Research (e.qg., TCC, Bulk)
— bulk arbiters, bulk GetXs, bulk ops. on directory

x Qur approach: eager messages but lazy coherence
— look out for sharer conflicts in standard coherence msgs.
— continue caching data, but use T-MESI states
— simple bit-clear ops. convert T-MESI to MESI

No bulk messages or address ops.

Lazy Coherence (2/2): Protocol

x Two new ‘T’ tagged states: TMI (T+M) and TI (T+I)

x [Stores & TLoads denote speculative operations
— ISA can include instructions or SW can tell HW the regions

e w TMI buffers TStores

%XO@ | : | .
Y CTME — allows multiple writers and readers

MES| - Commit E — no data response but threaten
<{m TTStore; On commit, T+M => M
statés Aport | On abort, T+M =>T+ => |
o~ |
O//\/;f@ Ll w T caches threatened TlLoads
TLoad / < — cache remotely TStored block
~Threat — On commit/abort, T+l => |

+ cached locations are accessed directly
+ bounded txs perform in-place update

Overflow Table

Challenge : Where to put evicted TMI lines?
Solution : Per-thread hash table (in virtual memory)

Hardware controller
— fill table with TMI lines evicted from cache
— removes table entries when reloaded into cache
— performs look-aside transparently on L1 miss in parallel with L2

T™MIWB /
L1 mi?
Addr R— Overflow-Table controller
80 Config. Sets,Ways Lookaside Osig
— Base 100 {80}
(/
8 = TAGS
I so

I (Ocr-thread

. _Data
120 new values [N | Overflow Table

Outline

& Preview

@ Data Isolation (aka. Lazy Versioning)

& Conflict Management (flexible)

— Access summary signatures
— Conflict table
— Alert-On-Update

& FlexTM Software
& Evaluation

& Summary

10

Access Summary (1/2): Signatures

® Signatures [Bulk ISCA06, LogTM-SE HPCA07, SigTM ISCA Q7]
— Bloom filters to represent unbounded set of cache blocks
— approx. representation with false positives

Cache block Addr.

hash1 hash2 hash3
— /

001000000001 0O00
= Processor has two signatures:
— Resig (Wsig) summarizes locations TLoad (TStore)

Conflict Detection: Signatures snoop coherence messages
— responder detects conflict and overloads response
— requester picks response and resolves or notes conflict

11

Access Summary (2/2): Virtualization
[details in paper]

» Required to handle long running txs & tx pauses

Challenge : How to detect conflicts with suspended txs ?
Solution : Read and Write summary signatures at the directory,
(note: does not affect cache hit critical path)

= Detalils:
— merge suspended txns signature with summary sig.
— all L1 cache misses test signatures
— If miss, no further action necessary
— If hit, trap to software routine that mimics conflict HW

12

Conflict Tables: Tracking Conflicts

x Current HTMs detect and resolve at the same time
— Eager HTM systems perform both on a conflict
— Lazy HTM systems perform both at commit time

® Our approach: decouple detection from resolution
— HW bitmaps record conflict event & expose to SW
— SW decides when and how to resolve conflicts

= Per-core conflict bitmap
Core-P’s table

R-W P’s read--remote write
W-W P’s write--remote write
W-R P’s write--remote read

€« Ncore bltS — =<

Is there a conflict between P and core i ? Ans: Yes (1) / No (0)
13

Conflict Tables: Operation

4 core machine

CO Wsig: {} Rsig: {} C 1 Wsig: {A}

Rsig: {}

L2 Directory
A : M@CH

»x Either processor can resolve conflict prior to commit
— If eager, requester resolves conflict iImmediately
x Conflicter known, no central arbiter required

14

Conflict Tables: Operation

4 core machine

TStore A
CO Wsig: {} Rsig: {} C 1 Wsig: {A}
W-W W-W

RsigZ {}

L2 Directory
A : M@CH

»x Either processor can resolve conflict prior to commit
— If eager, requester resolves conflict iImmediately
x Conflicter known, no central arbiter required

14

Conflict Tables: Operation

4 core machine

TStore A i~ SThreat '\

1
CO Wsig: {A} Rsig: {} C Wsig: {A} Rsig: {}
W-W W-W
T T 1. T T T 1
A
Q
7 oF
. > \ &
é\\‘%\@ /
b/
) ¢
L2 Directory
A : M@C1,CO

»x Either processor can resolve conflict prior to commit
— If eager, requester resolves conflict iImmediately
x Conflicter known, no central arbiter required

14

Alert-On-Update (AOU) yscaor)

= \/ector specific coherence or update events to the

processor in the form of a lightweight event/interrupt

— on invalidation (capacity eviction or coherence)
— on access/update (local event)

Ld
Aload/Arelease Ale
A Tag Data (Handler)
)
Remote Store / r

Eviction

15

Outline

& Preview
@ Data Isolation (aka. Lazy Versioning)
& Conflict Management (flexible)

& FlexTM Software

— FlexTM Transaction
— Example

& Evaluation

& Summary

16

FlexTM Transaction (1/2)

® Per-Tx descriptor

TSW active / committed / aborted
State running / suspended
CMpc ‘ Abortec handler for conflict table events | AOU events on TSW

®x FlexTM deploys
— Signatures for detecting and notifying conflicts
— Conflict Tables for tracking and managing conflicts
— [-MESI for in-cache buffering and OT for cache overflows
— AOQOU for propagating abort events to remote txs.

= [FexTM software
— checkpoints registers at Begin_Tx

— manages conflicts; aborts remote tx by changing TSW
— controls commit protocol routine

17

L

Lazy Transactions

Begin_Tx abort_pci

. Example
T2

L2 Directory

Begin_Tx abort_pc?2

18

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSWi1

CO L1 C1

Wsig: {} Rsigi {}
W-W

: TSWO : M@CO
L2 Directory 1qy1 . yiacH

TSW1: AE

18

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSWi1
St A
\4 \ 4

CO L1 C1
Wsig: {A} Rsig: {} Wsig: {} Rsig: {}
W-W W-W
TSW1: AE
L 1 1 1 | L 1 1 1 |
A : M@CO TSWO : M@CO

L2 Directory 1qy1 . yiacH ~

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSWi1
St A
1St B

CO L1 (0|
Wsigi{A,Bl Resig:{} Wiig:{} Rsig:{}
W-W W-W
TSW1: AE
L 1 I] L 1 I
A : M@CO L2 D t TSWO : M@CO
B : M@CO Irectory tsw1 : mact

Lazy [ransactions: Example

T1|Begin_Tx abort_pct T2
ALD TSWO

St A
TSt B

Begin_Tx abort_pc2
ALD TSW1

st A

CO L1 C1
Wsig:{A,B} Rsigi{} A: TMI Wig:{A} Rsig:{}
W-W W-W
TSW1: AE
L 1+ 1 1 | L1 1 1 |
A : M@CO,C1 L2 Di i TSWO : M@CO
B : M@CO IFeCtory tswi : MmecH

18

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSWi1
St A St A
1St B ISt B

CO L1 C1
Wsg:{A,B} Rsigi{} Q; m'l' Wsig:{A\,/S}W Rsig:{}
WW TSW1: AE '
I EE L1]
A : M@CO,CH1 TSWO : M@CO

8:macoci L2Directory 1o . vac

18

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSW1
St A St A
st B ISt B
Conflict & Commit protocol

or-each i set in W-R or W-W
CAS (Status]i], ACT, ABORT)

\4

In software, decentralized, minimal overhead CX No. of conflicting Txs

CO L1 C1
vvsig:{A,VEva}W Reig: {} ‘B\; m,' vvsig:{Aﬁ}W Rsig: {}
x TSW1: AE x
|11 | L1 1 |]
A : M@CO,CH1 TSWO : M@CO

8:macoci L2Directory 1o . vac

18

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSW1
St A St A
st B ISt B
Conflict & Commit protocol

or-each i set in W-R or W-W : '
CAS (Statusi], ACT, ABORT) Contlict Handler!

\4

In software, decentralized, minimal overhead CX No. of conflicting Txs

CO C1
Wsig:{A,B} Rsigi{} Wsig:{A,B} Resigi{}
W-W W-W
N L1t 1 [|
A : M@CO,C1 TSWO : M@CO

8:macoci LE2Directory 1o . vaco

Lazy [ransactions: Example

T1|Begin_Tx abort_pci T2 |Begin_Tx abort_pc?2
ALD TSWO ALD TSW1
St A St A
st B ISt B
Conflict & Commit protocol

or-each i set in W-R or W-W : '
CAS (Statusi], ACT, ABORT) Contlict Handler!

CAS-Commit Status]id

\4

In software, decentralized, minimal overhead CX No. of conflicting Txs

CO C1
Wsig:{A,B} Rsigi{} Wsig:{A,B} Resigi{}
W-W W-W
N L1t 1 [|
A : M@CO,C1 TSWO : M@CO

8:macoci LE2Directory 1o . vaco

Outline

& Preview

® Data Isolation (aka. Lazy Versioning)
& Conflict Management (flexible)
& FlexTM Software

& Evaluation

— Speedup
— Conflict resolution tradeoffs
— QOther results

& Summary

19

Evaluation set-up

® [Full system simulation, GEMS/SIMICS framework
— 16 core CMP with shared L2
— ORIGIN 2000 like coherence protocol
(3 hop requests and silent evictions)

= \Norkloads
— Data Structures: Hash,RBTree, LFUCache, Graph
— Applications: Scott’s Delaunay, STAMP*, STMBench7

= Runtime systems
— CGL, FlexTM (HTM interface), RTM-F, RSTM, & TL2
— Polka conflict manager

* - STAMP does not (yet?) interface with RTM-F and RSTM

20

FlexTM is Fast (1/2)

16 threads wy FloxTM B RTM-F B RSTM
. 10 CGL, 1 thread=1 10
>
f_-l 8 2.§X 1.8X 8
)
>
o
c 6 5
|_
@
N 4 4
©
E - 2
o)
Z
0] 0]
HashTable RBTree Delaunay STMBench7

x FlexTM gains over RTM-F proportional to SW bookkeeping overheads
— software metadata management ~50% of tx latency

= FlexTM gains over RSTM comparable to rigid policy HTMs
21

FlexTM is Fast (2/2)

16 threads | FlexTM o TL2
12 "5GL 1 thread=1 1.4 H-High contention
5 41X A L-Low contention
2 10 A
5 1.9X 1.5X
o 8
= - 3.8X
O A
N
= 4
S
o 2
prd
0)

Vacation-H Vacation-L Kmeans-L Bayes Genome

x Kmeans-L and Genome performance gains lower
— TL-2 per-access overheads low (i.e., high instructions / mem_access)

= Performance gains in Vacation higher
— lower number of instructions per memory word accessed 29

Lazy mode aids progress

® [Lager a | azy
~ 10.0 2
3 1 thread=1, X-axis: No. of threads
C A
2 75 -
O .
= } ;
- 5 O N 1 fe A A)
)
= .
@® =
g 25 . .
O °
= 0 0 d ° °
1 2 4 8 16 1 2 4 8 16
RBTree Graph
= | azy provides more commits = Fager causes cascaded stalls
and aborts

= Exploits R-W sharing, allows reader
& writers to commit in parallel = | azy narrows conflict window

23

Mixed-mode can be better
STMBench7 ® FEager & Lazy @ EagerWW-LazyRW

é I 1 thread=1, X-axis: No. of threads
5, 10 o
S
O 8
= 5 2 .
8 A//‘
S 4 ¢7/‘.‘
g A/ R
5 2 : ool O
Z AT A
1 2 4 8 16

x | ong writer (~1ms) mixed with short readers (tens thousands cycles)
— Pair-wise conflicts between writers, conflicts with multiple readers

= Eager doesn’t permit R-W sharing and reduces reader throughput

= | azy permits W-W sharing, but wastes writer work on aborts

Best Policy: Eager-WW with Lazy-RW

24

Other Results

= Area analysis [in paper]
— increase in core area small, OoO (0.6%), InO (3%)
— minimal change to pipeline, most hardware on L1 miss

x Comparison with Central-Arbiter HTM [in paper]
— proadcasts and central arbiters are an overkill
— de-centralized SW commit is efficient & important

Non-Tx Applications

® \Natchpoints [in TR-925]
— Two memory monitoring primitives, AOU & Signatures

— SW framework for detecting buffer overflows, memory leaks etc.

— 15-50X speedup over binary instrumentation

25

Summary

® Decouple TM hardware components to
— reduce HW complexity
— enable deployment for varied purposes

x FlexTM

- HW manages TM operations, SW manages policy
— decentralized conflict and commit protocol in SW

x Conflict management

— laziness is an important design requirement
— provides best value when left under software control

26

Questions 7

http://www.cs.rochester.edu/research/cosyn
http://www.cs.rochester.edu/research/synchronization

Acknowledgments
Multifacet Research group, Wisconsin
STAMP group, Stanford
Transaction Benchmark group, EPFL
Shan Lu, Opera group, lllinois

26

http://www.cs.rochester.edu/research/cosyn
http://www.cs.rochester.edu/research/cosyn
http://www.cs.rochester.edu/research/cosyn
http://www.cs.rochester.edu/research/cosyn

FlexTM per-Core Hardware

Processor Context

Control Regs.

Read Signature
Write Signature

Handler PC
Flag register

Read & Write
Access Summary

Tag

L1 Data Cache

29

-lexTM per-Core Hardware

Processor Context

Control Regs.

Read Signature
Write Signature

R-W _
W-R Conflict lables
AW

D E— Ncore bitS EE—

Handler PC
Flag register

Read & Write
Access Summary

Conflict Table

Tag

L1 Data Cache

29

-lexTM per-Core Hardware

Processor Context

Control Regs.

Read Signature
Write Signature

R-W _
W-R Conflict lables
AW

D E— Ncore bitS EE—

Handler PC
Flag register

Read & Write
Access Summary

Conflict Table

Alert-On-Update

AN F-Te

L1 Data Cache

29

-lexTM per-Core Hardware

Processor Context

Control Regs. Read & Write

Read Signature ACCEss Summary
Write Signature

Handler PC
Flag register

R-W -
Wk Conflict Tables SenilerIEeis
Data am—) C— A|ort-On-Update
|solation

¢ 1 A Tag Data

AS| Overflow Sig.
Base Address Hash Param.

Overflow Count
Overflow Table Controlle L1 Data Cache

29

-lexTM per-Core Hardware

Handler PC

Flag register Read & Write

Access Summary

T 1 1 11111 :
1 0 0 Conflict Table
I U I

Data

| Alert-On-Update
Isolation

29

FlexTM Area Complexity

Core?2 Powert Niagara?2

Orig. Core Area 32mm? 53mMm? 12mm?

L1 area 1.8mm? 2.6mm? 0.4mm?
Signatures (2Kbit) 0.10% 0.12% 2.1%
Overflow Control 0.5% 0.45% 0.3%
%L1D area inc. 0.35% 0.3% 3.9%
% core area inc. 0.61% 0.58% 2.5%

® Effect on the processor core minimal
— 000 cores (~0.6\%), In-Order (~4%)
x Negligible effect on L1 latency
— small area effects, data array is the critical path

x Signature effects noticeable only on Niagara?
— 8-way SMT needs 16 2Kbit signatures (4KB state)

30

Hash Table

O Parallel

Serial

O CST

N O 0 © I AN O
D B

1INndybnouy | pezieuionN

16

RandomGraph

O Parallel

Serial

O CST

—

N © O © ¥ N O
— —~ O O O O
INdybnouy | pazieuwloN

10

-lex\Watcher: Memory Bug Detection

x FlexTM HW provides two HW: primitives for watching
MemMory
— AQOU precisely monitors cache block aligned regions but is
imited by cache size

— Signatures provided unlimited monitoring but are vulnerable
to false positives.

x Extended the |ISA 1o support them as first-class entities
— Insert, member, read-index; activate, clear etc

x Developed a software bug detection tool
— add required-addresses to signatures
— HW checks local & remote accesses against the signatures.
— triggers SW trampoline on signature hits
— handler disambiguates, if false positive return to execution
33

Flex\Watcher Evaluation

x BugBench from illinois, set of real-life programs
with knoywn bugs.
» Bugs ® detected
— Buffer Overflow
Solution: Pad all heap-allocated buffers with
o4dbytes, watch padded locations
— Memory: LLeak
solution: Monitor all heap allocated objects and
update the address’s timestamp on access.
—|nvariant Violation:
Solution: ALoad cache line of interested variable X.
On AOU handler trigger assert program specific

iInvariants.
34

Flex\Watcher Performance

x Compared against Discover, popular SPARC
binary instrumentation tool from %

Benchmark ={le Flex\Watcher Discover
BC BO 1.5X 75X
GZIP BO 1.15X 17X
GZIP? \Y; 1.05X N/A
Man BO 1.80X 65X
Squid ML 2.50X N/A

Execution time normalized to sequential thread performance
Flex\WWatcher overheads were estimated on the simulator
Discover overheads were estimated on a Sun T1000 server %

