How to use this program:
Compile the Source:
Compile either 'DCG.prolog' or ' DCG_no_parse_tree.prolog'. Both run the same way, the
difference is noted in the extra credit section.
['DCG.prolog'].
['[DCG_no_parse_tree.prolog'].
Expression Evaluation:
This program is a simple calculator that can evaluate expressions. To evaluate an expression,
use either the predicate evaluate/1 or evaluate/2. The evaluate/1 predicate evaluates an
expression and prints the result. The evaluate/2 predicate evaluates the expression in the first
argument and instantiates the second argument to the result.
?- evaluate([5, '+, 5]).
Result is 10
Yes
?- evaluate([5, '+, 5], X).
X=10
The expressions given as arguments to the evaluate predicate, must be in the form of a list
atoms, such as [tan, '(', 3.14, '/, 4, ")'].
Valid operators are '+', -, "*', '/, '(', ") and "',
Valid functions are tan, sin and cos.

Using Variables:
Variables can be assigned values using the assign/2 predicate. The first argument is the name of
the variable that is being assigned and the second argument is the value of the variable.
?7- assign(cat, 2).
cat=2
Yes
?7- evaluate([2, "N, 0.5], X), assign(root2, X).
root2 = 1.41421
X =1.41421
The assign predicate can also take an expression as it's second argument.
?7- assign(dog, [5, 'V, 0.5]).
dog =2.23607
Yes
To use variables in expressions, simply make the variable name as an element in the list.
?7- evaluate([dog, '+, cat]).
Result is 4.23607
Yes

Context Free Grammar:

Example 2.7 from Scott's book:
expr = term | expr add_op term
term — factor | term mult_op factor
factor = id | number | - factor | (expr)

add_op = + | -

mult_op = * 1|/
The example in section 2.7 of Scott's book has left recursion. If such a grammar were implemented
into a program, the program would form an infinite loop while trying to form an expr from another expr
followed by an add_op and a term. The general solution to this problem is:

expr — term exprtail

exprtail = €

exprtail = add_op term exprtail
My version of Scott's grammar, including rules for exponents and functions:

expr — term exprtail | func factor

exprtail = € | add_op term exprtail

term — power termtail

termtail = € | mult_op power termtail

power — factor powertail

powertail = € | pow_op factor powertail

factor = id | number | add_op factor | (expr)

add_op = + | -

mult_op = * 1|/

pow_op =/

func — tan | sin | cos

Extra Credit:
Exponents: Support for exponents has been added with correct order of operations:
3 3 3\4
2% =2 %(2%)
Functions: Support for basic trigonometric functions has been added.
Variables: Support for the assignment and use of variables in expressions.

Evaluation without Parse Tree: The 'DCG_no_parse_tree.prolog' evaluates expressions without first
creating a parse tree. This evaluates the expression with fewer inferences.

