
CSC172 LAB

ALL SORTS OF SORTS

1 Introduction
The labs in CSC172 will follow a pair programming paradigm. Every student is encouraged (but not
strictly required) to have a lab partner. Labs will typically have an even number of components. The
two partners in a pair programming environment take turns at the keyboard. This paradigm facilitates
code improvement through collaborative efforts, and exercises the programmers cognitive ability to
understand and discuss concepts fundamental to computer programming. The use of pair programming
is optional in CSC172. It is not a requirement. You can learn more about the pair programming
paradigm, its history, methods, practical benefits, philosophical underpinnings, and scientific validation
at http://en.wikipedia.org/wiki/Pair_programming .

Every student must hand in his own work, but every student must list the name of the lab partner (if
any) on all labs.

This lab has six parts. You and your partner(s) should switch off typing each part, as explained by your
lab TA. As one person types the lab, the other should be watching over the code and offering
suggestions. Each part should be in addition to the previous parts, so do not erase any previous work
when you switch.

The textbook should present examples of the code necessary to complete this lab. However,
collaboration is allowed. You and your lab partner may discuss the lab with other pairs in the lab. It is
acceptable to write code on the white board for the benefit of other lab pairs, but you are not allowed to
electronically copy and/or transfer files between groups.

2 Not all sorts are created equal
Sorting algorithms are of enormous interest and importance. Nearly every computerized

application employs sorting somewhere behind the scenes to help users manage the many complex
tasks that are enabled by modern computations. Since everyone has an intuitive understanding of
sorting, it makes an ideal area for beginning the study of algorithm design.

“Since the dawn of computing, the sorting problem has attracted a great deal of
research, perhaps due to the complexity of solving it efficiently despite its simple,
familiar statement. For example, bubble sort was analyzed as early as 1956. Although
many consider it a solved problem, useful new sorting algorithms are still being

http://en.wikipedia.org/wiki/Bubble_sort

invented (for example, library sort was first published in 2004). Sorting algorithms are
prevalent in introductory computer science classes, where the abundance of algorithms
for the problem provides a gentle introduction to a variety of core algorithm concepts,
such as big O notation, divide-and-conquer algorithms, data structures, randomized
algorithms, best, worst and average case analysis, time-space tradeoffs, and lower
bounds.”

 - http://en.wikipedia.org/wiki/Sorting_algorithms

In this lab, you will implement three basic sorting algorithms and compare their performance.

1. Begin this lab by compiling and testing the code below, which sorts an array using
bubblesort. You will need to add a method to print an array in order to test that the
algorithm performs properly.

public public class SortTest{

 static int count;

 public static void main(String args[]) {

long startTime, endTime, elapsedTime ;

int size = Integer.ParseInt(args[0]); ;

Integer [] a = new Integer[size];

Integer [] b = new Integer[size];

for (int i = 0 ; i < size ; i++) {

 a[i] = b[i] = (int)(Math.random() * 100);

}

 maxSubSum4(testvect);

 sum += (float) (endTime - startTime);

printa(a);

count = 0;

 startTime = System.currentTimeMillis();

bubblesort(a);

 endTime = System.currentTimeMillis();

elaspsedTime = endTime – startTime;

printa(a);

System.out.println("bubblesort took "+ count + " moves to sort "

+ size + “ items “);

 System.out.println("\t in : "+ elaspedTime + " millesec ");

http://en.wikipedia.org/wiki/Time-space_tradeoff
http://en.wikipedia.org/wiki/Best%2C_worst_and_average_case
http://en.wikipedia.org/wiki/Randomized_algorithm
http://en.wikipedia.org/wiki/Randomized_algorithm
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Library_sort

// restore array

count = 0;

for (int i = 0 ; i < size ; i++) a[i] = b[i] ;

}

 public static

 <AnyType extends Comparable<? super AnyType>>

 void bubblesort(AnyType [] a) {

for (int i = 0 ; i < a.length ; i++){

 for (int j = 0 ; j < a.length - 1 ; j++){

if (a[j].compareTo(a[j+1]) > 0) {

Integer tmp = a[j]; count++;

a[j] = a[j+1]; count++;

a[j+1] = tmp; count++;

}

 }

}

 }

}

2. Run bubble sort on arrays of increasing size and plot the results. Generate a plot with your
favorite plotting software. At each size, run the algorithm three times on three different random
arrays of a given size and take the average of the results. How closely do your measured results
match the expected theoretical results for bubble sort? (Write a sentence or two to answer this
question and include it as a caption on your plot). You can increase the size of the memory of
your java run with the -Xmx option (look up this option by typing “java -Xmx option” into
google).

3. Add a method to the code above for the insertionSort algorithm. You can use the code
from your text book, but you will need to add some instructions in order to count the number of
exchanges. Test your algorithm before proceeding.

4. As you did with bubble sort run insertion sort on arrays of different sizes and plot the results.
Make a statement about the measured and theoretically expected results.

5. Add a method to the code above for the shellSort algorithm. You can use the code from
your text book, but alter the code to use Hibbard's increments, you will need to add some
instructions in order to count the number of exchanges. Test your algorithm before proceeding.
As you did with bubble sort and insertion sort, run shellsort on arrays of different sizes and plot
the results. Make a statement about the measured and theoretically expected results.

6. Use the library sort() method found in java.util.Arrays to sort the array. You will
not be able to count operations, but you can still time the execution of the method. As you did
with previous sorts, run sort() on arrays of different sizes and plot the results. Make a
conjecture about the nature of this algorithm based on your results.

3 Hand In
Hand in the source code from this lab at the appropriate location on the blackboard system at

my.rochester.edu. You should hand in a single compressed/archived (i.e. “zipped”) file that contains
the following.) You will need to include the images of your plotted results.

1. A README that includes your contact information, your partner's name, a brief explanation of
the lab (A one paragraph synopsis. Include information identifying what class and lab number
your files represent.).

2. Several JAVA source code files representing the work accomplished for this lab. All source
code files should contain author and partner identification in the comments at the top of the file.
It is expected that you will have a file for the test program class.

3. A plain text file named OUTPUT that includes author information at the beginning and shows
the compile and run steps of your code. The best way to generate this file is to cut and paste
from the command line.

4 Grading
172/grading.html

Each section (1-6) accounts for 15% of the lab grade (total 90%)

(README file counts for 10%)

	1 Introduction
	2 Not all sorts are created equal
	3 Hand In
	4 Grading

