
CSC172 LAB

THE LAMBDA FUNCTION

1 Introduction
The labs in CSC172 will follow a pair programming paradigm. Every student is encouraged (but not 
strictly required) to have a lab partner. Labs will typically have an even number of components. The 
two partners in a pair programming environment take turns at the keyboard. This paradigm facilitates 
code improvement through collaborative efforts, and exercises the programmers cognitive ability to 
understand and discuss concepts fundamental to computer programming. The use of pair programming 
is optional in CSC172. It is not a requirement. You can learn more about the  pair programming 
paradigm, its history, methods, practical benefits, philosophical underpinnings, and scientific validation 
at http://en.wikipedia.org/wiki/Pair_programming . 

Every student must hand in his own work, but every student must list the name of the lab partner (if 
any) on all labs. 

This lab has six parts. You and your partner(s) should switch off typing each part, as explained by your 
lab TA. As one person types the lab, the other should be watching over the code and offering 
suggestions. Each part should be in addition to the previous parts, so do not erase any previous work 
when you switch. 

The textbook should present examples of the code necessary to complete this lab. However, 
collaboration is allowed. You and your lab partner may discuss the lab with other pairs in the lab. It is 
acceptable to write code on the white board for the benefit of other lab pairs, but you are not allowed to 
electronically copy and/or transfer files between groups.

1. As everyone familiar with popular culture knows, the “L” word is “lambda”. It's  the Greek 
letter: “λ”. In mathematical logic and computer science, lambda calculus, also λ-calculus, is a 
formal system designed to investigate function definition, function application and recursion. It 
was introduced by Alonzo Church and Stephen Cole Kleene in the 1930s as part of an 
investigation into the foundations of mathematics.  In fact they were trying to formalize what it 
meant to do a computation, or to be a computer, and they got it right.  Ten years before 
hardware computers were “invented” (!).  Lambda calculus is still a useful tool in the 
investigation of problems in computability or recursion theory, and forms the basis of a 
paradigm of computer programming called functional programming1.  You'll also run across it 
in programming language classes like CSC254.  Let's start this lab with the following 
observations. Type in the following and examine the results. 

1 Henk Barendregt, "The Impact of the Lambda Calculus in Logic and Computer Science." The Bulletin of Symbolic  
Logic, Volume 3, Number 2, June 1997.



(define x 3 )

(define y 5 )

(display x)

(display y)

(+ x y)

(define foo (list + x y))

(define bar (list '+ 'x 'y))

(display foo)

(display bar)

(eval foo)

(eval bar)

(define x 123)

(define y 456)

(eval foo)

(eval bar)

The point of all this is to illustrate how lists can be both “data” and “programs”.  The use of the 
single quote escaped the evaluation. In the “foo” list, the variables were dereferenced and the 
values were baked into the definition. In the “bar” list, the single quote escaped evaluation so 
that the symbols were baked into the list. The concept that programs can be data and data can be 
programs is what this lab is all about.

2. Consider three functions. One is our old friend the triangle sum. The second is the sum of 
squares. The third is the sum of cubes. 

(define (sum-ints a b)

(if (> a b) 0 (+ a (sum-ints (+ a 1) b)

(sum-ints 1 3) 

(sum-ints 1 10)



(define (square x) (* x x))

(define (cube x) (* x x x))

(define (sum-sqrs a b) 

(if (> a b) 0 

(+ (square a) (sum-sqrs (+ a 1) b))))

(sum-sqrs 1 5)

(define (sum-cubes a b) 

(if (> a b) 0 

(+ (cube a) (sum-cubes (+ a 1) b))))

(sum-cubes 1 5)

3. What you notice, of course, is the similarity in the structure between the three functions. 
Wouldn't it be nice if we could abstract the summation machinery away from the function? 
Recall that in mathematical “sigma notation” we have different terms for the “series generation” 

and the “function” ∑
x=a

b

f x  . In such an expression the ∑
x=a

b

 represents the “series 

generation” and the f x  represents the “function”. 

We can do this in scheme. All we need to do is make the function a parameter. Consider the 
following, noting the structural similarity to the three functions above:

(define (summer term a b) 

(if (> a b) 0

(+ (term a) (sum term (+ a 1) b))))

Now we can re-define two of the three functions using our generic summation machine.

(define (sum-cubes a b) (summer cube a b))

(define (sum-sqrs a b) (summer square a b))



(sum-sqrs 1 5)

(sum-cubes 1 5)

If we wanted to define a trivial identity function to use as the term, we can re-define the simple 
triangle sum.

(define (identity x) x)

(define (tri-sum a b) (summer identity a b))

(tri-sum 1 5) 

4. This is pretty neat, because we gain the power of abstraction by being able to pass in the 
function we want. However, having to predefine the function is a bit of a cumbersome step. It 
would be more flexible if we could define an “inline” function, on the fly without having to 
name it. This is what the “lambda” form is all about. The lambda is used to create (nameless) 
functions. The syntax is : (lambda (<formal-parameters>) <body>) .  Don't worry, you can 
name these functions later if you want: that's what happens in the “define” statements below).

Consider: 

; recall that semi-colons introduce comments

; for the purposes of the lab, you don't need to

; type the comments

(define (plus-three x) (+ x 3)) ;; standard 

(plus-three 9)

(define plus-four (lambda (x) (+ x 4))) ; same using lambda

(plus-four 13)

(lambda (x) (+ x 4 )) ; a stand alone method

((lambda (x) (+ x 5)) 21) ; take some time to digest this

; we are building a nameless function on the fly

; and then using it at the head of a list 

; and passing it “21” as a parameter  

;similarly

((lambda (x y) ( * x y)) 7 13) 

; the function only exists for the moment



; now, we can use lambda to build in-line functions

(define (tri-sum a b) (summer (lambda (x) x) a b))

(define (sum-sqrs a b) (summer (lambda (x) (* x x)) a b))

(define (sum-cubes a b) (summer (lambda (x) (* x x x) a b))

(tri-sum 1 5)

(sum-sqrs 1 5)

(sum-cubes 1 5)

The point being, we didn't need to have to predefine the identity, square, or cube functions. 

So you should now be able to use this lambda form to define geo-sum: ∑
x=a

b 1
x

 by using the 

summer function and a lambda expression. Do so to complete this section of the lab.

 

5. Another use of lambda is the creation of local variables. We are used to defining local variables 
to help us in programming languages. If you were asked to write a method to compute:

 f x , y =x 1xy
2
y 1−y1xy1−y

You would likely first compute local variables:  a=1xy  and b=1−y   ,

 and then compute:  f x , y =xa2
ybab    .  

Since doing so would save you a multiply, an addition, and a subtraction operation. 

So, consider using lambda to define the method and then pass the local variables in as 
parameters. (Take some time to digest how this is working)

(define (f x y) 

((lambda (a b) 

(+ (* x (* a a)) 

 (* y b)

  (* a b )

))   ; end of “the function”

(+ 1 (* x y)) ; local variable “a” 

(- 1 y) ; local variable “b”

)))

Powerful? Yes. Elegant? Yes! Slightly abstruse syntactically? Perhaps. 

6. Local variables are used so often that a special, (less abstruse) syntax has been developed which 
more naturally expresses the traditional idea of a local variable. This is the let expression. 



The general form of the let expression is

(let ( (<var1> <expression1>)

   (<var2> <expression3>)

.....

         (<varn> <expressionn>) )

<body>)

As you might expect, in the <body> , var1 gets the value of expression1 var2 gets the value of 
expression2  , etc.

(define (f x y)

   (let ((a (+ 1 (* x y )))

    (b (- 1 y))) 

(+ (* x (* a a)) 

 (* y b)

  (* a b )

) ; end of “+”

) ; end of “let”

)  ; end of “define”

(f 3 4)

; note, we use the above syntax to define “local” variables

(display a) ; try this, a is not defined

; if we wanted “global” variables, we could use

(define (f x y)

   (define a (+ 1 (* x y )))

    (define b (- 1 y)) 

(+ (* x (* a a)) 

 (* y b)

  (* a b )

) ; end of “+”

)  ; end of “define”



(f 3 4)

(display a)

2 Hand In
Hand in the source code from this lab at the appropriate location on the blackboard system at 

my.rochester.edu. You should hand in a single compressed/archived (i.e. “zipped”) file that contains 
the following.)

1. A  README that includes your contact information, your partner's name, a brief explanation of 
the lab (A one paragraph synopsis. Include information identifying what class and lab number 
your files represent.). 

2. The  source code files representing the work accomplished for this lab. All source code files 
should contain author and partner identification in the comments at the top of the file. 

3. A plain text file named OUTPUT that includes author information at the beginning and shows 
the compile and run steps of your code. The best way to generate this file is to cut and paste 
from the command line.

3 Grading
172/grading.html

Each section (1-6) accounts for 15% of the lab grade (total 90%)

(README file counts for  10%) 

4 References
Many of the examples in this lab exercise have been adapted from the “Wizard” book. (Hal 

Abelson's, Jerry Sussman's and Julie Sussman's Structure and Interpretation of Computer Programs 
(MIT Press, 1984; ISBN 0-262-01077-1) .  
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