
Descsription and Experience of my project

Xiaoqing Tang

November 20, 2008

This scheme program can solve the N-puzzle problem, though N can’t be
too large. Generally it should be less than 5. The program can’t guarantee for
all inputs with N greater or equal to 5 that it can solve them in a reasonable
time limit.

Technical Detail This section includes technical details of the program, in-
cluding the implement of ID-DFS (IDS) for extra credit.

In general, the program is based on vectors. The advantage of using vectors
is that I can get access to an item with a given index quickly and easily. Any
state is a vector of the following items:

1. Board

The board vector indicates the current state of the board, with 0 indicating
the empty block. The length of this vector (as an item of the State vector)
should be N*N.

2. step

This number indicates how many steps it is needed to get to the current
state from the initial step. If we have a state which has a final board
distribution, the step field is the steps of moves we want.

3. Empty Block

The Empty Block vector indicates where the empty block is. It is a vector
of length 3, each indicates:

(a) n: Board size

(b) x: Row index of the empty block, 0 ≤ x < n

(c) y: Column index of the empty block, 0 ≤ y < n

The top-left block has the position of x = 0 and y = 0.

4. Current Sequence

This list constains the sequence of moves in reverse order (since I can
use cons to implement appending an element to the “end”). Each move
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is represented in a capitalized character “U”,“D”,“L”,“R”, for up, down,
left, and right, respectively.

Through remarks in program, you can see that my program is divided into
some parts, and each part containing some functions which behaves in the same
category.

1. I/O functions

These are just redirection of output ports, and customized printf so that
we won’t write the port object in each output sentence. (Mainly it’s for
debugging more easily)

2. Vector-related functions

The id function is just an alias for the vector-ref, in order to type less.
The cp function is used to create another instance for a vector. I’ve found
that if I used the id function to get access to an element in a vector, or
more specifically, get access to the board field of a state, and if I tried to
use set! to change the value, the original vector would be changed. But
I didn’t want to do that because I need to create a new state to perform
searching. Therefore I convert the vector to a list and convert the list
back to vector. This indeed solves my problem because converting does
create new instances. The last x-y-to-id function converts the position
of empty block (x,y) into an index of board vector.

The following part is functions that deal with states.

3. State-retrieving functions

The 4 functions in this section are used to retrieve certain field of a state.
It’s just for convenience, just as what id is used for.

4. equal-board?

This function judges whether two states have the same board vector. It
is important because when we’re scanning the open-list and closed-list to
find out whether the state is already in the lists, we should only consider
whether they have the same board state. Actually, we also have to consider
the number of moves (the step field) because if the current state is equal-
board to another state but has fewer moves, it should still be expanded.
Therefore, this function is designed to implement only the simple match of
board field, and leave the more complicated logic to the expand function.

5. find? and swap

find? scans a list (which can be either open-list or closed-list) and returns
whether there is a state which is equal-board to the given state, and the
state in the list has fewer moves than the given state (rigiously less than
or equal to). If it returns yes, it means that we needn’t expand this state
because we have expanded or will expand a state with the same board
field but better solution.
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swap swaps the empty block with a given block, increases the move counter(step
field) by one, and add the symbol of move to the sequence field.

6. Four direction expansion

Since I’ve written the swap function, I can call swap with different param-
eters to implement the expansion in four directions.

7. Generation of initial and final state

Since the input is a vector of board, a function is needed to construct an
initial state from the input board field. The function is init-state, using
find-zero to find the empty block, and board-size to find the size of board
(in my program, N is not part of input), i.e. my program can automatically
determine those data from the board given.

The final state is generated from the board field (1 2 ... n*n-1 0)

8. push functions

push-head and push-tail are two different ways to push a state into a
list. They’re used by DFS and BFS seperately. Further discussion is on
seperate search function section afterwards.

9. output function

When a solution is found, this function is called to output the number of
moves and the operating sequence. Since the sequence is in reverse order,
the function output the sequence reversely so that the output is in correct
order.

10. open-list and closed-list functions

This section defines the open-list and closed-list, and a function that up-
dates a list. The term “update” means, if such a state does not exist in the
list, append the state into the list by the parameter function push-func.
Otherwise, the new state overwrites the existing corresponding state in
the list. The function returns the new list. There’s one thing I would like
to mention. The overwritting mechanism makes it possible for me to get
rid of rem-all because the state I want to remove from open-list is the
first element, and it won’t have duplicates in cdr of the list.

11. search-base function

This is the core of my program. Since DFS, BFS, along with ID-DFS has
a similar searching framework, I abstracted the framework and treat it as
a base function, like a base class in OOP. The parameters are push-func,
cut, and break-once-found. Since I use the same way to pop a state
from open-list (retrieve the first element in the list), I should use different
pushing functions to distinguish DFS and BFS. This is why I implemented
push-head and push-tail. For cut, it’s a function used to cut states
that needn’t expanding. Each search performs different cut functions,
so it should also be a parameter. The last break-once-found is a bool
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parameter for BFS and ID-DFS. They have a feature that once it finds a
solution, the search immediately quits because They can ensure that the
first solution found is the best. Therefore, this bool should be true for
them, and false for other searches (in fact, only for DFS in this case).

12. DFS, BFS, and ID-DFS functions

Since search-base function is implemented as above, the DFS, BFS and
ID-DFS are just calling the search-base function with different parameters.
I treat the limit of search depth as a global variable just for convenience,
similaly for the implementation of ID-DFS by calling DFS.

bfs-test and id-dfs-test are used for finding the max level where the
search can go.

COMPLEXITY It can be easily seen that the number of all possible boards
(though not all of them are accessible) is N2!. However, for DFS, if we restrain
our depth to k, we have 4k possible moves because there are 4 possible moves
for one move. Therefore there at most 4k different boards. So, for a DFS with
a restrained depth, the number of possible boards is min{N2!, 4k}.

To calculate the complexity for the program, we need to explore how many
calculation needed to expand a state. Since I used brute force to find whether a
state is in open-list or closed-list, the worst case is that I need to scan the two
lists completely. However, for the sum of the lengths of the two lists, the worst
case is that it exceedes the total number of possible moves. Therefore, if the
number of possible moves is f(n), the complexity will be f(n)2. This means, the
worst-case complexity is O((N2!)2) for BFS and ID-DFS, O((min{N2!, 4k})2)
for DFS (here k means the input of search depth limit).

However, in classical C/C++ programming, the finding of the existence
of a state in lists can be implemented by balanced binary trees (BBST) or
hash tables. The BBST can guarantee a O(log(f(n))) searching, resulting in
O(f(n) log f(n)) complexity. The hash table is even better. Its O(1) searching
can result in O(f(n)) complexity, which is far better than my program.

However, the Big-O notation means that it’s just the worst case complexity.
The performance of search algorithms is affected greatly by the input data.
Time spent on different input data may vary a lot even if they’re of the same
size.

Analysis of some extra issues

1. How many states?

N2! for BFS and ID-DFS, and min{N2!, 4k} for DFS. These two numbers
are both worst-case numbers and generally they won’t be exceeded.

2. Implement IDS

It’s ID-DFS in my program.
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3. Test the max-level

By using bfs-test and id-dfs-test on the large input board-test, and
running for several minutes before I get annoyed, it seems that for the 5*5
puzzle, we can achieve the level of 12 moves at most.

4. Hash-tables

The memory usage is not acceptable for N is greater than 3. For a 4*4
puzzle, as the analysis above indicates, the number of possible states is
42! = 16! = 2.09228×1013. Even if each state only occupies one byte, and
the actual number of states visited is only 1/1000 of them, the memory
usage will be 42!

1000×230 GB = 19.48GB. Therefore, I refuse to implement
hash-tables because even if I finally implement this, it won’t solve the
puzzles whose N is greater than 3.

However, we can implement the closed-list by hash-table with chaining,
with a relatively high load factor, i.e. the number of slots is limited, and
each slot is considered as a scheme list containing states with the same
hash value. This might work because it reduced a lot of memory usage.
I think the memory usage for this implementation is almost the same
as implementing in the original way (or actually we can see our original
closed-list as a hash-table with only one slot). But the coding won’t be
easy, and the debugging will be probably very ugly. Therefore I gave up.

5. Limited-length closed-list

Again the coding won’t be easy so I didn’t implement this. I’ll just do a
brief analysis. The idea sounds good, but it’s likely to go infinite loops
because it’s very easy to construct a sequence of moves that do not actually
change the board, and the number of the moves is greater than the closed-
list size limit. Therefore, for a certain state S, and there are k(¿size-limit)
moves that can turn S back to S. When the predecessor of S is being
visited, S must not be in the closed-list because the only states in the
closed-list is k ancestors of S. So, the new S, which is put into the closed-
list again, has a new solution which is greater than the original state by
k. Such infinite loops, if happens, will severely affect the algorithm.

6. Longest path

As I’ve said before, there are sequences of moves which can preserve a
state. Thus if we allow duplication of state, the answer will be + inf. If
duplication is not allowed, the problem will be very hard. At least, it
can be reduce to a longest path problem on a graph with N ! vertices.
So at least an O(2N !) can be designed to solve this problem (though not
feasible).

7. Other rules of expanding

No matter the puzzle is toroidal, or a Klein bottle, or a projective plane,
the only thing that changes is how a state which is being visited expands.
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Originally such a state expands four adjacent states. New rules only add
new adjacent states to the state and we have to expand more when visiting
the state. Since I implemented the search framework in a base function,
it’s possible to keep the general framework and add only the new rules of
expanding to it.
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