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1 Balls and Bins

The setting is simple: n balls, n bins. When you consider a ball, you pick a bin independently
and uniformly at random, and add the ball to that bin. In HW #2 you proved:

Theorem 1 The max-loaded bin has O( logn
log logn

) balls with probability at least 1− 1/n.

One could use a Chernoff bound to prove this, but here is a more direct calculation of this
theorem: the chance that bin i has at least k balls is at most(

n

k

)(
1

n

)k
≤ nk

k!
· 1

nk
≤ 1

k!
≤ 1/kk/2

which is (say) ≤ 1/n2 for k∗ = 8 logn
log logn

. To see this, note that

kk/2 ≥ (
√

log n)4 logn/ log logn ≥ 22 logn = n2.

So union bounding over all the bins, the chance of some bin having more than k∗ balls
is 1/n. (I’ve been sloppy with constants, you can do better constants by using Stirling’s
approximation.)

Here is a semantically identical way of looking at this calculation: let Xi be the indicator
r.v. for bin i having k∗ or more balls. Then E[Xi] ≤ 1/n2. And hence if X =

∑
iXi, then

E[X] ≤ 1/n. So by Markov, Pr[X > 1] ≤ E[X] ≤ 1/n. In other words, we again have

Pr[ max load is more than
8 log n

log log n
]→ 0.

This idea of bounding the expectation of some variable X, and using that to upper bound
some quantity (in this case the max-load) is said to use the first moment method.

1.1 Tightness of the Bound

In fact, Θ( logn
log logn

) is indeed the right answer for the max-load with n balls and n bins.

Theorem 2 The max-loaded bin has Ω( logn
log logn

) balls with probability at least 1− 1/n1/3.
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Here is one way to show this, via the second moment method. To begin, let us now lower
bound the probability that bin i has at least k balls:(

n

k

)(
1

n

)k (
1− 1

n

)n−k
≥
(n
k

)k
· 1

nk
· e−1 ≥ 1/ekk,

which for k∗∗ = logn
3 log logn

is at least 1/en1/3, since kk ≤ (log n)logn/3 log logn = n−1/3. And so

we expect Ω(n2/3) bins to have at least k∗∗ balls.

Let us define some random variables: if Xi is the indicator for bin i having at least k∗∗ balls,
and X is the expected number of bins with at least k∗∗ balls, we get that

E[Xi] ≥ 1/en1/3 and E[X] = Ω(n2/3).

Alas, in general, just knowing that E[X] → ∞ will not imply Pr[X ≥ 1] → 1. Indeed,
consider a random variable that is 0 w.p. 1− 1/n1/3, and n otherwise—while its expectation
is n2/3, X is more and more likely to be zero as n increases. So we need some more information
about X to prove our claim. And that comes from the second moment.

Let’s appeal to Chebyshev’s inequality:

Pr[X = 0] ≤ Pr[|X − µ| ≥ µ] ≤ Var(X)

µ2
=

∑
i Var(Xi) +

∑
i 6=j Cov(Xi, Xj)

E[X]2
.

You have probably seen covariance before: Cov(Y, Z) := E[(Y − E[Y ])(Z − E[Z])]. But
since the bins are negatively correlated (some bin having more balls makes it less likely
for another bin to do so), the covariance Cov(Xi, Xj) ≤ 0. Moreover, since Xi ∈ {0, 1},
Var(Xi) ≤ E[Xi] ≤ 1; by the above calculations, E[X]2 ≥ n4/3. So summarizing, we get

Pr[X = 0] ≤
∑

i Var(Xi) +
∑

i 6=j Cov(Xi, Xj)

E[X]2
≤ n

E[X]2
≤ n−1/3.

In other words, there is a 1− 1/n1/3 chance that some bin contains more than k∗∗ balls:

Pr[ max load is less than
log n

3 log log n
]→ 0.

(Later, you will see how to use martingale arguments and Azuma-Hoeffding bounds to give
guarantees on the max-load of bins. You can also use the “Poisson approximation” to show
such a result, that’s yet another cool technique.)

1.2 So, in Summary

If you want to show that some non-negative random variable is zero with high probability,
show that it’s expectation is tends to zero, and use Markov—the first moment method. If
you want to show that it is non-zero with high probability, show that the variance divided
by the squared mean tends to zero, and use Chebyshev—the second moment method.
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1.3 Taking it to the Threshold

Such calculations often arise when you have a random process, and a random variable X
defined in terms of a parameter k. Often you want to show that X is zero whp when k lies
much below some “threshold” τ , and that X is non-zero whp when k is far above τ . The
first things you should try are to see if the first and second moment methods give you rough
answers. E.g., take n vertices and add each of the

(
n
2

)
edges independently with probability

1/2 (also called the Erdös-Rényi graph G(n, 1/2)), and define X to be the expected number
of cliques on k vertices. Show that τ = 2 log n is such a threshold for X.

2 The Power of Two Choices

The setting now is: n balls, n bins. However, when you consider a ball, you pick two bins
(or in general, d bins) independently and uniformly at random, and put the ball in the less
loaded of the two bins. The main theorem is:

Theorem 3 The two-choices process gives a maximum load of ln lnn
ln 2

+O(1) with probability

at least 1−O( log
2 n
n

).

The intuition behind the proof is the following picture:

1/2 bins have ≥ 2 balls

so we expect 1/4 of the balls with height ≥ 3

and 1/16 of the balls with height ≥ 4

and 1/256 of the balls with height ≥ 5

The actual proof is not far from this intuition. The following lemma says that if at most
α fraction of the bins have at least i balls, then the fraction of bins having i + 1 balls can
indeed be upper bounded by Bin(n, α2), where Bin(n, p) is the Binomial random variable.

Lemma 4 If Ni is the number of bins with load at least i, then Pr[Ni+1 > t | Ni ≤ αn] ≤
Pr[Bin(n,α2)>t]

Pr[Ni≤αn] .

Proof: For the proof, let us consider the “heights” of balls: this is the position of the ball
when it comes in, if it is the first ball in its bin then its height is 1, etc. Observe that if there
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are t bins with load i + 1, then there must be at least t balls with height i + 1. I.e., if Bj

is the number of balls with height at least j, then Nj ≤ Bj, and so we’ll now upper bound

Pr[Bi+1 > t | Ni ≤ αn] = Pr[Bi+1>t∩Ni≤αn]
Pr[Ni≤αn] .

Consider the following experiment: just before a ball comes in, an adversary is allowed to
“mark” at most αn bins. Call a ball marked if both its random bins are marked. Note that
when we condition on Ni ≤ αn, we know that the final number of bins with load at least i is
at most αn. In this case, we can imagine the adversary marking the bins with load at least
i (and maybe some more). Now the chance that a ball is marked is at least the chance that
it has height i + 1 and there are at most αn bins with height at least i. Hence, if M is the
number of marked balls, we get

Pr[Bi+1 > t ∩Ni ≤ αn]

Pr[Ni ≤ αn]
≤(∗) Pr[M > t]

Pr[Ni ≤ αn]
=

Pr[Bin(n, α2) > t]

Pr[Ni ≤ αn]
.

The second equality follows from the fact that M ∼ Bin(n, α2). �

If you’d like to be more precise about proving (*) above, see the details in the notes from the
Mitzenmacher-Upfal. (CMU/Pitt access only.)

Now we can use Chernoff to prove tail bounds on the Binomial distribution.

Lemma 5 If α2 ≥ 6 lnn
n

, then

Pr[Bin(n, α2) > 2nα2] ≤ 1/n2.

Moreover, if α2 < 6 lnn
n

, then

Pr[Bin(n, α2) > 12 lnn] ≤ 1/n2.

Proof: We’re interested in X =
∑n

i=1Xi where each Xi = 1 w.p. p = α2, and 0 otherwise.
The expectation µ = np ≥ 6 lnn. And the chance that this number exceeds (1 + 1)µ is at
most

exp(− µ2

2µ+ µ
) ≤ exp(−µ/3) ≤ 1/n2,

which proves the first part. For the second part, µ < 6 lnn, and the probability that X
exceeds 12 lnn ≥ µ+ 6 lnn is at most

exp(− (6 lnn)2

2µ+ 6 lnn
) ≤ exp(−2 lnn) ≤ 1/n2,

as claimed. �

So, now let us define αi to be the fraction of bins we’re aiming to show have load at least
i. Define α4 = 1/4, and αi+1 = 2α2

i . (The reason it is 2α2
i instead of α2

i , which is the
expectation, is for some breathing room to apply Chernoff: in particular, the factor 2 comes
from the first part of Lemma ??.)
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For each i ≥ 4, let Ei be the good event “Ni ≤ nαi”; recall that Ni is the number of bins
with load at least i. We want to lower bound the probability that this good event does not
happen.

Lemma 6 If α2
i ≥ 6 lnn

n
, then

Pr[¬Ei+1] ≤ i/n2.

Proof: We prove this by induction. The base case is when i = 4, when at most n/4 bins
can have load at least 4 (by Markov). So Pr[¬E4] = 0 < 4/n2.

For the induction,
Pr[¬Ei+1] ≤ Pr[¬Ei+1 | Ei] Pr[Ei] + Pr[¬Ei].

By Lemma ?? the former term is at most
Pr[B(n,α2

i )≥αi+1]

Pr[Ei] · Pr[Ei], which by Lemma ?? is at

most 1/n2.

And by induction, Pr[¬Ei] ≤ i/n2, which means Pr[¬Ei+1] ≤ (i+ 1)/n2. �

Consider i∗ = min{i | α2
i < 6 lnn

n
}. By the Lemma ??, Pr[¬Ei∗ ] ≤ i∗/n2 ≤ 1/n. Hence, with

probability 1− 1/n, we have the number of bins with more than i∗ balls in them is at most
nαi∗ .

We’re almost done, but there’s one more step to do. If this number nαi∗ were small, say
O(log n), then we could have done a union bound, but this number may still be about
Ω(
√
n log n). So apply Lemma ?? and the second part of Lemma ?? once more to get:

Pr[Ni∗+1 > 12 lnn] ≤ Pr[Ni∗+1 > 12 lnn | Ei∗ ] Pr[Ei∗ ] + Pr[¬Ei∗ ]

≤ Pr[Bin(n, α2
i∗) > 12 lnn | Ei∗ ] Pr[Ei∗ ] + Pr[¬Ei∗ ]

≤ 1/n2 + Pr[¬Ei∗ ] ≤ n+ 1

n2

Finally, since Ni∗+1 is so small whp, use Lemma ?? and a union bound to say that

Pr[Ni∗+2 > 1] ≤ Pr[B(n,
(12 lnn)2

n
) > 1] + Pr[Ni∗+1 > 12 lnn]

≤ E[B(n,
(12 lnn)2

n
)] +

n+ 1

n2

≤ O(
log2 n

n
).

Finally, the calculations in Section ?? show that i∗ = ln lnn
ln 2

+ O(1), which completes the
proof.

5



2.1 A Calculation

Since log2 α4 = −2, and log2 αi+1 = 1 + 2 log2 αi, we calculate

log2 αi = −2i−4 − 1.

So, for log2 αi ≈ −1
2

log2 n, it suffices to set

i = log2 log2 n+ 3 =
ln lnn

ln 2
+O(1).

3 A Random Graphs Proof

Another way to show that the maximum load is O(log log n)—note that the constant is
worse—is to use an first-priciples analysis based on properties of random graphs. We build
a random graph G as follows: the n vertices of G correspond to the n bins, and the edges
correspond to balls—each time we probe two bins we connect them with an edge in G. For
technical reasons, we’ll just consider what happens if we throw fewer balls (only n/512 balls)
into n bins—also, let’s imagine that each ball chooses two distinct bins each time.

Theorem 7 If we throw n
512

balls into n bins using the best-of-two-bins method, the maxi-
mum load of any bin is O(log log n) whp.

Hence for n balls and n bins, the maximum load should be at most 512 times as much, whp.
(It’s as though after every n/512 balls, we forget about the current loads and zero out our
counters—not zeroing out these counters can only give us a more evenly balanced allocation;
I’ll try to put in a formal proof later.)

To prove the theorem, we need two results about the random graph G obtained by throwing
in n/512 random edges into n vertices. Both the proofs are simple but surprisingly effective
counting arguments, they appear at the end.

Lemma 8 The size of G’s largest connected component is O(log n) whp.

Lemma 9 There exists a suitably large constant K > 0 such that for all subsets S of the
vertex set with |S| ≥ K, the induced graph G[S] contains at most 5|S|/2 edges, and hence
has average degree at most 5, whp.

Given the graph G, suppose we repeatedly perform the following operation in rounds:

In each round, remove all vertices of degree ≤ 10 in the current graph.

We stop when there are no more vertices of small degree.
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Lemma 10 This process ends after O(log log n) rounds whp, and the number of remaining
vertices in each remaining component is at most K.

Proof: Condition on the events in the two previous lemmas. Any component C of size
at least K in the current graph has average degree at most 5; by Markov at least half the
vertices have degree at most 10 and will be removed. So as long as we have at least K nodes
in a component, we halve its size. But the size of each component was O(log n) to begin, so
this takes O(log log n) rounds before each component has size at most K. �

Lemma 11 If a node/bin survives i rounds before it is deleted, its load due to edges that
have already been deleted is at most 10i. If a node/bin is never deleted, its load is at most
10i∗ +K, where i∗ is the total number of rounds.

Proof: Consider the nodes removed in round 1: their degree was at most 10, so even if
all those balls went to such nodes, their final load would be at most 10. Now, consider any
node x that survived this round. While many edges incident to it might have been removed
in this round, we claim that at most 10 of those would have contributed to x’s load. Indeed,
the each of the other endpoints of those edges went to bins with final load at most 10. So
at most 10 of them would choose x as their less loaded bin before it is better for them to go
elsewhere.

Now, suppose y is deleted in round 2: then again its load can be at most 20: ten because it
survived the previous round, and 10 from its own degree in this round. OTOH, if y survives,
then consider all the edges incident to y that were deleted in previous rounds. Each of them
went to nodes that were deleted in rounds 1 or 2, and hence had maximum load at most 20.
Thus at most 20 of these edges could contribute to y’s load before it was better for them to
go to the other endpoint. The same inductive argument holds for any round i ≤ i∗.

Finally, the process ends when each component has size at most K, so the degree of any
node is at most K. Even if all these edges contribute to the load of a bin, it is only 10i∗+K.
�

By Lemma ??, the number of rounds is i∗ = O(log log n) whp, so by Lemma ?? the maximum
load is also O(log log n) whp.

3.1 Missing Proofs of Lemmas

Lemma 12 The size of G’s largest connected component is O(log n) whp.
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Proof: We have a graph with n vertices and m = n
512

edges where we connect vertices at
random.

Pr[k + 1 vertices connected ] ≤ Pr[ at least k edges fall within k + 1 nodes ]

≤
(
m

k

)((k+1
2

)(
n
2

) )k

=

(
m

k

)(
k(k + 1)

n(n− 1)

)k
≤

(
m

k

)(
4k

n

)2k

.

Since k(k+ 1) ≤ 2k2 and n(n− 1) ≥ n2/2. Now the probability that any such set exists can
bounded above by the union bound

Pr[∃ a connected set of size k + 1] ≤
(

n

k + 1

)(
m

k

)(
4k

n

)2k

≤ n
(ne
k

)k ( ne

512k

)k (4k

n

)2k

≤ n

(
e2

16

)k
≤ 1

2n
if k = Θ(log n)

which proves the claim. �

Lemma 13 There exists a suitably large constant K > 0 such that for all subsets S of the
vertex set with |S| ≥ K, the induced graph G[S] contains at most 5|S|/2 edges, and hence
has average degree at most 5, whp.

Proof:

Pr[ a fixed set of k nodes gets >
5k

2
edges ] ≤

(
m

5k/2

)(
4k

n

)2·5k/2

=

(
m

5k/2

)(
4k

n

)5k

.

By a union bound over all sets, the probability that such a set exists is

Pr[∃ a bad set ] ≤
∑
k≥K

(
n

k

)(
m

5k/2

)(
4k

n

)5k

≤
∑
k≥K

(ne
k

)k ( ne

512(5k/2)

)5k/2(
k

n

)5k

=
∑
k≥K

(
k

n

)3k/2

αk,

where α = e7/2

805/2
< 1/2. Now, we can break this sum into two: for small values of k, the

(k/n)k term would be very small, else the αk term would be small. Indeed, for k ≥ 2 log2 n,
we know that αk ≤ 1/n2, so

n∑
k=2 logn

(
k

n

)3k/2

αk ≤
n∑

k=2 logn

αk ≤ 1/n.
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Now for the rest:

2 logn∑
k=K

(
k

n

)3k/2

αk ≤
2 logn∑
k=K

(
k

n

)3k/2

≤ 2 log n ·
(

2 log n

n

)3K/2

≤ 1/n4,

for K = 3, say. �

Bibliographic Notes: The layered induction appears in Balanced Allocations Azar, Broder,
Karlin, and Upfal. The random graph analysis is in the paper Efficient PRAM Simulation
on a Distributed Memory Machine by Karp, Luby, and Meyer auf der Heide; I learned it
from Satish Rao. The Always-go-left algorithm and analysis is due to How Asymmetry Helps
Load Balancing by Berthold Vöcking.

Update: Here’s a survey on the various proof techniques by Mitzenmacher, Sitaraman and
Richa.
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