
Simon Weber

CSC173

Scheme Week 3-4

N-Queens Problem in Scheme

Overview
The purpose of this assignment was to implement and analyze various algorithms for solving

the N-Queens problem. The N-Queens problem is to place n queens on a chessboard of size n by n, so

that no queen attacks any other.

Algorithms:
Backtracking

This algorithm searches through all possible placements of queens until it finds a valid one. It

starts by placing one queen in the first column and first row, then tries to place the other queens so that

they do not conflict. Once there is no possible place to put a queen, it pulls the current queen off the

board and tries the previous queen in its next row. The order of rows is important in the efficiency of

the algorithm (this is discussed in Analysis). It will always find a solution, but it is inefficient and a

weak method.

Backtracking with MRV Heuristic

This is same algorithm as above, but with an important modification. The next row that is

chosen to be moved is the row that is currently causing the most attacks. This usually improves the

efficiency of the algorithm over the backtracking algorithm.

Min-Conflicts

The min-conflicts algorithm is a hillclimbing algorithm; it starts with all queens placed on the

board and then tries to improve the arrangement. It randomly chooses a conflicting queen and then

moves it to the row that causes the least conflicts. A problem with this hillclimbing technique is that an

arrangement can be created that cannot be improved any further. This is called a local minima. To

eliminate these situations, I had to consider a few special cases. The board would be caught in a local

minima if only two queens conflict and the rest are fine. When this situation arises, a conflicting queen

is moved to a random row to create conflicts and start the process over again.

Analysis
Measurement

To measure the efficiency of the algorithms relative to one another, I measured the number of

queen placements that each made.

Column Order in Backtracking Search

I tried a few different ways to pick the order of columns in the backtracking search: inside-out,

left to right, and random. Here are the results:

This data shows that the inside-out column order is generally the most efficient, with case 7

being a notable exception. There, it performs worse than both of the other types. The inside-out

approach was based on the idea that the inside columns will affect the outer columns more, so they

should be chosen first.

Initial State of Min-conflicts

The initial state of min-conflicts should have a large affect on the efficiency of the algorithm. I

tried two different initial states, a diagonal row of queens from top-left to bottom-right, and a random

arrangement that differs with each run of the algorithm. Each of the values below is based off of 5 runs

of the algorithm.

Problem Size Inside-Out Left-right Random (average over 5 trials)
5 92 90 102
6 3454461 5595877 45188846.8
7 6449 572 2120.2
8 10843 1.58E+021 57399846397.8

10 149695890888 2.13E+019 2.05E+033
12 1.45E+026 1.22E+047 4.73E+021

A few interesting trends arise from this data. First, while certainly the initial states affect the

outcome, it is tough to say that one is better than the other. Judging by the median, neither stands out as

significantly more efficient. The minimum and maximum measurements do not show much of a

difference either. However, how the problem size relates to the median is interesting. For the diagonal

tests, the median jumps around, while for the random tests, it increases steadily with the problem size

(excluding problem size 6 as an outlier). Another interesting trend is how the Standard Deviation

relates to the problem size. For the random arrangement, it increases with the problem size, but the

diagonal arrangement does not follow a pattern. Based on these results, I chose the random

arrangement to represent the min-conflicts algorithm in the later tests.

In Artificial Intelligence: A Modern Approach, Russell claims that the n-queens problem, when

solved with the min-conflicts technique, is independent of problem size. My data does not firmly

support that conclusion. The median value does go up with problem size, but the minimum value

remains relatively constant. Therefore, my data is inconclusive.

Algorithm Comparisons

Here are the results when comparing the algorithms against each other:

Diagonal
Problem Size Median Min Max Std. Deviation

4 9 6 19 6.3
5 14 8 68 24.8
6 80 20 102 37.37
7 13 10 25 6.19
8 42 13 328 133.72
9 44 22 191 67.82

10 92 37 338 129.13
15 283 82 443 137.46
20 88 61 215 65.16

Random
Problem Size Median Min Max Std. Deviation

4 2 41 26 11.32
5 8 2 13 3.96
6 75 28 151 44.48
7 44 27 98 33.44
8 45 5 54 20.51
9 52 20 144 50.05

10 161 74 250 80.87
15 182 37 324 106.04
20 183 25 521 184.65

Some conclusions can be drawn from this data. First, the MRV approach is clearly more

efficient than just backtracking alone. Second, the hill climbing method is the overall best method.

However, the efficiency measurement of min conflicts does not take in to account how “difficult” each

decision to move a queen is. So, in reality it can take longer to use the hill climbing method. Here are

the algorithms measured with cpu time, as measured by the built in scheme function time:

Here, different results are shown. Min-conflicts is now less efficient than the backtracking

technique with the heuristic. This can mostly be written off on the implementation of min-conflicts.

Operations such as getting the columns with conflicts or getting the best row to place a column in could

be improved, which would lead to a better run-time. Also, the heuristics applied in min-conflicts are not

very well developed, and while they do decrease the number of operations, they may increase the run-

time of the algorithm.

Selected Solutions
These solutions illustrate how the different searches will find different results for the same

given problem size.

Backtracking:

Problem Size Backtrack Backtrack + MRV Min Conflicts
5 92 90 14
6 3454461 26453 80
7 6449 215 13
8 10843 1197955 42

10 149695890888 10773068 92
12 1.45E+026 2624 117

Problem Size Backtrack Backtrack + MV Min Conflicts
17 62 47 110
18 93 62 73
19 265 62 173
20 921 78 280

Backtracking with MRV:

Min-Conflicts:

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Note that the first two solutions are the same, but the board is simply rotated.

Conclusions
The inside-out column order for backtracking is the best option. No conclusion can be drawn

from the initial state of Min-conflicts, however the standard deviation of the random approach rises

with problem size. Of the different algorithms, the min-conflicts approach is the best in terms of

operations, however it does not have the best run-time. The run-time could be improved through

improvement of the helper functions. For the backtracking methods, the work required increases with

problem size. However, for min-conflicts, no conclusion can be drawn because of the minimum values.

x
x

x
x

x
x

x
x

