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Abstract 

This is a guide to coordinate systems, representations, and geometric 
relationships between them, for components of the Rochester Robotics 
Laboratory. The main entities at issue are the joint angles, location 
variables, and coordinate systems of the Puma, the camera angles and 
coordinate systems associated with the head, the spatial location of 
three-dimensional points, and the kinematic and inverse kinematic 
relationships between them. The robot-to-camera kinematic chain is 
described, conversions between homogeneous transformations and VAL 
location descriptions are provided, and inverse problems (camera 
angles to aim cameras at a 3-D point given a robot configuration, 
binocular stereo calculations) are solved. Constants describing the 
robot head and sample robot description data structures are provided. 
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1. Purpose 
The purpose of this document is to relate elementary kinematic concepts and 

calculations to the University of Rochester Robotics Laboratory, with the aim of making 
certain aspects of the Puma ann and the two-camera head easier to use and understand. 
In using the robot to interact with the world, one quickly finds a potentially bewildering 
set of coordinate systems, angles, parameters, and state descriptions that must be related 
one to another in order to produce coherent robot actions and to answer common robotic 
questions. This document mainly concerns the definition and manipulation of coordinate 
systems. The semantics of the coordinates are such things as tool positions, camera 
orientations, and so forth. 

Section two presents a short section on transformation notatation and properties, 
which should be read. There follows a glossary of scalars, vectors, and transformations 
we use later in the document, which can be skimmed and referred to as needed. 

Section 3 defines some important robotic coordinate systems. LAB is the base 
coordinate system attached to the laboratory. TOOL describes the location of the robot 
head. FLANGE is another description for head location, but one more convenient for use 
with imaging operations. 

Section 4 describes the model of the imaging process. Section 5 describes and 
defines the transformations along the chain of links that the Puma and the head embody. 

There follow several sections, each one describing how to convert from one 
representation to another, or deriving a desired transformation or description from a 
specification. For example, it may be of interest to convert the TOOL coordinate system 
into the description used by VAL for robot location. An example of deriving an 
interesting configuration is to find the camera altitude and azimuth angles .that the 
camera at a point in (X,Y,Z) space. 

There is room for expansion of this report, and an expanded version should be 
produced later when more is known. One obvious lack at present is the Jacobian 
calculations for the head -- at what rate to move the cameras to compensate continuously 
for continuous head motion and vice-versa. 

2. Transform Basics 
We follow [Paul 1981] and represent 3-space points as column homogeneous 4­

vectors or column Cartesian 3-vectors. Transforms (and coordinate systems, or CS's), 
are homogeneous 4x4 matrices. All transforms but the camera transform are rigid. Thus 
they denote a rigid rotation or translation or both. If both, then think of the rotation as 
being done before the translation. A transform B operates on points expressed as column 
vectors to yield new points. A transform B represents a CS in that it can be thought of as 
four columns, three of which represent points at infinity and correspond to directions of 
the X,Y, and Z axes of a CS, and the last of which represents a 3-space point and 
corresponds to the origin of the es. Transforming (that is, multiplying) a CS by a 
transform just rigidly moves the es in space. LAB is the identity transform, and 
transforming LAB by B yields B. Thus B cleverly represents a coordinate system and a 
transform that moves LAB to that coordinate system. 

If?is a vector denoting a point in LAB coordinates, and A and B are transforms, 
then B:t gives the coordinates of ("is") the point, in LAB coordinates, that results from 
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rotating nd translating :tby B. ARtis the point resulting from applying B to x, then A 
to the res It, where rotating and translating by A is done with respect to the original LAB 
coordinat system. Alternatively, ARt means applying to x the transformation A, 
followed by the transform B expressed in the frame A. is conceptualized as taking place 
in the c rdinate system induced by all previous movements, the final transform is 

.. A1A2 ... An if 1 is the link connected to LAB. Ifxis a point in LAB and B is a frame; 
then?ex ressed in B is B-l~ Last, if B takes LAB to the CS B (its alibi aspect),"then B 

transform from B coordinates to LAB coordinates (its alias aspect). also is th 

VA expresses distance in mrn, angles in degrees. Parameters to our subroutines 
are expre sed in radians, to save conversions. Since users often prefer degrees, our user 
interfaces (and this document) usually express angles in degrees. 

f	 Effective imaging system focal length (including digitizing effects). 
(Note that this number has nothing to do with the physical focal length of 
the lens). 

s	 Camera aspect ratio: column spacing / row spacing. 

Camera platform altitude angle in radians. 

Generic azimuth angle. 

(Head's) Left Camera azimuth angle. 

Right Camera azimuth angle .. 

2.2. Veet rs 
Pixel coordinates in MaxVideo routines are expressed as (pixel offset in scanline, 

scanline), which corresponds to the "physical" (x,y) coordinate scheme used in the 
imaging odel coordinate system, which has Y axis down and X axis to the right. In 
array in exing, however, the "natural" element-addressing scheme is 
Image[ro [column], which has semantics (y,x). Where this document uses pixel 
coordinate , they are expressed in the physical system rather than in the array-indexing 
system. 

X	 generic vector (x,y,z)T, a point in space expressed in some coordinate 
system. Often the homogeneous column 4-vector (x,y,z, w)T 

(x,y) image (pixel) coordinates of a point. 

(O,A,n "Orientation, Altitude, and Twist" angles describing the orientation of 
TOOL axes in terms of LAB. Like Euler angles but not (see-below). 

Loc (X,Y,Z,O,A,T). A generic location (X,Y,z position and orientation) used 
by VAL. May be relative. In this document we usually construe Loc to 
define the location of the TOOL CS in terms of LAB. 

Head (cp, aL, 9R ), Camera rotations defining the head configuration. 

JntAngs six angles defining the rotations of the robot links. Used by VAL software 
as "precision points". 
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C 

2.3. Matrices, Coordinate Systems, and Transforms 

s..t) The i th row, r column element of S.
 

A- An "A Matrix", expressing the rigid transform induced by one link in a
 

Tj=A1A2 ••• Aj • 

t 

kinematic chain. 

T­) A transform induced bya kinematic chain. By definition, 

Rot_x(a) Rotation around X axis by angle a.
 

Rot_y(a) Similar
 

Rot_z(a) Similar
 

Trans(x,y,z) Translate by x,y,z.
 

LAB CS attached to the laboratory, defined below.
 

TOOL A user-definable coordinate system rigidly attached to joint 6 of the Puma.
 

NULLTOOL VAL's default value for TOOL. It corresponds to a relative location of
 
(X,Y,Z,O,A,T) = (0,0,0,90,-90,0). 

FLANGE CS convenient for head and camera calculations. Like another TOOL CS, 
it is rigidly attached to joint 6. Defined in terms of NULLTOOL or T 6 -­

relative to T 6 it has a Location of (0,0,0,-180,0,-90) (see below). 

A perspective camera transform, not a rigid CS transform. 

CamPos	 FLANGE transformed so its Z axis points along a camera's optic axis and 
its origin is at the front principal point. of the lens. CamPosL and 
CamPosR are for left and right cameras. 

PhysPixel	 Translates pixel coordinates so origin is upper left comer of pixel array, 
not its middle. 

3. Coordinate Systems and Robot Coordinates 

3.1. LAB 

The Puma's internal representations assume that its first link is rigidly attached to a 
LAB coordinate system. VAL generally reports locations in LAB coordinates. The 
Puma's BASE coordinate system is usually synomynous with LAB. BASE may be 
changed by invoking the VAL BASE command, which allows translation of the X,Y,Z, 
origin and Z-rotation of BASE. An automatic Z rotation may be a good idea, since the 
Puma is bolted slightly askew. 

At initialization, according to the manual, the origin of LAB is at the intersection of 
Joints 1 and 2. Certainly the origin is somewhere near the centerline of the Puma. 
Imagine you are looking in at the Puma through the window. Then in the default state, 
the LAB X axis points to your right parallel to the window, the Y axis is pointing aw-W 
from you toward the far wall, and Z is up (Fi~ 1). If all joint angles are °(JntAng = 0), 
TOOL = NULLTOOL, and Head =(0,0,0) =0, the cameras are pointing away from you 
down TOOL (and LAB) Y. 
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3.2. T 6 a d TOOL 

T 6 i a CS attached to the end of the last link of the robot. The TOOL CS is 
defined re ative to T 6. T 6, TOOL, and FLANGE share a commo~origin. T 6 is only 

.. useful to nderstand the TOOL coordinate system. When Jntang =0 (Fig. 1), T 6 has its 
X axis po nting down (along LAB -Z), its Y axis pointing along LAB X, and its Z axis 
along L -Y (Fig. 1). 

The OOL coordinate system is a transformation of T 6, and is a primitive notion in 
VAL co ands, which can often be expressed in TOOL coordinates. Upon 
initializati n, TOO~ =NULLTOOL, which (Fig. 1) makes T7 simply a translation of 
LAB if J tAng = O. VAL reports the location of the TOOL CS in the form Loc = 
(X,Y,Z,O, ,T). NULLTOOL corresponds to a relative location, with respect to T 6, of 

~ 
T6 ~6 

'" l--...1--....J-f-.J....-+....J..--j 

Z6 X6 L..-_~~ .......----. 

Z 

.. 
, 

J----f "".. 

.. .. .. .. .. .. .. 

FLANGE XF 

Figure 1: e Puma and head, as seen from the observation window, showing three basic 
CSs. The..g·gins of T ~NULLTOOL and FLANGE coincide. The robot is shown with 
JntAng =0 nd Head =O. In this configuration Loc =(650,190,975,90,-90,0). 
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(0,0,0,90, -90, 0). The O,A,T components of Loc are angles that have the following 
semantics. "Rotate by -0 around (the current) X, then by A around the new Y, then by T 
around the new Z". Thus they have the same flavor as Eul~ angles. It is easy to verify 
that applying the NULLTOOL transform to T6 at JntAng =0 transforms T 6 to have axes 
parallel to LAB. 

One interesting and useful aspect of TOOL is that it can be redefined by the user. 
For instance, one can redefine tool as a remote point, such as a world point that is 
currently in view. Then it is possible to issue VAL commands that rotate the robot head 
around the TOOL origin. The effect is for the head to move in space and to be 
continuously reoriented by the robot wrist (not the camera motors) so that the cameras 
remain pointed at the same three-dimensional scene point 

3.3. FLANGE 

The head is rigidly attached to the six~robot link, and hence to T6 and TOOL. 
When the eyes are facing "forward" (Head = 0), FLANGE is a coordinate system whose 
axes are oriented to be consistent with the camera imaging model (Fig. 1). In FLANGE, 
Z is oU!.Jlong the direction the head is facing (parallel to the optic axis of cameras if 
Head =0). Y is down, increasing with the row number addresses of pixels in an image, 
and X is "to the right", increasing with the column numbers of pixel addresses in the 
image. One common trick is to define TOOL as FLANGE. This renders the explicit 
FLANGE transform unnecessary. If the TOOL transform is set to (X,Y,Z,O,A,T) = 
(0,0,0,-180, 0, -90), then T6 is transformed to FLANGE by the TOOL transform within 
the Puma. 

4. Camera Imaging Model 

Here we are concerned with the "intrinsic" camera parameters [Tsai 1986], which 
govern its optical properties. "Extrinsic" properties define its location in space, and 
determine the CamPos coordinate system. These properties are determined by the 
kinematic issues discussed below. For intrinsic camera properties we use a pinhole 
model (e.g. [Duda and Hart 1973]), which is to say we do not correct for radial lens 
distortions. This is not a policy, it is just that we have not yet been motivated to do so. 

The camera optic axis is out along the positive Z axis. Looking out along the 
camera's line of sight, Y points down, increasing asdoes the scan-line number in the 
camera's image. X point to the right, increasing as the pixel number along a scan line. 
X,Y,Z form a right-handed coordinate system. We assume the origin of coordinates is at 
the camera's front principal point, and that the image is formed at a distance f in front of 
the origin in the X-Y plane by point projection. Then a scene point Xyields the image 
point coordinates 

(x,y)=( xf, ysf ), 
z z 

where f is the effective focal length of the entire imaging, transmission, digitization, and 
ROIStoring process, and s is a scaling constant that expresses the "aspect ratio" of the 
system. The angular (spatial) resolution of the final pixels resting in ROI is less in the Y 
direction, and s tells by how much. Thus the model tells where a point appears (under 
default setings) in ROI store, and under default settings where its location is reported by 
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Feature ax. It includes all effects induced by CCD chip layout, conversion to analog 
wavefo by the Panasonic electronics, sampling by DigiMax, and storage in ROI. It 
does not retend to say anything about any of these effects in isolation. 

The parameters I and s were estimated using a calibration chart, and the values in 
the "Con tants" section represent our best current estimates. 

The camera transform can be expressed as multiplying the homogeneous scene 
point vee or by a transform matrix C and then performing normalization [Tsai 86]. The 
normaliz tion operation scales a homogeneous 4-vector (x,y,z, w)T by (l/w). In this 
context, e resulting value of z is an artifact, since the image has only two dimensions. 
The matri C is 

o o o 
Is o o 
o f oc=[~	 ]
o 1 o 

The camera extrinsic properties are determined by the LAB-Camera kinematic 
chain disc ssed next. 

5. The L	 B-Camera Kinematic Chain 
. Ther are some fourteen identifiable transforms between LAB and a CamPos 

Coordinat System (Table 1). The head transforms can be collapsed into two link 
transform involving offsets and one rotation each [Paul 81], but in this treatment all the 
transform beyond As are pure rotations or translations. The Joint 1-6 transforms Al-A6 
generally i volve both offsets and rotations. 

Define T, sAl A2 ••• Ai. These transforms, their partial products, and the inverses of 
their patti I products, are of use in everyday robotic life. For instance,'Ta converts points 
expressed FLANGE coordinates (often the output of vision routines is in FLANGE) 
into LAB. As another example, to simulate making an image with a camera, a point in 
LAB must be transformed by Til in order for the camera imaging model to apply. 

Note at T7 is implemented internally in VAL. We can only ask or set the value of 
T7 , (not Al -- A7). As -- A14 are transforms that are created and manipulated by the 
user. Thus we can describe A7 and As as follows. 

A7 NULLTOOL or set by user, 

Ag Rot_x(-90) if TOOL = NULLTOOL, Identity if TOOL = FLANGE. 

There are two CamAxis transforms, corresponding to the offsets of left and right 
cameras a1 ng the camera platform. CamAxisL and R are given special names only 
because th yare the last head points that are rigidly affixed to FLANGE. Thus they may 
offer some efficiency for position evaluations when the eyes are moving but the head 
(robot) is n 1. From this point on there are two kinematic chains, corresponding to the 
differing 0 fsets and azimuth angles of the two cameras, and denoted by L and R. We 
often grou As··· A14 into a single transform matrix (named CamPosL or CamPosR) 
expressing e camera location in FLANGE coordinates. 
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A matrix Name Const. or Var. Resulting CS 
Ident LAB C LAB 
Al Joint 1 V 
A2 Joint 2 V 
A3 Joint 3 V 
A.4 Joint 4 V 
A5 Joint 5 V 
A6 Joint 6 V T6 . 
A7 Tool V TOOL 
As FLANGE C FLANGE 

A9 Neck Offset C 
A10 Eye X Offset CL,CR CamAxis (L,R) 
An Altitude V 
A12 Alt. Offset C 
Al3 Azimuth VL, VR 
A14 Az. Offset C CamPos (L,R) 

Table 1: The LAB to camera kinematic chain of transforms. 

The definition of distances and angles for the robot head are shown in Fig. 2. See 
the section on Constants for numeric values. 

6. Forward Kinematics: CamPos from (cI>, 8) 

The camera motor control software positions a camera at a specific altitude, or pitch 
( <t> ) and azimuth, or yaw ( 8). We should like to compute CamPos from altitude and 
azimuth. CamPos is expressed in FLANGE coordinates. 

CamPos=AgA1o ... A14. 

The values of the relevant A matrices are as follows (Fig. 2). Constant values are given 
in Section 13. 

Ag Trans (0,NECK_OFFSET,0). 

A10 Trans(LEFT_OFFSET,O,O) or Trans(RIGHT_OFFSET,O,O). 

All Rot_x(<t». 

A 12 Trans (O,ALT_OFFSET,O). 

A 13 Rot-y(8L ) or Rot_y(aR). 

A 14 Trans(O,O,AZ_OFFSET). 

7. Forward Kinematics: TOOL from Lac 
VAL provides several useful conversions. A "precision point" is a JntAng vector, 

and VAL understands robot locations in both precision points and locations (Loc 
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TOOL Z
 
FLANGE .y
 

+- LEn 

OFfSET 
RIGHT ... 

OFfSET 

_____ FLA~GEIO.O.O) 

FLA:-';GE x 

e 2: Axes and link offsets in the robot head (see Section 13). 

vectors). It of course is possible to derive (O,A,T) simply by composing all the joint 
angle rota ons. Deriving X,Y,Z from the joint angles involves knowing offsets and 
doing a f forward kinematics solution. Generally then the TOOL location is most 
easily ob . ed from VAL. VAL reports the TOOL location as a JntAng vector (a VAL 
"precision oint") and a Loc vector (a VAL "location"). Our current Purdue robot 
control sof are only returns a Loc, although that is subject to change. 

Conve . g the (O,A,T) angles to a transform involves knowing exactly what they 
mean. The Puma manual is not explicit here. Ray Rimey determined the following 
transfonnati n, which, in its alias aspect, moves LAB to the current TOOL CS. 

TOOL(Loc) =Rot_z(-90)Rot-y(90)Rot_x(-O)RotS(A)Rot_z(OTrans(X,Y,Z). 

This transf rmation, in its alibi aspect, thus converts points from TOOL to LAB 
coordinates. It is written out explicitly below. If the TOOL transform is redefined by the 
user, then it is to that redefined CS that LAB will be transformed. Redefining TOOL 
with a VA command means setting the values of X,Y,Z,O,A,T in the above 
transfonnati n. Thus if TOOL is redefined within VAL from NULLTOOL to FLANGE, 
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. then As should be the identity transform, and can vanish from the kinematic chain and 
from the user's external calculations. 

8. Inverse Kinematics: (~,9) from CamPos 

Given a camera position expressed as a CamPos transform in FLANGE coordinates, 
.. what 9 and <p angles created it? To find out, write the transform 

E=A9 AlO ••. A14, 

and notice that certain individual elements of E contain exactly the sines and cosines of <I> 

and 9. We see 

ep=atan_ 2(E21,Ell)' 

9=atan_ 2(£02' Eo<». 
This is a very simple version of the work needed to get O,A,T from TOOL. 

9. Inverse Kinematics: O,A,T from TOOL 

The FRAME command in VAL takes four input vectors that describe the TOOL 
axis unit vectors and origin, and returns the corresponding Loc vector (X,Y,Z,O,A,T). 
The interesting part of this is of course deriving (O,A,T) from the TOOL CS. In turn, 
this is an operation quite closely related to deriving Euler angles from a transform, which 
is an early exercise in [Paul 81]." 

The approach is to multiply the five matrices from the TOOL(Loc) formula (leaving 
out the translation) together to get a TOOL transform D. Say 

D=B1B2B3B4BS. 

Then, postmultiply both sides by B51 , and look for interesting relationships elementwise 
between the two matrices. In this case, as in Paul's solution for Euler angles, we find that 
we have enough information to compute O,A,T in the form of atan_20 functions, which 
have good properties. Proceeding to details, use the notation SA for sin (A), etc, 
substitute Ai for B, in the kinematic chain equation above, and write the resulting 
product of the first fourB matrices as 

_.[-g~:: Co 
B So
 

1-4 - -C
 o
 
o
 

A 
o 

The complete transformation is 

COST- SOSACT COCT+SOSAST SOCA 0] 
- SoST+CO SACT SOCT-COSAST -COCA 0

D - -eACT CAST -SA 01 •
[ o 0 0 

Section 7 establishes that B l -4 = DB51 = D Rot_z(-T). Performing the formal 
multiplication on the right hand side yields a 4x4 matrix whose elements are functions of 
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the elem nts of D (which we know), Cr. and Sr. Equating these elements to those of 
B l -4 , we find our first interesting equation: 

We 

SrD 2O+Cr D 21=0,
 

T=atan_ 2(D21 ,D20)'
 

an also read off that 

-SA=D 22 

so 

A=atan_2(-D 22,STD 21-eTD20). 

can read off expressions for Co and So to get 

O=atan_ 2(STD lO+CTD 11,STD oo+CTD01)' 

time of writing, these derivations have not been checked against the output ofAt th 
the FRA E command. 

10. Inver e Kinematics: (" 9) from (x,y,z) 

Give a pointZat (x,y,z, l)T in FLANGE, which <1> and eparameters will center the 
point in a amera's view? Following the strategy of the" last section did not immediately 
lead to a p omising set of equations. The hope was that the camera physical transform E 
could be itten out and the fact that Et=(O,O,z, l)T would lead to something simple. It 
did not see to. Instead we use a straightforward geometric approach (Fig. 3). 

ig. 3, we have 

b=asin(dlh), 

,=atan_2(~y,z)- b. 

The asin() .s bad practice because of its ambiguity and lack of differentiation for angles 
near 90, bu for small angles, as will usually be the case in such a setup as this, it behaves 
reasonably. 

It rem .ns to determine the azimuthal rotation. Rotate space by Rot_x (-q», bringing 
the camera and point into a plane of constant y. The point's new (x,z) coordinates 
become (x, cos(<t»-ysin(<j»), and finally we have 

6=atan_ 2(x,zcos(<1»-ysin (<1»). 
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(a) 

z y 

(x, Z cos (4)> - y sin (4))) 

(b) 

Figure 3: (a) Distances' and Angles for computing the Q> to aim camera at a point 
Z (b) Distances to compute eto aim camera at?' 

11. Inverse Optics: (x,y,z) from Two Images via Pseudoinverse 

The complete imaging model is
 
,.,.,. T ~
 

(x,y,z,l) =P(norm (~LA}), 

z 

x 

where P is the PhysPixel transform that shifts the origin of pixel coordinates to the upper 
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left co er from the center of the image, norm() is the homogeneous vector normalizing 
opera on, C is the imaging matrix given above in the Camera Model section, and T is the 
invers of the transform that locates the camera in LAB coordinates, i.e. it is 
(F E·CamPos)-l. First, let 

(x,y,z, l)T=p-l (x,y,z, 1), 

(In our system this just amounts to defining the new variables x=x-255,y=Y-255). Then 
from th definition of norm0, and lettingx=(x,y,z, l)T we have 

__) _ ([CfJo? [CTli:t)(x,y - , , 
[CI'}37 [CTh? 

where [ 0 is the first row of Cf', etc. Moving the denominators over to the left gives 
us 

x[CTh"t=[CT]o"t 

y[Cfhx=[CT] l"t 
and mul plying everything out and rearranging gives two linear equations in x.y, and z in 
terms of e known quantities jthe effective focal length, S the aspect ratio, and Tij. 

x (XT20-fTOO)+y(xT21-fTOl)+Z(xT22-fT02) ={f03:"'xT23 

x GT20-jsTlO)+y(yT21-jsTll)+z<YT22-!sT12) =jsT13-yT23' 

Thus kno ing the physical locations of two cameras, and knowing the pixel coordinates 
of the c rresponding two images of the same three-dimensional point? yields four 
equations in the three unknowns (x,y,z). They can be solved by a pseudo-inverse 
method. X is the matrix of coefficients of (x,y,z) in the above equation and Y is the 
row matri of the right hand sides, then the four equations can be written 

Y=XB 

if B is the formal column-vector of the variables (x,y,z)T. The values of x.y, and z are 
obtained s mply by computing the pseudo inverse of X: 

B=(XTX)-lXTy. 

The hysical interpretation of this method is made difficult by the fact that the 
"observabl s" (the .i and y) and the "independent variables" (the T ij ) contribute to 
coefficient ofboth theB matrix and Y vector. Analysis shows that the effect of noise on 
this meth may be significant, since a one-pixel error in.i position causes a 20mm depth 
error at a 0 meter distance, and a one degree error in azimuth produces a 20mm error 
in x locati n. The method has been implemented and integrated into a system that 
obtains thre -dimensional position and verifies it by touching the object with a pointer, 
and seems perform as well as the more geometrically intuitive method given in the 
next section One potential advantage of the pseudoinverse method is its straightforward 
extension to more data points. 
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12. Inverse Optics: (x,y,z) from Two Images via Vectors 

Duda and Hart [1973] present a geometrically intuitive method for stereo from two 
image points. We have implemented it and find it works as well as the pseudoinverse 

.. method for two images. The stereo problem is posed using plain 3-vectors, not 
homogeneous vectors. The following vectors are defined (Fig. 4). 

~ The two cameras have lens centers at ~ and LR• The vector1 points from .LL to 
LR. The 3-D point in the scene is X 7is imaged in cameraL as 'Xt=<XL YL)t, and in 
cameraR it is imaged into ~. The vector Ii points from the lens center of cameraL 
through the point xt and to the 3-D point in the scene. A unit vector in the same 
direction isztL. Similarly, cameraR has~ anduR defined. 

A temporary world coordinate system is placed at~, thus ~ =0. (Once the 3-D point 
is estimated in this coordinate system, we will generally convert it to another system such 
as FLANGE.) 

The vectorsrt and~ are defined as follows 

rt=aLztL, 

Figure 4. Vectors Used in Two-Vector Stereo Formulation. 
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~=aRztR+t 
The appr ach is to estimate the two scal!Is aL and aR such that the11 and~ vectors are 
as close t gether as possible. Note that &is known and that ltR and l!R can be computed 
from X1 nd 7R. Then the value of -t can be computed from aL and aR as the point 

, midway tween the heads ofthe-;t and~ vectors 

7=[aLz4.+<t+aRztR)]/2. 

The value of at. and aR areestimated by minimizing 

IlaL~-~aRztR)112. 
Duda and Hart give the answer to the minimization as 

+ztL1-otL:UR )(itR ~ 
l-(i1L :LlR )2 

-ztR:&r(itL:;/R )(itL1)
 
I-(itL :LlR )2
 

A few ancilliary equations are
 

(XL "" YLls f)T 

ztL 
I I (XL YLls f)T I I ' 

(XR YRls f)T
UR 

I I (XR YRls f)T I I ' 

where s is the pixel aspect ratio. Given the positions of the Left and Right cameras ~ 

FLANGE coordinates (call these CamPos transformations CamPosL and CamPosR), 0 
may be co puted as 

5=LR=CamPosL-lCamPosR (000 l)T. 

If the ameras do not have parallel optic axes, then the transformation 
(CamPos -lCamPosR) must be applied to~ to rotate it with respect to UL. 

13.	 Lab 

The values are taken from the directory /u/brown/robot/include, where there are 

Constants 

several til s of the form Xconsts.h. 

NECK_O SET (-149.2) /*pitch axis to tool axis*/ 
LEFT_O SET (-12.7) /*tool Z axis to Left camera yaw axis*/ 
RIGHT_O FSET (152.4) /*tool Z axis to Right camera yaw axis*/ 
ALT_OFF ET (-65.1) /*cam axis to pitch(altitude) axis */ 
AZ_OFFS T (34.9) /*nodal point to yaw(azimuth) axis */ 
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13.2. Camera Constants 

980.5 /*imaging system effective focallength*/ 
1.289 /*imaging system pixel aspect ratio y/x*/ 

..	 /* the following constants allow computation of how many pixels to move for a 
corresponding change in angle, and vice-versa. They are accurate near image center, off 
by a few pixels in the periphery due to failure of small-angle assumption. The focus 
distance at which they are computed is the "standard focus distance" of 134cm, by RP 
and CB on 5 July. The CAM_F above also applies at this distance. */ 

CAM_X_P_D 17.75 /*pixels per degree in x */
 
CAM_Y_P_D 22.79 /*pixels per degree in y */
 

13.3. Robot Constants 

INIT_X 650.0 /*init xyzoat when all joint angles 0 */
 
INIT_Y' 190.13
 
INIT_Z 975.0
 
INIT_O 90.0
 
INIT_A (-90.0)
 
INIT_T 0.0
 

14. Rigid Transformation Library 

Edmond Lee wrote a library for manipulating rigid transforms as an'extension to 
libmatrix, based on an ealier column-vector version by Dave Coombs. It provides basic 
and efficient implementations of standard data structures and operations. Following are 
exerpts from its header file. 

typedef struct matrix *pt_t; /* homog point (4x1 col. vector) */
 
typedef struct matrix *tr_t; /* homog transformation (4x4 matrix) */
 

pt_t ptzerof); . /* Return new point 0 0 0 1*/
 
pt_t pt_rotx(l*pt_t p, double r*/); /*sideeffects p, rot about X by r */
 
pt_t pt_Toty(l*pt_t p, double r*/);
 
pt_t pt_rotz(l*pt_t p, double r*/);
 
pt_t pt_translate(/*pt_t p, double x,y ,z*/);
 
pt_t pt_nonn(l*pt_t p*/); /* sideeffects p by normalizing it */
 
pt_t pt_transfonn(/*pt_t p, tr_t T, pt_t q*/); /*q = Tp. returns q*/
 

tr_t tr_identO; /* returns Identity transform */
 
tr_t tr_rotx(l*tr_t A, double r*/); /*sideeffects A, rot about X by r*/
 
tr_t tr_roty(l*tr_t A, double r*/);
 
tr_t tr_rotz(/*tr_t A, double r*/);
 
tr_t tr_translate(/*tr_t A, double x,y ,z*/);
 
tr_t tr_invert(l*tr_t A, B*/); /* B is A inverted, B returned */
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/* C = A*B, C returned */ 

15. Sam Ie Robot Data Structures and Functions 
Dat structure requirements for applications vary, but the following sort· of 

.. structures have been successfully used for various vision tasks, and may serve as a 
template or future (or possibly even standard) robot and head data structures, access 
functions, and update functions. 

'*-------~ ------------------------------------------------------------*1 
/* intrinsi camera propertiess/ 

typedef s ct timeval *timestamp_t; 

l*timelastmodUfied*1 

/*x and y shifts for phys to pix coords. */ 

I*C matrix containing f and sf */ 

typedef s ct Camera 
{ 

verbose 
Ca_Time; 
Ca_Focus_Dist; 
Ca_Fstop; 
Phys_to_Pixel; 

1*---------- -------------------------------------------------------~---*/ 
/* Head g metry *1 

typedef struct Head_Config I*uses cnsts in headconsts.h, camconsts.h *1 
{ 

int verbose; 
times p_t Hd_Time; 
doubl Hd_Alt; /*head altitude angle (pitch) *1 

1* offset of end of nose (FLANGE coords) *1 

1* ---------- --------- Left Camera ------------------------------------*1 

/*left camera azimuth*/ 

pt_t Hd_CamL_Axis; 
/* This ve tor holds the neck and the camera yaw axis offset, specifying offset from 
FLANGE rigin to last rigid point in head kinematic chain. Useful intermediate 
transform i only eyemovements are happening. *1 

tr_t Hd_CamL_Pos; /* CamPos: camera's position in FLANGE.*1 
tr_t Hd_CamL_Inv; r Inverse of CamL_Pos *1 
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.Hd_CamL;/*Left Camera state*/ 

/* -------- Right Camera is Similar ------------------------------------*/ 

double Hd_AzR; 
pt_t Hd_CamR_Axis; 
tr_t Hd_CamR_Pos; 
tr_t Hd_CamR_Inv; 
Camera_t Hd_CamR; 

/*----------------------------------------~-----------------------------*/ 

/* Puma Geometry */ 

#define PURDUE 0 
#define TYPE 1 
#define SIM:-1 

typedefsttuctRob_Co~fig 

{ 
int 
int 
int 
timestamp_t 

verbose; 
Rob_man_sim;r 
Rob_ddAlvin; 
Rob_Time; 

/* purdue, console, or simulated*1 
I*purdue puma device descriptor*1 

double 
double 
double 

Rob_Speed[2]; 
Rob_Jnt[6]; 
Rob_Location[6]; 

1*[0] is speed, [1] is mode *1 
/*Joint angles of Joints 1-6 in order*1 

I*Current TOOL location as X,Y,Z,O,A,T. Updated as Robot moves. *1 

double Rob_Tool[6]; 
I*Current TOOL transform as X,Y,Z,O,A,T. Set by user, same as A7, defines TOOL in 
relation to T 6, does not move with robot. *1 

tr_t Rob_FLANGE; I*transfonn to move LAB to FLANGE */ 
tr_t Rob_A_Inv; I*inverse of above *1 

I*Head configuration struct*/ 

/*------------------Functions ---------------------------*1 
/*rob_kine.c */ 
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extern tr_ Loc_To_FLANGE (1* Loc (xyzoat) array */); 
1* Return a CS for the Rob_FLANGE entry in the Config *1 

extern Ro~confi~t Rob_Setup(/*simulation type*/); 
I*Creates ob config, also calls head config setup *1 

extern voi Rob_SecTool(J*Loc*/); 
1* Set the ~OOL CS to be that represented by Loc *1 

extern voih Rob_Free( I*Rob_Confi~t */); I*destroys structure*1 

extern vOik Rob_Move(J* Rob.Config.j, Rob_Loc */); 
I*Depending on mode, moves robot or not. Updates structures.*1 

extern vot RobDumpt); I*print robot state *1 

I*head_kile .c *1 

extern HeadConfigjHead.Setupt):
 
1*.Creates r e head_config, puts in pre-computable tr_t's *1
 

extern void Head_Move(/* HeadConfig.t, LeftAz, Right Az, Alt*/);
 
I*compute~ Land R Pos and Cam matrices in FLANGE coords, moves or not depending
 
on robot mode, *1 

\ . 

Head_Free(/*Head_Confi~t*/); 

Head_Dump(l*Head_Configj */); 
Cam_Dump(/*Camera_t */); 
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