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Introduction 
 This objective of this project was to analyze and model data using MATLAB.  Data-fitting is an 

important practice, because after one gathers data from an experiment, it is then important to interpret 

the data.  This may involve deriving certain laws to explain the behavior of the data. 

 One way to model data is through polynomial fitting.  Using this approach we try to find the 

coefficients solving the linear system, y i= c0 + c1x1 + c2x2
2 + ... + cn-1xn-1

n-1 + cnxn
n  for every (x,y) pair in the 

data.   The system has n+1 unknowns, so we need n+1 equations to solve the system.  The model is 

called an “nth degree polynomial.”  We put this system into matrix form to get: 

 
Or y = Xc, where y is the dependent variable vector, X is the Vandermonde matrix (shown above), and c 

is a vector of coefficients. 

 Nth degree polynomial fitting has drawbacks, though.  First, it may amplify any noise in the data.  

Furthermore, for large amounts of data this method demands a large order polynomial, which may not 

be practical. 

 As an alternative method, we instead “take the average” of many noisy data points to model the 

data.  Formally, this involves minimizing the squared vertical distances between each data point and the 

regression curve, and is hence called “least squares fitting.”  The method of least squares fitting is 

essentially analogous to polynomial fitting, but involves a non-square Vandermonde matrix.  As a result, 

instead of solving with the inverse of the Vandermonde matrix, we solve using the pseudo-inverse.  The 

pseudo-inverse of a non-square Vandermonde matrix is [(XTX)-1XT].  Therefore, our system to solve is: 

c = [(XTX)-1XT]y, where XT is the transpose of the Vandermonde Matrix. 

 Least squares fitting is designed to minimize the distance between data points and points on the 

polynomial of best fit.  Each distance is called a residual.  In order to analyze the quality of the fit, it is 

common to calculate the mean and standard deviation of the residual values (or of their absolute 

values).  When calculating variance and standard deviation, it is important to consider degrees of 

freedom.  The number of degrees of freedom in an estimate is the number of data points minus the 

number of other quantities used to get the value of the estimate.  In polynomial fitting, the variance of 

residuals has N-p degrees of freedom, where N is the number of data points and p is the number of 



  2 

 

parameters in the polynomial approximation.   𝑠2 =  
 (𝑋𝑖−𝑀)2

𝑁−𝑝
.  If the standard deviation of residuals is 

small, the law fits the data well. 

 Many natural laws are not polynomials, however, so we have some other ways to model data.  

One is by using an exponential regression.  An example of an exponential function is: f(x) =akx.  As k 

approaches -∞, y approaches 0, and as k approaches ∞ y explodes.  We can plot x v. log(y) to see a 

linear regression. 

Ex.    y(t) = ekt 

Take the log of the right side, so:   y(t) = kt. Examples of exponential laws in nature include cooling and 

bacterial population growth. 

 Another type of law is a power law, which has a general form: y(t) = ktm.  To model a power law 

function we take the log of both sides.  The resulting equation is:   log(y(t)) = mlog(t) + log(k).  This looks 

linear, and can be approximated using a polynomial regression.  Examples of power laws include Boyle’s 

law (𝑉 = 𝑘𝑃−1) and Newton’s law of gravity (𝐹 = 𝐺
𝑚1𝑚2

𝑟2 ) 

 

Method 
 For this project I wrote two main functions.  The first was called myfit.m.  Myfit used the least 

squares method to generate a vector of coefficients to model a given matrix of data values.  It called a 

subfunction, Vandermonde.m, to generate the Vandermonde matrix. 

 My second main function was named analyze.m.  Analyze plotted the original data points as well 

as the polynomial whose coefficients were calculated by myfit.  Analyze also calculated and returned the 

mean of the absolute value of residuals, and called a subfunction, dof_std.m, to calculate the standard 

deviation of residuals. 

 I wrote two other functions, fitexp.m and fitpower.m, which used myfit to find the linear 

regression of the data, (x,log(y)) and (log(x),log(y)), respectively. 

 

Modeling 

1.  Thermocouple 
In this experiment, I compared a cubic and quartic regression of data acquired by a type E 

thermocouple.  The data had the independent variable, temperature, ranging from -100⁰ to 200o C and 

the dependent variable μvolts.  I calculated my regressions based only on the data from T=0o to T=100o, 

then qualified my fit by comparing it to data from T=-100o to Y=200o. 

a. Cubic regression 

i. V(T) = 0.312059521659819 +  58.621449778698633*T + 0.046943819403164*T2 

-0.000014480176029*T3 

ii. Residual mean = 20.670137025612338 μvolts 

iii. Residual std = 3.917611766948898 

b. Quartic regression 
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i. V(T) = 0.116629687821415 +  58.662369653611044*T + 0.045080983889815*T2 

+ 0.000014592559256*T3 +  -0.000000145363676*T4 

ii. Residual mean = 20.650303021551029 μvolts 

iii. Residual std = 0.057457464619896 

 

 

               Cubic regression Quartic regression   

 
The thermocouple data is surprisingly linear, shown not only by the graph but also by the 

polynomial coefficients.  In the cubic regression, the coefficient to T3 is approximately 10-5.  The third 

order coefficient of the quartic regression is similar, and the forth order coefficient is approximately 10-7. 

Both the cubic and quartic regressions had similar mean values of approximately 20.7.  

However, the quartic regression had a standard deviation of approximately 0 .057, much lower than the 

cubic regressions standard deviation of 3.9.  Thus, it appears that a quartic law best explains the 

behavior of this thermocouple. 

 

2. Platinum Resistance Thermometer 

I repeated the procedure for the thermocouple test, but instead used data from a platinum resistance 

thermometer on the same range of temperatures. 

a. Cubic 

i.  Ω(T) = 99.998315361519161 +  0.390874676559591*T - 

0.000058746765596*T2 - 0.000000000000000*T3 

ii. Resmean = 0. 008125431851062 

iii. Resstd = 9.644089840964110e-004 

b. Quartic 

iv.  Ω(T) = 99.997758112760209 +  0.390991355518422*T -0.000064058456031*T2 

+ 0.000000082898017*T3 +  -0.000000000414490*T4 

v. Resmean = 0.034960898027525 

vi. Resstd = 0.011991806110072 
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                    PRT cubic regression     PRT quartic regression 

 

Once again, the data looks very linear.  However, in the case of the PRT, the cubic law has both a lower 

residual mean and lower standard deviation than the quartic law.  It is also interesting to note that the 

cubic law is actually a quadratic, because the coefficient of T3 was calculated to be 0.  Therefore, the 

resistance of a PRT is best modeled by a quadratic regression.  

3.  Water Flow and the Hagen-Poiseuille equation 

For this experiment I was given data for the flow of water through a pipe.  The independent variable was 

d, diameter in μm, and the independent variable was Q, the volumetric flow rate in ml/500s, or 

cm3/500s.  The data did not appear to obey a polynomial law, nor did an exponential regression fit the 

data well.  I then tried a power regression, and obtained the following data: 

i. ln(Q) =  -10.156840540569487 +  3.999328438214617*ln(d) 

ii. Resmean = 7.064963493883525e-004 

iii. Resstd = 3.712434451313495e-004 

  Using algebra I solved to obtain the law, Q = (3.88097*10-5)(d3.9993284). 

My law fit the data very well, with a mean error and standard deviation both with an order of magnitude 

of -4.  A small standard deviation indicates a good fit. 
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 Power Law based on Flow data 

 

According to Wikipedia, the Hagen –Poiseuille equation for fluid dynamics is: 

𝛥𝑃 =  
128𝜇𝐿𝑄

𝜋𝑑4
, where ΔP is the pressure drop, L is the length of pipe, μ is the dynamic viscosity, Q is 

the volumetric flow rate, and d is the diameter.  Rewriting this equation to solve for Q we obtain: 

𝑄 =
𝛥𝑃𝜋𝑑4

128𝜇𝐿
 

Assuming that ΔP, π, μ, and L were held constant when the data was gathered, the Hagen-Poiseuille 

equation looks like my derived law.   

4. Boyle’s Law 

In this experiment I modeled data from Boyle’s experiment to find the relationship between pressure 

and volume.  As with the flow data, I used a power law. 

i. ln(P) = 7.244746595161011 -  0.998398078044901ln(V) 

ii. Resmean = 0.002682402087147 

iii. Resstd = 6.579164396030090e-004 

iv. Using algebra, we find the law:   P = 1400.7269(V-.998398) 
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Power law based on Boyle’s data 

 

My low mean residual value and the low residual standard deviation indicate that my derived law is a 

good fit for Boyle’s data. 

Boyle’s law is 𝑘 = 𝑝𝑉, 𝑜𝑟 𝑝 = 𝑘𝑉−1, where p is pressure, V is volume, and k is a constant 

determined by the system.  My derivation of his law looks very similar, with a k value of approximately 

1400.7269. 

 

Conclusion 

 Fitting data is very important for interpreting experimental results.  An experiment may not be 

useful if the results are never analyzed in a useful way.  However, data is noisy, so perfect laws are 

difficult to derive.  Furthermore, one must be careful when extrapolating using a derived fit, as seen by 

the PRT experiment.  In that experiment, a quartic fit showed greater error in extrapolation than a 

quadratic fit did. 
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