
!"

"

Xiang Liu and Sihan Xie

CSC 160

Professor Chris Brown

LED Labs

04/12/2011

Data Acquisition: The L E D Labs (M AT L A B)
Abstract

Throughout the three LED labs, as both engineering students and computer scientists, we

will set up our own LED circuit, interact with it by controlling it using MATLAB on computer.

By using an USB 6009 with MATLAB programming language (associated with DAQ Toolbox),

we can output voltages to the circuit in either digital or analog signal and get some interesting,

worth analyzing results. The purpose of the LED labs is not only creating the basic image of the

characteristics of LED and other circuit component, but most importantly also testing data

acquisition in MATLAB.

Introduction

Lab 1:

This part of the lab is basically a !game" of the translation between binary digits and hex

number. Each player will first receive a random number between 0 and 15, which is displayed in

binary manner (e.g. 3 is 0011 in binary digits). The user will then be asked to input the

corresponding hex number (input an integer from 0 to 9 or a letter {a, b, c, d, e, f} for numbers

from 10 to 15). As a hint displayed to the user, the 4 LEDs in the circuit represent the four digits

of the binary number. For each of the four lights, if it is on, it means the corresponding digit is 1;

if the light is off, it means the corresponding digit is 0. Thus, the four LED lights in the circuit

can represent a four-digit binary number. However, the user might not notice the relationship

between the lights and digits and therefore, the whole !game" will show a learning process of the

user. The user will have unlimited try for the input, and each time the program will notify the

user whether the answer is correct or not. If the user input a negative number, the game will

automatically terminate. The number of inputs to get the correct answer and time spent thinking

for each trial are recorded for further analysis (e.g. plot the !learning curve").

Lab 2:

The goal of Lab 2 is to modulate the brightness of the LEDs by adjusting the analog output

voltage to the circuit. Instead of creating a digital output like in Lab 1, we will create an analog

output object, and produces an analog signal representing a sine wave that varies from 0 to 5

volts. The other output voltage is dependent on a cosine wave in the same range of voltage as the

first one. The process is repeated and we expect to see the two LEDs light alternatively with

varying brightness (10 times oscillations in our script). Each of the two lights should be brightest

and dimmest at exactly opposite time because of the characteristic of their analog input (sine and

Christopher Brown

#"

"

cosine wave function).

Lab 3a:

In Lab 3a, we will leave only one pair of LED and resistor in the circuit and has an output

voltage in the range of -1 to 5V. The voltage drops across the circuit, LED and the resistor are

measured by using differential input channels. The results are then stored and plotted for analysis.

As a hypothesis, we would expect the voltage drop across the circuit is the sum of the voltage

drop across the LED and across the resistor.

Lab 3b:

The last part of the LED Lab is going to investigate the !pause" function in MATLAB. We

will keep the same set up as in Lab 3a but adjust the pause time between two voltage outputs to a

longer time than that in lab3a. The results are also plotted and we expect stepped or jagged trend

lines.

 Methods

Lab 1:

C ircuit set up:

We set up four pairs of LEDs and resistors in parallel by using a breadboard. The breadboard

is supplied with four digital voltage inputs (each pair of LED and resistor get one input) by

wiring with four digital output lines on USB 6009. A wire is then used to connect the main board

across the red column to the blue column at the right end of the breadboard, and the blue column

is connected to the ground terminal on USB 6009 so that a full circuit is established.

Programming in M AT L A B:

The main script for Lab 1 basically consists of three parts:

1. Set up the !game";

2. Record the results of the game while running;

3. Plot the data from the experiment.

First of all, we need to clear all the possible internal state of the device. A device object is

created and used to associate the digital input and output subsystem with MATLAB command by

using the built-in function #$%&%'()%*+. Four digital output lines are then created and labeled with a

specific number by using the function #addline+. The specific number of the line is corresponding

to the specific number of the digital terminal on USB 6009. For example, if we call line 0 on the

computer, the line terminal P00 is on and supplies a digital output voltage.

For setting up the !game", we incorporate two #,-%)./)**0+ along with if statements in the

core of the script. For the ease of understanding, three possible conditions of the game will be

introduced first. As long as the user inputs a positive number or a letter from !a" to !f", the loop

will keep running. If the user+s input answer is correct, the game will automatically terminate the

current trial and enter the next round. However, if the answer is incorrect, the user will be asked

to enter an answer again until the answer is correct and then move on to the next round. The third

condition is when the user inputs a negative number, the whole game is terminated (no more

$"

"

trials).

Before going to the outer loop in the script, there are two variables needed to be set up first

(both of the initial values are zero), called !value" and !c_counter" in our case. As long as the

!value" variable is greater than or equal to zero, we will enter the outer while loop, which means

staying in the !game" and entering the next trial when one trial is over. The three possible

conditions discussed above are incorporated into the loop by using if statements. In the outer

#while+ loop, a random number between 0 and 15 is generated in the beginning of each trial. We

use the built-in function #putvalue+ to call the assigned lines to turn on the specific lights. The

user is then asked to input a hex number which corresponds to the binary number indicated by

the four LED lights.

We set another variable !f_counter" at the end of the inner loop asking for user+s input,

which will be used to record the total number of answers inputted by the user in one trial (when

the answer inputted is incorrect). After setting up the !f_counter" variable, the !game" will start

counting the time (for each trial) by calling the #tic+ (MATLAB built-in function).

Inside the outer #while+ loop, the first if statement corresponds to the condition when the

user+s input of hex number is a correct translation of the binary numbers shown by the LED

lights. The binary number shown by LED lights is originated from the randomly generated

decimal number in the beginning. The #hex2dec+ built in function is used to convert the user+s

input value (a hex number) to decimal number and then compared to the decimal number (0 to

15) generated in the beginning. In this case, if those two values are the same and we will notify

the user that the answer is correct and add 1 to the variable !c_counter" which means the first

trial is completed and also record the total number of tries in the current trial by adding one to

!f_counter". The time spent in each single trial to get the correct answer is recorded by calling

the #toc+ function.

The second #ifelse+ statement is to check if the user enters a negative number and if yes, it

will first be converted to decimal number and then be set equal to the variable !value". As

mentioned above, when !value" is detected as a negative number in the outer loop, we will not

re-run the outer #while+ loop anymore and the whole game is terminated.

The third else statement is used when the answer the user entered is incorrect. An inner

while loop is used to prompt the user to enter a new answer each time when the input answer

does not match the correct answer (with unlimited attempts). After doing the conversion using

#hex2dec+ function, if the two values are not equal, we will first add 1 to the variable !f_count.1"

in order to record the total number of tries in one trial and notify the user that the input message

in incorrect. After that, the user can input a new hex number. After several tries, the user might

get the correct answer, and if answer is ultimately correct, we will first add one to the !c_counter"

and then record the total time and the total number of tries (the total of !f_counter" plus one) in

this trial.

After running the whole game, the total number of tries, total time in each single trial and

total number of trials are recorded and plotted for further analysis. (Please refer to the !Result" in

next section)

%"

"

Lab 2:

C ircuit set up:

For Lab 2, we will only use two pair of resistors and LEDs. The set up is basically the same

as the first lab except the breadboard is supplied with two analog output voltages by wiring with

two analog output channels on 6009.

Programming in M AT L A B:

The basic set up is similar as in the first lab. A device object using analog output subsystem

(instead of digital output in Lab 1) is called by using the built-%2/3425'%*2/#(2()*&*4'04'+6/Two

analog output channels are then created and corresponded with a specific number by using the

3425'%*2/ #($$channel+6/ 7-./ 2489.1/ %:/ 5*11.:0*2$%2&/ '*/ '-./ 2489.1/ *3/ '-./ $%&%'()/ '.18%2()/ *2/

USB 6009. For example, if we call line 0 on the computer, the line terminal AO0 will be on and

supply an analog output voltage.

To incorporate the sine and cosine function, we use a simple #for+ loop that loops 1000 times

so that we can observe 10 oscillations (with our script). The first analog output voltage

corresponding to the first channel is set with a voltage called !vout1" which is equal to!"#$! %
!"#$ & '()* '+ & " & ,-

.//00. The second voltage !vout2" is set to equal to!!"#$! % !"#$ & '12('+ &

" & ,-
.//00. Thus, the range of the voltage output will be from 0 to 5V, since the maximum values

for both sine and cosine functions are 1 and both of their minimum values are -1. As k goes from

1 to 1000, both functions will be equal to 1 and -1 at opposite time. Since "3!!is one period (one

full oscillation) for both of sine and cosine functions, so we will have 10 full oscillations in total.

A built-in function #putsample+ is used to send the value of these two analog output voltages

through channels to the circuit.

As required, there will be a 0.02 seconds pause between each of the two voltages outputs.

Lab 3a & Lab 3b:

C ircuit set up:

For both Lab 3a and Lab 3b, we will only use one pair of resistor and LED, which are

connected in series. Similar to Lab 2, the circuit is supplied with one analog output voltage by

wiring with one analog output channel (AO0) on 6009. In this lab, we will use three analog

inputs channels AI0, AI1 and AI2 (with both positive and negative ends) as differential inputs

each connected across LED, resistor and LED + resistor (whole circuit) respectively in order to

measure the voltage drop of the three different parts.

Programming in M AT L A B:

First of all, the maximum number of input channels and the expected sample size for each

channel are set to be 3 and 300. A device object using analog output subsystem is then called by

using the built-%2/ 3425'%*2/#(2()*&*4'04'+6/ In Lab 3, only one analog output channel is created

and associated with AO0 9;/4:%2&/ '-./ 3425'%*2/ #($$channel+6/After that, a device object using

analog input subsystem is then called by using the built-%2/3425'%*2/#(2()*&input+6 Three analog

input channels are established and labeled with a specific number (0, 1 and 2 in this case) by

&"

"

using the function #addchannel+ again.

For Lab 3a, we then use a #for+ loop iterated from 1 to 300 to set the output voltage going

linearly from -1 to 5V. The built-in function #putsample+ is used to send the value of these two

analog output voltages through channels to the circuit for each loop and a pause time of 0.01

second is added between each two output voltages. The voltages of each three parts of the circuit

are recorded each time using the #getsample+ (MATLAB built-in function). After recording the

data, another pause time of 0.01 second is added to avoid the possible race between putting and

getting the samples.

The code for Lab 3b is slightly different from 3a, where the difference is we prolong the

pause time from 0.01 second to 0.04 seconds inside the #for+ loop. In Lab 3b, we will only loop

from 1 to 25 (let voltages going from -1 to 5V in 25 steps). The sampling rate can be adjusted

using the built-in function #setverify+. We run the experiment with sampling rates both in 100

and 1000Hz and get the result of voltage drops across different parts of in the circuit.

Results and Discussion

Lab 1:

(Tested with the !Broadway.m" before the formal L A B 1)

We know that our circuit and codes all function correctly because the LEDs turn on normally

and each of them corresponds to a specific digit of binary number correctly. The result of the

binary to hex translation game is stored and plotted.

(Note: continued on next page in order to better fit the figures)

'"

"

Lab 1: (raw data plotting)

"

!"#$%&'()'*"+&',-'.-%%&.,'/012&%'3-%'&/.4',%"/5'

"

"

!"#$%&'6)'*-,/5'0$+7&%'-3'/012&%1'3-%'&/.4',%"/5'

According to Figure 1 and 2, both the total number of answers and time spent on each trial

decreases as the n-th trial number increases. From the data, we can predict that the user begins to

notice the relationship between the LED lights in the circuit and the 4 digits binary numbers, and

!learn" the conversion as more trials he/she tried.

Both the error and the time reduced to around 1 after around 10 trials. The zigzagged shape

in both figures might correspond to the !too easy" or !too hard" answers and it is very

reasonable for the data to have some fluctuations because the thinking speed is unpredictable but

the trend is close to a !learning curve". (The fitting of the data will be discussed later in !Extra"

part.)

("

"

The current ratio of total incorrect answers to trials for each trial:

"

!"#$%&'8)',4&'.$%%&0,'%/,"-'-3',-,/5'"0.-%%&.,'/012&%1',-',%"/51'3-%'&/.4',%"/5'

"

The current average response time (over the test so far) for each trial :

"

!"#$%&'9)',4&'.$%%&0,'/:&%/#&'%&1;-01&',"+&'<-:&%',4&',&1,'1-'3/%='3-%'&/.4',%"/5'

Both the ratio of total incorrect answer in each trial to total trials and the average response

time decreases as the number of trials increases. Figure 3 and 4 are better demonstration of the

!learning curve" since the result is somewhat cumulative and reduce the unpredictable !noise" in

the data.

(The fitting of the data will be discussed later in !Extra" part.)

)"

"

Lab 2:

The outcome phenomenon in Lab 2 is the same as what we expected. The two LED lights

oscillate alternatively from increasing brightness to decreasing brightness for 10 times and turn

off in the end. Two analog outputs in sine and cosine wave have the same range of oscillation

magnitude, but are in the opposite phase. Thus, the brightness of each two LEDs is changing at

opposite time (one light reaches the brightest when the other reaches the dimmest). They were

brightest and dimmest at opposite time but the degree of brightest and dimmest are the same.

Lab 3a:

The results of voltage drops across each of the circuit (LED & resistor), LED and resistor are

plotted on the same figure.

"

!"#$%&'>)'?-5,/#&'@%-;1'<-05A'3-%'B/7'8/='

The figure shows the voltage drops across each of the three parts of the circuit as total

voltage linearly increases from -1 to 5V. According to this figure, the voltages across LED and

LED + resistor (whole circuit) start increasing linearly after 50 iterations (0V!. The voltage

across LED becomes a flat curve (no significant increase) after 150 iterations (2V), meanwhile,

the voltage across the resistor starts increasing linearly which seems to provide an alternative

path for the voltage.

From Figure 3 and 4, we can tell that the total voltage drop across the circuit is always a sum

of the voltage drops across the LED and resistor, which supported the original claim.

(The fitting of the data will be discussed later in !Extra" part.)

Lab 3b:

*"

"

The voltage drops of all three parts after adding a longer pause time (0.04seconds) between

two voltage outputs in the loop (25 steps).

"

!"#$%&'C)':-5,/#&'D%-;1'3-%'B/7'87'<2",4'3%&E$&0.A'(FFGH='

"

"

!"#$%&'I)':-5,/#&'D%-;1'3-%'B/7'87'<2",4'3%&E$&0.A'(FFFGH='

"

The figure shows the voltage drops across each of the three parts of the circuit as total

voltage linearly increases from -1 to 5V. Figure 6 and 7 both show a quantized representation of

!+"

"

the voltage drops across all three components in the circuit. The curve is !stepped", which is

exactly the same as what we predicted before running the experiment. When we changes to a

higher sampling rate (1000Hz) for the voltage drop, as shown in Figure 7, we will get a curve in

exactly the same shape as that with frequency 100Hz.

The voltage across LED also becomes a flat curve (no significant increase) after 50 samples

(2V) (or 500 samples in 1000Hz), meanwhile, the voltage across the resistor starts increasing

linearly which seems to provide an alternative path for the voltage.

(Interesting Phenomenon)

L E D only:

"

!"#$%&'J)':-5,/#&'D%-;'/.%-11'BK@'2",4'3%&E$&0.A'(FFGH

"

!"#$%&'L)':-5,/#&'D%-;'/.%-11'BK@'2",4'3%&E$&0.A'(FFGH'</3,&%'%$00"0#',4&';%-#%/+'-0.&=

!!"

"

"

!"#$%&'(F)':-5,/#&'D%-;'/.%-11'BK@'<2",4'3%&E$&0.A'(FFFGH='

The three figures above show the results of voltage drops across only the LED using both

100Hz and 1000Hz sampling rates.

Although Figure 8 and Figure 9 have very similar shape, it should be easy to find that, in

Figure 9, there is an immediate drop in voltage in the beginning of the experiment. The reason

for the sudden drop in the beginning is clear through comparison in experiments. It is because

that a similar program has been run at least once before running the experiment to generate the

data plotting in Figure 9. Thus, there will definitely be voltage left in the circuit when we were

running the experiment for data plotting in Figure 9. It drops from 5V because we add the output

voltage from -1 to 5V in the experiment before that, so the remaining voltage starts at 5V.

The high voltage suddenly drops after the program enters a new loop where the output

voltage is reset to the initial value of -1V.

The voltage in the beginning for the sudden drop is not set to zero at once, which shows that

MATLAB began input data before the output voltage is reset to -1V.

When the sampling rate is changed from 100Hz to 1000Hz, by comparing Figure 8 and 10,

the shape of the two figures are the same (both !stepped" in the same way).

(Note: continued on next page in order to better fit the figures)

"

!#"

"

Resistor only:

"

!"#$%&'(()':-5,/#&'D%-;'/.%-11'%&1"1,-%'2",4'3%&E$&0.A'(FFGH'

"

!"#$%&'(6)':-5,/#&'D%-;'/.%-11'BK@'2",4'3%&E$&0.A'(FFFGH

According to Figure 11 and 12, the voltage drop across only the resistor shows a similar

result as that of the LED. The voltages across LED and LED + resistor (whole circuit) start

increasing linearly after 50 samples (0V) (or 500 samples with 1000Hz).

The two Figures with different sampling rate are in the same shape if we also adjust the

iteration to 1000 when changing the sampling rate. Thus, we can conclude that only changing the

sampling rate (frequency) will not matter the outcome, since the shape of the curve is basically

the same (nothing interesting shows up).

!$"

"

In this case for the resistor, the number of iterations when the voltage increases with 1000Hz

sampling rate is almost 10 multiple to that with 100Hz.

Circuit only (L E D + resistor):

"

!"#$%&'(8)':-5,/#&'D%-;'/.%-11'BK@'/0D'%&1"1,-%'2",4'3%&E$&0.A'(FFGH

"

!"#$%&'(9)':-5,/#&'D%-;'/.%-11'BK@'2",4'3%&E$&0.A'(FFFGH'

According to Figure 13 and 14, for the voltage drops across the whole circuit with different

sampling rates, the shape of the !stepped" curves are the same. The numbers of samples when

the voltages start to increase hold the same relationship between the voltages with two different

!%"

"

rates (increase by a factor of 10 when sampling rate increases from 100Hz to 1000Hz). Thus, we

can verify that only changing the sampling rate (frequency) will not matter the outcome, since

the shape of the curve is basically the same (nothing interesting shows up).

Experiment with trigger :

"

!"#$%&'(>)':-5,/#&'D%-;'/.%-11'BK@'2",4'3%&E$&0.A'(FFGH'

<2",4',%"##&%'/0D':-5,/#&'%/0#&'3%-+'M(',-'>:=

"

!"#$%&'()*'+,-./#&'0%,1'/2%,33'456'7".8'9%&:$&;2<'(==>?'

@A".8'.%"##&%'/;0'+,-./#&'%/;#&'9%,B'CD'.,'D+E
When doing Lab 3b, we are asked better not to use the #trigger+ function, which set a trigger

before starting the input acquisition. To explore the effect of trigger, we run the experiment twice,

once without trigger (results have been discussed above) and once with trigger (results refer to

Figure 15 and 16). When we are using trigger, it is obvious in the figure that there is a longer

!&"

"

waiting time before the immediate drop in the beginning, which indicate a longer time delay

before we start entering the #for+ loop.

From Figure 15 and 16, we can see that there are more !steps" in the figure for voltage drop

with trigger and voltage range from -1 to 5v than the one with trigger and voltage range from -5

to 5v. That is because the latter one should start increasing later than the first one, since from -1

to 5V, the voltage will start increasing from 0V (1/6 of the full range), but from -5 to 5 V, the

voltage will also start increasing from 0V (1/2 of the full range). Therefore, the phenomenon

indicated in the figure matched our prediction.

Extra credit:

Lab 3a (Data Analysis)

From the former plotting for Lab3a (shown in the above), we know that the non-linear

tailing-off part of the LED's voltage curve starts at around 150 iterations, so to fit in the model,

we will only analyze with the first 150 iterations.

First, 4:./#<2();=.>?0+/(2$/#<2();=.@*,.1+/3425'%*2/'*/0)*'/(2$/5-.5A/'-./&**$2.::/*3/'-./

data fit for either exponential function or power function:

"

!"#$%&'(F'G8&2H";#'"9'+,-./#&3'0%,1'9,%'456'9".'9,%'.8&'&I1,;&;."/-'9$;2.",;'

!'"

"

!"#$%&'(J'G8&2H";#'"9'+,-./#&3'0%,1'9,%'456'9".'9,%'.8&'1,7&%'9$;2.",;'

Statistical Analysis:

From Figure 17, the logarithm of y does not have a linear relationship with x, so the data for

voltages drop of LED will not fit in the exponential function. Similarly, from Figure 18, the

logarithm of y does not have a linear relationship with the logarithm of x, so the data for voltages

drop of LED will not fit in the power function, either.

Since either exponential function or power function will not fit the data, try polynomial
functions:

!"#$%&'(K'(
3.
'!,%0&%'1,-<;,B"/-'9$;2.",;'@456'L,-./#&'!'4/M'N/E'!"#$%&'O='O

;0
'!,%0&%'1,-<;,B"/-'9$;2.",;'@456'L,-./#&'!'4/M'N/E' ' ' ' ' '

!("

"

!"#$%&'O('N
%0
'!,%0&%'1,-<;,B"/-'9$;2.",;'@456'L,-./#&'!'4/M'N/E'!"#$%&'OO'P

.8
'!,%0&%'1,-<;,B"/-'9$;2.",;'@456'L,-./#&'!'4/M'N/E'

Statistical Analysis:'

1st order polynomial function: 4! 5 !67#89:;! % !7#7<88=

2nd order polynomial function: 4! 5 !67#7;>>! % !7#777:=! % !7#777<=?

3rd order polynomial function: 4! 5 !7#<";7! %!67#7<:"=! % !7#7778=? %!67#7777=@!
4th order polynomial function: 4! 5 !7#7:78! %!67#77>$=! % !7#777<=? % !7#7777=@ %!67#7777=A!

LED Voltage (Lab 3a) Data Fits:

 Models 1
st
 polynomial 2

nd
 polynomial 3

rd
 polynomial 4

th
 polynomial

 Standard Error 0.1772 0.0878 0.0381 0.0317

From the Figure 19 - 22 above, we can choose the 1
st
 or 2

nd
-order polynomial to be the best

fit since the model fit the data quite well (will not cause a too high standard error) and will also

over-fitting.

(1st order polynomial function)

 B2CDEFG(!HIJKL !5 !67#89:;! % !7#7<88HM!2N!)DGOED)2*(L

(2nd order polynomial function)

B2CDEFG(!HIJKL 5 !67#7;>>! % !7#777:HM!2N!)DGOED)2*(L !% !7#777<HM!2N!)DGOED)2*(L?

Approaching from another way, from the statistic table above, the 4
th

-order polynomial has

the smallest standard error, so the 3
rd

-order polynomial can be the best fit but since the

coefficient for the third and fourth degree x is too close to zero, it may be over-fitting.

(4th order polynomial function)

 !B2CDEFG(!HIJKL !5 !7#7:78! %!67#77>$HM!2N!)DGOED)2*(L !% !7#777<HM!2N!)DGOED)2*(L? %
!P# PPPPHM!2N!)DGOED)2*(L@ %!6P# PPPPHM!2N!)DGOED)2*(LA

!)"

"

Lab 1 (Data Analysis)

B%1:'C/4:./#<2();=.>?0+/(2$/#<2();=.@*,.1+/3425'%*2/'*/0)*'/(2$/5-.5A/'-./&**$2.::/*3/'-./

data fit for either exponential function or power function:

"

!"#$%&'ON'G8&2H";#'"9'"Q"B&'.,'2,%%&2.'/;37&%'9,%'&/28'.%"/-#'9".'9,%'.8&'&I1,;&;."/-'9$;2.",;'

'

!"#$%&'OP'G8&2H";#'"9'"Q"B&'.,'2,%%&2.'/;37&%'9,%'&/28'.%"/-#'9".'9,%'.8&'1,7&%'9$;2.",;'

'

!*"

"

Overall Analysis:

From Figure 23, the logarithm of y does not have a linear relationship with x, so the data for

!7%8./'*/5*11.5'/(2:,.1/3*1/.(5-/ '1%()"/will not fit in the exponential function. Similarly, from

Figure 24, the logarithm of y does not have a linear relationship with the logarithm of x, so the

data for !7%8./'*/5*11.5'/(2:,.1/3*1/.(5-/'1%()"/will not fit in the power function, either. However,

the main reason for why the data is not fitting may because of the high fluctuation of the data

(due to the high variation of the user+s input)

Since either exponential function or power function will not fit the data, try polynomial
functions:

!"#$%&'OD'(
3.
'!,%0&%'1,-<;,B"/-'9$;2.",;'@4/M'('!'Q,./-'Q"B&E' ' ' ' ' !"#$%&'O)'O

;0
'!,%0&%'1,-<;,B"/-'9$;2.",;'@4/M'('!'Q,./-'Q"B&E' ' '

!"#$%&'OF'N
%0
'!,%0&%'1,-<;,B"/-'9$;2.",;'@4/M'('!'Q,./-'Q"B&E' ' ' ' ' !"#$%&'OJ'P

.8
'!,%0&%'1,-<;,B"/-'9$;2.",;'@4/M'('!'Q,./-'Q"B&E' ' '

'

'

#+"

"

Statistical Analysis:

Total number of answers (Lab 1) Data Fits:

 Models 1
st
 polynomial 2

nd
 polynomial 3

rd
 polynomial 4

th
 polynomial

 Standard Error 0.9984 0.6352 0.5655 0.5766

From the Figure 23 - 28 above, we can conclude that the raw data cannot fit in well in any of

data fitting curve above (either have too high standard deviation or may count as over fitting).

The main reason for why the data is not fitting may because of the high fluctuation of the data

(due to the high variation of the user+s input).

Similarly, after the same processing as above, we can conclude that the" ,-." data !Total

number of answers for each trial" cannot fit in well in any of data fitting curve above and the

same main reason can be applied again.

The current ratio of total incorrect answers to trials:

Since !the current ratio of total incorrect answers to trials" is the current average value

derived from the raw data, the processed data will be more consistent and have lower fluctuation

than the raw data.

!"#$%&'OK' '

G8&2H";#'"9'".8&'2$%%&;.'%/.",',9'.,./-'";2,%%&2.'/;37&%3'.,'.%"/-3'9,%'&/28'.%"/-#'9".'9,%'.8&'&I1,;&;."/-'

9$;2.",;'

'

#!"

"

!"#$%&'N=' '

G8&2H";#'"9'".8&'2$%%&;.'%/.",',9'.,./-'";2,%%&2.'/;37&%3'.,'.%"/-3'9,%'&/28'.%"/-#'9".'9,%'.8&'1,7&%'9$;2.",;'

From Figure 29, the logarithm of y has an almost linear relationship with x, so the data for

!7%8./'*/5*11.5'/(2:,.1/3*1/.(5-/'1%()"/might fit in the exponential function. From Figure 30, the

logarithm of y does not have a linear relationship with the logarithm of x, so the data for !Time

'*/5*11.5'/(2:,.1/3*1/.(5-/'1%()"/will not fit in the power function. The high fluctuation of the raw

data has been reduced by taking the average.

'

!"#$%&'N('C'Q8&'&I1,;&;."/-'9$;2.",;'C'".8&'2$%%&;.'%/.",',9'.,./-'";2,%%&2.'/;37&%3'.,'.%"/-3'9,%'&/28'.%"/-#' '

##"

"

Statistical Analysis:

The exponential function: 4! 5 !$#$7;:! & !GQ/#..RS

Standard Error: 0.4112

From the Figure 31 above, we can conclude that the processed data cannot fit exactly well in

the exponential function curve due to the first two outliers. If we eliminate the outlier, the data of

!the current r('%*/*3/'*'()/%25*11.5'/(2:,.1:/'*/'1%():/3*1/.(5-/'1%()" should fit in the exponential

function.

The current average response time (over the test so far) for each trial :

Since !the current average response time (over the test so far) for each trial" is the current

average value derived from the raw data, the processed data will be more consistent and have

lower fluctuation than the raw data.

!"#$%&'NO'C'G8&2H";#'"9'".8&'2$%%&;.'/+&%/#&'%&31,;3&'."B&#'9".'9,%'.8&'&I1,;&;."/-'9$;2.",;'

(Note: continued on next page in order to fit figures)'

#$"

"

'

!"#$%&'NN'C'G8&2H";#'"9'".8&'2$%%&;.'/+&%/#&'%&31,;3&'."B&#'9".'9,%'.8&'1,7&%'9$;2.",;'

From Figure 32, the logarithm of y has an almost linear relationship with x, so the data for

!7%8./'*/5*11.5'/(2:,.1/3*1/.(5-/'1%()"/might fit in the exponential function. From Figure 33, the

logarithm of y does not have a linear relationship with the logarithm of x, so the data for !Time

'*/5*11.5'/(2:,.1/3*1/.(5-/'1%()"/will not fit in the power function. The high fluctuation of the raw

data has been reduced by taking the average.

!"#$%&'NP'C'Q8&'&I1,;&;."/-'9$;2.",;'!'".8&'2$%%&;.'/+&%/#&'%&31,;3&'."B&#'

#%"

"

Another approach from polynomial function:

!"#$%&'ND'C'Q8&'(
3.
C,%0&%'1,-<;,B"/-'9$;2.",;'!'".8&'2$%%&;.'/+&%/#&'%&31,;3&'."B&#'

Statistical Analysis:

The exponential function: 4! 5 !<7#9">>! & !GQ/#/T.S

1st order polynomial function: 4! 5 !;#:<>$! %!67#9<>"=

Standard Error (fitting in exponential function): 2.7689

Standard Error (fitting in 1
st
-order polynomial function): 0.6860

From the Figure 31 above, we can conclude that the processed data can fit well in the

exponential function curve. In addition, the data for !'-./5411.2'/(D.1(&./1.:0*2:./'%8." also fit

quite well in 1
st
-order polynomial function, since the standard deviation is even smaller than

fitting into the exponential function. However, we may still consider the exponential function as

the best fit, according to the flow of the original experiment data (the dots plotted on the figure).

#&"

"

Further Explanation:

L earning Curve:

(Wikipedia.org)

A learning curve is a graphical representation of the changing rate of learning (in the

average person) for a given activity or tool. Typically, the increase in retention of information is

sharpest after the initial attempts, and then gradually evens out, meaning that less and less new

information is retained after each repetition.

Appendix

The !Introduction" and !Procedure" part above are COMPLETELY derived from the

ACTUAL EXPERIMENT, which is not the Professor+s version on the website or other

Internet-searched copies.

References

Brown, C. 2011"Data Acquisition

The main ideas of the functions (including the inside computing method) mainly originated from

BlackBoard CSC 160 !Data Acquisition: The LED Labs" page.

Author: Chris Brown

Complete UR L :

http://my.rochester.edu/webapps/portal/frameset.jsp?tab_tab_group_id=_2_1&url=/webapps/blac

kboard/execute/courseMain?course_id=_40459_1

Date that accessed the site: 03/26/2011

Author: (source) Wikipedia.org

Complete UR L :" "

http://en.wikipedia.org/wiki/Learning_curve

Date that accessed the site: 04/11/2011

http://my.rochester.edu/webapps/portal/frameset.jsp?tab_tab_group_id=_2_1&url=/webapps/blackboard/execute/courseMain?course_id=_40459_1
http://en.wikipedia.org/wiki/Learning_curve
http://my.rochester.edu/webapps/portal/frameset.jsp?tab_tab_group_id=_2_1&url=/webapps/blackboard/execute/courseMain?course_id=_40459_1

