
Garrett Hall
CSC 173

C Programming

Weeks 3-4

1.0 Overview
The program parses code from an input file and evaluates it. The evaluator can handle basic

mathematical operations (+, -, *, /, ^) and trigonometric functions (Sin, Cos, Tan, Asin, Acos,

Atan). In addition, the evaluator can handle variables and even solve simple algebraic equalities

using a system of substitution rules (described next).

2.0 Evaluation
The evaluation system is described first because it provides examples for the capabilities and

syntax of the program as a whole. To run these examples, run the program and type the filename

at the prompt.

2.1 Substitution Rules

All algebra in the evaluation is based upon substitution rules which are indicated by the -> token.

If the left side of a rule is matched then the expression is replaced by the right side. For instance,

the rule a-a -> 0 will replace any two identical expressions that are subtracted with a 0.
example1.1

a-a -> 0;

x-x;

x - x

0

Note that substitution rule variables such as a can match any complex expression such as x*3.

example1.2

a-a -> 0;

x*3-x*3;

(x * 3) - (x * 3)

0

Note: Substitution rule variables must be single character a-z and are unrelated to variables

appearing outside of the build rule. For instance x-x -> 0 would have produced the same

output as above.

2.2 Normal Variables

Unlike variables that appear in a substitution rule, normal variables can bind to numbers. The

assignment operator = indicates a binding when the variable is on the left and the number is on

the right.
example2.1

x = 3;

x - 2;

x = 3

x - 2

3 - 2

1

It is important to note that variables cannot be reassigned and there is no symbol table. Instead,

the expression x=3 is similar to the rule „x‟->3 where „x‟ is a text match. For instance:
example2.2

x = 3;

x = 5;

x = 3

x = 5

3 = 5

False

The program can also handle multi-variable equations.
example2.3

z = y / 2;

y = 4;

z = (y / 2)

y = 4

z = (y / 2)

z = (4 / 2)

z = 2

2.3 Simple Algebra Rules

Rules and variables are combined to make basic algebra systems. The substitution rule

algorithm is designed to simplify expressions as much as possible given a set of rules. A simple

problem would be 2 4x  . The evaluator doesn‟t know anything about dealing with variable

expressions until we add some rules. By adding the rule a*b=c -> a=c/b evaluator can now

deal with a larger subset of problems
example3.1

a*b=c -> a=c/b;

x * 2 = 4;

(x * 2) = 4

x = 2

To deal with multiplicands in reverse order (2 x) we can add a reflexive rule
example3.2

a*b -> b*a;

2 * y = 4;

(2 * y) = 4

(y * 2) = 4

y = 2

The example can be extended with identities
example3.3

a/a -> 1;

z * w = z;

(z * w) = z

(w * z) = z

w = 1

Or transitive rules
example3.4

a*(b*c) -> (a*b)*c;

2 * u * v = y;

(2 * (u * v)) = u

(2 * (v * u)) = u

((v * u) * 2) = u

((2 * v) * u) = u

(v * 2) = 1

v = 0.5

Note: The steps in red are omitted from output, but I’ve added them for clarity. This is because

the evaluation algorithm is essentially looking two steps ahead.

2.4 Advanced Algebra

Here are some more advanced examples using a larger algebra base found in the rules file.
22 9

1

2

x y

y

z z





example4.1

2 * x^2 = 9 * y;

y / 2 * z = 1 / z;
(2 * (x ^ 2)) = (9 * y)

(y / (2 * z)) = (1 / z)

(2 * (x ^ 2)) = (9 * y)

((x ^ 2) * 2) = (9 * y)

((x ^ 2) * 2) = (y * 9)

((4.5 * y) ^ 0.5) = x

(y / (2 * z)) = (1 / z)

(y / (z * 2)) = (1 / z)

(y / (2 * z)) = (1 / z)

((2 * z) / z) = y

((4.5 * y) ^ 0.5) = x

((y * 4.5) ^ 0.5) = x

((4.5 * y) ^ 0.5) = x

((x ^ 2) / y) = 4.5

((2 * z) / z) = y

((z * 2) / z) = y

2 = y

y = 2
((x ^ 2) / y) = 4.5

((x ^ 2) / 2) = 4.5

((x ^ 2) * 0.5) = 4.5

x = 3

The output is a rather verbose series of manipulations, but the correct values are finally arrived

at.

Note: The evaluator cannot handle systems of inequalities or equations, although it would be

possible to extend it to do so. Multivariable equations are only solvable if assignments can be

found for all variables except one.

Here we solve for the double angle identities. Note these identities are not rules themselves, but

are found by expansion
example4.2

Cos(x)^2+Sin(x)^2;
((Cosx) ^ 2) + ((Sinx) ^ 2)

((Cosx) * (Cosx)) + ((Sinx) * (Sinx))

Cos(x - x)

Cos(0)

1

The gcc math library for acos returns a single number
example4.3

0 = Cos(x)^2-Sin(x)^2;
0 = (((Cosx) ^ 2) - ((Sinx) ^ 2))

0 = (((Cosx) ^ 2) - ((Sinx) ^ 2))

0 = (Cos(2 * x))

(x * 2) = (Acos0)

(x * 2) = (Acos0)

(x * 2) = 1.5708

x = 0.785398

2.5 Evaluation Algorithm

Because evaluation is not the main focus of this assignment I won‟t discuss it in much detail

although it is the most complex aspect of the program. The evaluator transverses the AST built

by the parser (detailed later). At each node, the evaluator checks if the node matches any

substitution rule. When multiple substitutions are possible the algorithm performs a breadth-first

search of fixed depth on the substitution rules. The resulting node with the best heuristic value is

chosen. This heuristic favors eliminating variables, simplifying expressions, and moving

variables to the left side of an expression (i.e. x=2 is better than 2=x). If numbers are found on

either side of an operator node, the operator is replaced by the numeric result of the operation.

3.0 Implementation
The program does the following:

1. Reads input from file specified in main.c

2. Tokenizes it in scanner.c using a DFA

3. Parses it in parser.c using a recursive-descent LL(1) parser

4. Builds abstract symbol trees (binary tree data structures described in AST.c)

5. Evaluates the code in evaluate.c

3.1.0 Language

Below the language is described in terms of the regular expressions accepted by the scanner and

the context free grammar (CFG) accepted by the parser.

3.1.1 Character Classes

0|1| 2 | 3| 4 | 5| 6 | 7 |8| 9digit

a | b | ... | zlower

A| B| ... | Zupper

3.1.2 Accepted Tokens

| | | | | | | | | | | | |token number variable function white eof ->) * + / - ^ (;

(.) |number digit digit digit   

(| |)variable lowercase lowercase uppercase digit 

function uppercase lowercase lowercase 

(Function keywords are: Cos, Sin, Tan, Acos, Asin, and Atan)

| |white tab newline space
| | | |comparison< <= = >= >

3.1.3 Context-free Grammar

|statement rule statement  ;
|rule expression expression expression ->

The -> token indicates a special substitution rule.

0 0 0|expression field comparison field field

Comparisons will evaluate to true or false although „=‟ will act as an assignment to

an unbound variable. For example x=2 will act as an assignment statement if x was

previously unassigned. Otherwise it will be a comparison.

0 1 0

0 1

0 0

field field field

field field

field field







+

()

The ifield are non-terminals which represent the order of operations. Specifically i is

the priority of the operation. The non-terminals are right-recursive which allows

LL(1) parsing (no infinite loops) and creates parse trees.

1 2 1 2 0| |field field field field field - ()

2 3 2 3 0| |field field field field field / ()

3 4 3 4 0| |field field field field field * ()

4 5 4 5 0| |field field field field field ^ ()

5 |field atom atom -

0| |atom number variable function field ()

The atom- is a signed atom and uses a flag so that it can only occur in the

first atom. Otherwise the negative sign could be infinitely nested.

Function keywords are Cos, Sin, Tan, Acos, Asin, and Atan.

3.2 Scanner DFA

S1

F1

F2
F

C ∩ lower
C

lower

V1

N1

N3
digit

{ . }

E3

E2

0

{ < > }

{ < > }

lower
C

upper

lower

digit

{ = }

{ < }

{ > }

0

V

N2 0

digit
C

digit

digit

E1 0

{ < = > }

{ < = > }C

{ < > }C

{ < > }C

{ . }C

V
C

F

lower

digit
C

Alphabet Sets

lower = {a, b,...,z}

upper = {A, B,...,Z}

symbol = {+ - * / ^ ;) (< = > eof }

digit = {0, 1,...,9}

F = white U { (}

V = number U upper U lower

symbol U white

{ # }

C1

{ # }

{ # }C

R1

{ - }

{ > }C

{ > }

Function Token

Variable Token

Number Token

Equality Token

Comment Token

Rule Token

Other Tokens

3.3.0 Abstract Symbol Tree (AST)

The parser which implements the CFG generates a binary tree. This is not the concrete parse tree

because redundant non-terminals are not added to the tree, so it is an AST. For example, the

production arrived at through 3 4 5field field field atom number     is reduced to simply

number . Each node in the AST has an associated class:

 AST_BINARY: a binary operation on two nodes „+‟

 AST_UNARY: a unary operation on one node „Cos‟

 AST_COMPARE: comparison between two nodes „<=‟

 AST_NUMBER: single node that is a number „9.32‟

 AST_VARIABLE: single node that is a variable „myVar‟

 AST_BOUND: single node that is an assigned variable „myVar = 9.32‟

This is the parse tree for the statement 9*3+5; Notice the order of operations inherent in the tree

structure:

statement

rule

expression

field0

field1

field2

field3

field4

field5

*

atom

number

field3

+

field4

field5

atom

number

field3

field4

field5

atom

number

field1

field2

field0

;

9 * 3 + 5 ;

The AST is simply:

3.3.1 Generating the AST

To view the tree-structure of input the flag in main.c must be changed by changing the line

tree_flag(0); to tree_flag(1);

codefile

1*2+3^4/(5+6);

+

 *

 1

 2

 /

 ^

 3

 4

 +

 5

 6

The output is in prefix notation. If the flag is turned off tree_flag(0); the code will simply

evaluate. In this case the result is in fully parenthesized infix notation:
(1 * 2) + ((3 ^ 4) / (5 + 6))

2 + ((3 ^ 4) / (5 + 6))

2 + (81 / (5 + 6))

2 + (81 / 11)

2 + 7.36364

9.36364

4.0 Error Handling
Below are a few examples of possible errors.

Comments must always begin and close with the pound sign.

Good #

Bad

Error end of file in comment at line 2, col 0

+

* 5

39

Because testing for equality and assignments are interchangeable only the token “=” should be

used.

x == 4;

Comparison '==' should be '=' at line 1, col 2

Operators should not occur next to each other. Parentheses avoid this problem.

- 2 / + 3;

Atom expected '+' found at line 1, col 6

- 2 / (+ 3);

(-2) / (+3)

-2 / (+3)

-2 / 3

-0.666667

The format of functions must include parentheses and the first letter must be capitalized.

Cos0;

'0' cannot be in function name at line 1, col 0

cos(0);

';' expected '(' found at line 1, col 3

Cos 0;

'0' cannot be in function name at line 1, col 0

Cos(0);

Cos0

1

