
Gaussian Elimination Precision Across
Different Techniques

Jacob Margolis and Gabe Werman

Objective
The goal of this project is to determine the precision of Gaussian Elimination

with and without pivoting.

Hypothesis
Since the two algorithms are so closely related, there is no reason to think

that the two algorithms will ever differ in solutions.

Gaussian Elimination can be used to solve a system of equations. Given Ax =
B, or:

a11x1 + a12x2 + … + a1nxn = b1

a21x1 + a22x2 + … + a2nxn = b2

… …
… …
an1x1 + an2x2 + … + annxn = bn

we can solve xi by adding and subtracting rows from each other. Gaussian
Elimination subtract the right amount of the top row from each row as to eliminate
the variable x1 from the remainder of equations. It then moves on to the next row,
and repeats the process. This will reduce A into an upper triangular matrix. Then the
last equation will be solvable, and can be substituted into the other equations. This
process is then repeated until every variable has a value. The only time this will run
into problems is when an aii is zero. If this is the case, we can swap rows and be able
to continue the process. The algorithm without the ability to pivot rows is Gaussian
Elimination without pivoting, the other with pivoting.

We now research the question of “is one algorithm more precise than the
other?” If the answer is yes, then hopefully we will be able to tease out a distinction
between two answers in a certain case to demonstrate that one algorithm is more
precise.

Runtime
This analysis actually would not be able to show that pivoting is more or less

precise, but is telling nonetheless. Running pivot and non-pivot on various matrix
sizes yielded the following:

0 100 200 300 400 500 600
0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

Time Comparison

Non-Pivot Time
Pivot Time
Gauss-Jordan Time

These results show that not pivoting is quickest, then pivoting, and lastly Gauss-
Jordan. Gauss-Jordan elimination is yet another technique we implemented to solve
Ax + B. Gauss-Jordan reduces the matrix A to upper triangular just like the previous
two, but instead of substituting, reduces the columns upward starting at the bottom,
until A looks like the identity matrix, and B will be the solution vector.

The order of speed makes sense, because the elimination with pivot is the
same as non-pivot, but with an added algorithm in the case of zeros. The extra time
appears to be insignificant, perhaps only increasing proportional to n. Gauss-Jordan
is slower than the others, but has the advantage of being easier to check by hand.

It can also be seen through inspection that these curves are proportional to
n^3. Further, the code starts at one row, subtracts from each of the remaining rows.
That itself is O(n^2), but each row operation itself has n elements, so each row
operation takes O(n) time. Combined, Gaussian Elimination should take O(n^3)
time, and that is confirmed in our data.

Descriptive Analytics
Upon testing individual cases, the pivot and non-pivot algorithms

consistently gave exactly the same result. A more efficient way to check for
discrepancies is to examine the mean and standard deviation over many tests, (100,
unless otherwise specified). For the most part, this is the tactic used to compare the

results of the algorithms. For instance, we can quickly check to see that pivot and no
pivot run the same for matrices of different size:

0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Non-Pivot Means for Various Matrix Sizes

10x10 Matrix
5x5 Matrix
25x25 Matrix

Is exactly the same as:

0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Pivot Means for Various Matrix Sizes

10x10 Matrix
5x5 Matrix
25x25 Matrix

And the standard deviations:

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Non-Pivot Stdev for Various Matrix Sizes

5x5
10x10
25x25

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Pivot Stdev for Various Matrix Sizes

5x5
10x10
25x25

And yet again, we have perfect equality between pivot and non-pivot. More can be
learned from these descriptive tools than just equality. For example, it is apparent
that the standard deviation of solutions decreases as the size of the matrix (n)
increases. The graphs depicting mean also show the means of larger matrices

generally being closer to zero. Perhaps this phenomenon can be explained in the
following way: With more variables in each equation, it is less likely for any one
variable to be so important in satisfying the equation, because there are so many
other variables that will have similar sign and magnitude coefficients. This being the
case, each variable is more likely to contribute less, meaning that their values will be
smaller. This would explain both the mean and standard deviations. But now back to
the original question: distinction in the precision of each algorithm.

Precision
One way in which we can try to get a distinction between algorithms is to see

that they show the same answer for various levels of precision inputs. The reason
this might be able to attain different results is from rounding error. If one algorithm
magnifies the error more than the other, a distinction will be had.

First we made sure that we had each algorithm work for single precision,
double precision, and variable precision, (for which we used values of 2-digits, 10-
digits, and 25-digits). The variable precision used a lot of built in language, and took
a while to complete, so it was mostly tested on 5x5 matrices. Attached in the excel
file are lists of results that perfectly match results from pivot and non-pivot, so I will
only show a couple here. For instance, the mean in variable precision matches
perfectly:

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-10

-5

0

5

10

Variable Precision No-Pivot Mean (10 trials)

2-Digits
10-Digits
25-Digits

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-10

-5

0

5

10

Variable Precision Pivot Mean (10 trials)

2-Digits
10-Digits
25-Digits

Alas, across all precisions, even with changing the size of the matrix, the data
suggests that there is no difference in the pivot and no pivot results.

Perturbations
Perhaps the reason that pivot and no pivot seem the same is that we have not

been checking minute values. The goal of perturbation therefore is to create a very
similar matrix, and subtract the results of the very similar matrix to that of the
original. By checking the distance between the answers, we might find a difference
between pivot and no pivot. The data, below and attached in the excel spreadsheet,
shows no such difference:

0.01 0.1 1 10 100 1000
0

50

100

150

200

250

Perturbated Averages and Standard Deviations vs. Perturbation (100 trials, size 10)

Non-Pivot and Pivot Average
(same)
Non-Pivot and Pivot Standard
Deviation (same)
Logarithmic (Non-Pivot and
Pivot Standard Deviation
(same))

The data was exactly the same, so we started plotting it just once, despite it
representing two cases. This graph represents just one of many attempts, which
included using different matrix sizes, different perturbation factors, and different
precisions. As per usual, no distinction was to be had.

Ill-Conditioned Systems
The last permutation of tests we will run to find a difference in precision of

pivot and non-pivot is on Ill-Conditioned Matrices, defined in the assignment. The
basis of what makes these matrices interesting is that they are very similar to
underdetermined matrices.

Consider the following system of equations:
x + y = 2
2x + 2y = 4

This is a square matrix (same amount of variable as equations), but it is
impossible to solve for x and y. In general, not all variable can be solved for if one

row is a linear combination of other rows. Without any perturbation, the Ill-
Conditioned Matrix would run into this ‘underdetermined’ issue. Gauss with
pivoting and Gauss-Jordan can detect this, and return the error. No-pivot treats this
type of matrix as having a zero pivot error, which is inevitable in these types of
matrices.

Regardless, the perturbation will allow the algorithms to complete, now only
different than a regular matrix in the sense that they are close to being
underdetermined. At this point unsurprisingly, the data suggests no distinction
between pivot and no-pivot.

0.01 0.1 1 10 100 1000
0

100

200

300

400

500

600

700

Ill Conditioned Averages and Standard Deviations vs Perturbation (100 trials, size 15)

Non-Pivot and Pivot Average
(same)
Non-Pivot and Pivot Standard
Deviation (same)

Again, the values are the same so it is combined into one graph. This graph
represents one of many test cases, changes like matrix size is recorded in the
attached Excel spreadsheet.

Conclusion
As expected, there is nothing discernible in the precision of pivot and no

pivot. This supports the hypothesis that the algorithms function in the same manner.
When examining the differences in the code, it further supports the hypothesis. The
only difference in the codes is that pivot has more functionality when a diagonal
value is equal to zero- something that never occurs in testing! Even if it did occur, no
pivot would just error, so nothing useful can be learned from comparing no-pivot to
pivot. Gaussian Elimination with and without pivoting have the same precision.

(If any data referenced in this write-up is not shown from the graphs, it is available
in the attached spreadsheet)
Extra Credit

-Implementing Gauss-Jordan elimination, and running a couple tests to see
how its precision compares. (the same)

-Single and Double precision testing for comparisons of pivoting and non-
pivoting when using descriptive analytics (mean and stdev)

-Variable precision for each case:

1. “Go the whole shot and use variable precision arithmetic, e.g. vpa(),
digits().... This is unexplored territory for CB as of 2012: definitely Extra
Credit, definitely a way to FORCE precisionrelated effect to the surface.”

-Varying matrix sizes on perturbation and ill-conditioned tests (CB also said
was extra credit) as well as on all other functions tested.

-Varying the perturbation factor for perturbation and ill-conditioned tests.

http://www.mathworks.com/help/symbolic/vpa.html

