
Descsription and Experience of my project

Xiaoqing Tang

September 29, 2008

This program can calculate the results of a sequence of expressions. The ex-
pressions can include variables and functions. Generally speaking, the program
consists of a scanner, a parser, a variable table, and something miscellaneous.

SCANNER The scanner receives the input string (expression) and split them
into tokens. I used a deterministic finite automaton (DFA) to accomplish this
task. Here is the automaton:

Since the DFS is implemented by the “switch... case...” technique, the com-
plexity is Θ(n) for an input of length n.

PARSER The parser analyzes the tokens from the scanner, and decide a
parse tree to calculate the expression. Originally, I designed the following CFG

1



(context free grammar) for parsing:

S → EXPR0;
EXPR0 → EXPR1

→ var = EXPR0 //allowinga = b = 0
EXPR1 → EXPR2

→ EXPR1(+|−)EXPR2
EXPR2 → EXPR3

→ EXPR2(∗|/)EXPR3
EXPR3 → EXPR4

→ EXPR4ˆ EXPR3 //2ˆ 2ˆ 2 means 2ˆ (2ˆ 2)
EXPR4 → var //variable

→ var(EXPR1) //function
→ num //constant
→ (EXPR1)

So, we have now some left recursions and common prefixes. First we’ll remove
the common prefixes in EXPR4. The rule will be changed into:

EXPR4 → (EXPR1)
→ varEXPR4x
→ num

EXPR4x → (EXPR1)
→ ε

ˆ Then we’ll remove the common prefixes in EXPR3. The rule will be changed
into:

EXPR3 → EXPR4EXPR3x
EXPR3x → ˆ EXPR3

→ ε

Then we’ll remove the left recursion of EXPR2. The rule will be changed into:

EXPR2 → EXPR3EXPR2x
EXPR2x → (∗|/)EXPR3EXPR2x

→ ε

It’s the similar case for EXPR1:

EXPR1 → EXPR2EXPR1x
EXPR1x → (+|−)EXPR2EXPR1x

→ ε

Last, we need to remove common prefixes in EXPR0 since EXPR0 →∗ EXPR4 →
var, and EXPR0 → var = EXPR0, thus we have common prefixes to remove.
First, we’ll convert EXPR0 → EXPR1 into a terminal-starting rule

EXPR0 → (EXPR1)EXPR3xEXPR2xEXPR1x
→ varEXPR4xEXPR3xEXPR2xEXPR1x
→ numEXPR3xEXPR2xEXPR1x

2



Thus, we have common prefixes between the second rule and the assignment
rule. So we’ll modify it as:

EXPR0 → (EXPR1)EXPR3xEXPR2xEXPR1x
→ numEXPR3xEXPR2xEXPR1x //thesearethesame
→ varEXPR0x

EXPR0x → = EXPR0
→ EXPR4xEXPR3xEXPR2xEXPR1x

So the grammar is done. The overall grammer would be like:

S → EXPR0;
EXPR0 → (EXPR1)EXPR3xEXPR2xEXPR1x

→ numEXPR3xEXPR2xEXPR1x
→ varEXPR0x

EXPR0x → = EXPR0
→ EXPR4xEXPR3xEXPR2xEXPR1x

EXPR1 → EXPR2EXPR1x
EXPR1x → (+|−)EXPR2EXPR1x

→ ε
EXPR2 → EXPR3EXPR2x

EXPR2x → (∗|/)EXPR3EXPR2x
→ ε

EXPR3 → EXPR4EXPR3x
EXPR3x → ˆ EXPR3

→ ε
EXPR4 → (EXPR1)

→ varEXPR4x
→ num

EXPR4x → (EXPR1)
→ ε

The FIRST and FOLLOW set would be:

FIRST FOLLOW
S {(, var, num} {ε}

EXPR0 {(, var, num} {; }
EXPR0x {=, ε} {; }
EXPR1 {(, var, num} {; }

EXPR1x {+,−, ε} {; }
EXPR2 {(, var, num} {+,−, ; }

EXPR2x {∗, /, ε} {+,−, ; }
EXPR3 {(, var, num} {+,−, ∗, /, ˆ , ; }

EXPR3x {ˆ , ε} {(, var, num}
EXPR4 {(, var, num} {+,−, ∗, /, ˆ , ; }

EXPR4x {(, ε} {+,−, ∗, /, ˆ , ; }

Thus, since we got a LL(1) grammar, we can implement it directly. Actually, in
my program, there are functions called parse xxx(), where xxx stands for one

3



of those non-terminals. Since it’s a LL(1), the implementation will be in Θ(n).
After we build the parse tree, we can perform calculation within the tree.

Actually, it’s very easy to calculate using the original CFG, storing each inter-
mediate value for each non-terminal. However, when we convert it into a LL(1)
grammar, it’s not so easy to store the intermediate results.

So I passed a parameter for the non-terminals corresponding to the left-
associative operations, i.e. EXPR1x, EXPR2x, as the value of the previous
terminal. Then, I can carry out calculations with some rules.

VARIABLE TABLE The variable table is used to store the names of vari-
ables and their values. I just use an dynamic allocated string array and double
array to implement this.

MISCELLANEOUS Since I can’t modify the reader.*, I have to read the
whole input and make the results after the input. However, I want a program
that can run on multiple cases without calling it from the prompt again and
again. So I implement a shell which calls the core program again and again. So
you can just call the main program once and carry out the calculation.

4


