
CSC172 LAB

HEAPS

1 Introduction
The labs in CSC172 will follow a pair programming paradigm. Every student is encouraged (but not
strictly required) to have a lab partner. Labs will typically have an even number of components. The
two partners in a pair programming environment take turns at the keyboard. This paradigm facilitates
code improvement through collaborative efforts, and exercises the programmers cognitive ability to
understand and discuss concepts fundamental to computer programming. The use of pair programming
is optional in CSC172. It is not a requirement. You can learn more about the pair programming
paradigm, its history, methods, practical benefits, philosophical underpinnings, and scientific validation
at http://en.wikipedia.org/wiki/Pair_programming .

Every student must hand in his own work, but every student must list the name of the lab partner (if
any) on all labs.

This lab has six parts. You and your partner(s) should switch off typing each part, as explained by your
lab TA. As one person types the lab, the other should be watching over the code and offering
suggestions. Each part should be in addition to the previous parts, so do not erase any previous work
when you switch.

The textbook should present examples of the code necessary to complete this lab. However,
collaboration is allowed. You and your lab partner may discuss the lab with other pairs in the lab. It is
acceptable to write code on the white board for the benefit of other lab pairs, but you are not allowed to
electronically copy and/or transfer files between groups.

2 The Heap Data Structure.
The goal of this lab it to gain familiarity with the basic operations of the Heap data structure. In
order to keep to code as simple as possible and to focus on the algorithms used in heaps, we will
only use the Comparable interface to support abstraction, rather than Generics. In doing so, we
understand the weakness of the code developed in this lab (that it is not type-safe).

1. Begin this lab by defining a simple MyHeap interface as shown below.

public interface MyHeap {

public void insert(Comparable o);

public boolean isEmpty();

public int size();

public Object deleteMin();

}

2. Write your own class that implements the MyHeap interface. You will need to define an array
of Comparables to implement the heap as well as integers for the current size and the default
capacity. Once you have done this you can quickly implement the size(), isEmpty() and
constructor methods. Write a small test class with a simple main() method to test these
methods.

3. Write the insert method. Of course, in order to do this you will have to write the private
bubbleup() method since bubbling up is part of insertion on any heap. Write an additional
helper method printHeap(). In the main method of your test class, insert some random
Integer objects into your heap and then print the heap to display the contents.

4. One problem arises with the array implementation of any heap. If more items are inserted on the
heap than the array can accommodate, we need to expand the size of the heap. Implement a
method to expand the insert method to test for potential array overflow and make a call to the
expand method if necessary. Test your method by having your constructor start with a very
small array and make sufficient insertions to require at least two expansions of the array.

5. Implement the deleteMin() method. Of course, in order to do this you will have to
implement a bubbledown() method. Modify your test program to demonstrate the workings
of your deleteMin() method.

6. Sometimes we need to start with a random array and form it into a heap. It would be inefficient
to do this by successive insertions. Implement a second constructor to your heap class that can
take an array of comparable types and turn them into a heap by re-arranging the elements. Write
a heapify() method that performs the operation by swapping array elements. Add code to
your test program to fill an array with random integers objects and then call the heap
constructor and printHeap to demonstrate the working of your heapify() method.

3 Hand In
Hand in the source code from this lab at the appropriate location on the blackboard system at

my.rochester.edu. You should hand in a single compressed/archived (i.e. “zipped”) file that contains
the following.

1. A README that includes your contact information, your partner's name, a brief explanation of
the lab (A one paragraph synopsis. Include information identifying what class and lab number
your files represent.).

2. Several JAVA source code files representing the work accomplished for this lab. All source
code files should contain author and partner identification in the comments at the top of the file.
It is expected that you will have a file for the test program class.

3. A plain text file named OUTPUT that includes author information at the beginning and shows
the compile and run steps of your code. The best way to generate this file is to cut and paste
from the command line.

4 Grading

172/grading.html

Each section (1-6) accounts for 15% of the lab grade (total 90%)

(README file counts for 10%)

	1 Introduction
	2 The Heap Data Structure.
	3 Hand In
	4 Grading

