Cosc343: INTRODUCTION TO PROLOG

LECTURE 4

Lecture 4



In today’s lecture

O GG IR O G O

Prolog and Al research
Clauses and queries
Facts and rules
Constants and variables
Lists and unification

Prolog and search

Lecture 4




Prolog and symbolic Al

‘Classical’ Al is basically all about search.

e Early Al researchers (e.g. Newell and Simon) claimed that any task requir-
ing intelligence can be solved using clever look-ahead search strategies.

— You formulate your problem as a state space graph.

— Then you search it systematically to look for a goal state.

Prolog is a language which is designed for (symbolic) Al tasks.

e In Prolog, every program is formulated as a state space and a goal state.
e Prolog comes with an inbuilt tree-search program.

e This makes Prolog very different from other programming languages!

Lecture 4 3




SWI Prolog

Russell and Norvig's book isn't tied to any particular programming language.
But in 343 we'll be using Prolog for the first part of the course.

e To run Prolog on the Linux lab machines, just type pl.

e You'll get a prompt like this:
‘?_

e o exit Prolog, type halt.
(N.B. You need the fullstop!)

The variety of Prolog we're using is called SWI Prolog.

e There are pointers to manuals and other information on the course web-
page.

Lecture 4 4



Prolog syntax: atoms

The central construct in Prolog is the atom.

e An atom consists of a predicate and zero or more arguments (called
terms). For instance:

male(charlie)
child_of(charlie, harry)
charlie_has_big_ears

An atom is basically Prolog’s representation of a fact about the world.

The number of arguments a predicate takes is called its arity.

Lecture 4 5




Prolog syntax: clauses and facts

Prolog operates with a database of clauses.

e The simplest kind of clause is called a fact.
e A fact is just an atom, followed by a fullstop.

e You create a database of clauses simply by editing a text file. (They
conventionally take the suffix .pl.)

For instance: here's a simple database, which we could save as my db.pl:

male(charlie).
child_of (charlie,harry).

Lecture 4 6



Programming in Prolog

To program in Prolog:

e You create a database offline, using a text editor.
e You start up Prolog, and get a prompt.
e Then you load the database:

7- consult("my\_db.pl").

e After it's been loaded, you can type queries in at the prompt, and Prolog
will return results for these queries. For instance:

?7- male(charlie).

Yes
‘?_

e Syntactically, a query looks just like a fact. But it's interpreted as a
question.

Lecture 4 7



How Prolog responds to a query

Let's say we load my db.pl into Prolog:

male(charlie).
child_of (charlie,harry).

When we ask a query, Prolog runs through the facts in the database in order,
trying to match it to one of them.

e If a match is found, Prolog replies with Yes:

?7- male(charlie).

Yes
?_

e If no match is found, Prolog replies with No:

7- female(queen_victoria).

No
?_

Lecture 4




Constants and variables

The terms (arguments) in a predicate can be constants or variables.

e Constants are lower_case

e Variables are Upper case.

If variables are used in a query, then Prolog is allowed to match facts in
the database by unifying or binding variables in the query with constants (or
variables) in the database.

?7- male(X).
X = charlie
Yes
?_

To solve this query, Prolog has bound the variable X to the value charlie.

Lecture 4 9



Prolog’s search strategy

Let's extend the database a bit:

child_of(1liz, charlie).
child_of (1iz, anne).
child_of (1iz, andrew).
child_of(charlie, harry).
child_of (charlie, will).
child_of (anne, zara).

Prolog searches the database of clauses in order (first-to-last), so the first

clause it matches will be the first one entered in the database.

?- child_of (charlie, X).

X = harry



Visualising the search

Prolog basically executes a kind of tree search.

e Each of the system’s actions is an attempt to match a query with one of
the database clauses.

e The query plus the database define a set of possible states.

— Each state reached by a successful match consists of a list of unresolved
queries and a set of variable bindings.

— An unsuccessful match results in a special state called fail.

e The goal state is one where the set of unresolved queries is empty.

Queries{child_of(charlie,X)} - START
Variable bindings: {} STATE

try: child_of(charlie, X)  try: child of(charlie, X) try: child_of(charlie, X) try: child of(charlie, X) —  ACTIONS
child_of(liz, charlie) child_of(liz, anne) child_of(liz, andrew) child_of(charlie, harry)

fail fail fail Queries: {} _  GOAL
Variable bindings: { X=harry} STATE

Lecture 4 11



Asking for other solutions

If Prolog finds a solution to a query containing variables, it asks the user if
further solutions (involving different variable bindings) should be sought.

e If the user hits <return>, no further solutions are sought.

e If (s)he hits ;, additional solutions are sought.

?- child_of (charlie, X).

X = harry ;
X = will ;
No

Prolog implements this by pretending that the goal state was a fail state,
and continuing with its search.

Lecture 4 12



Prolog rules

Our simple Prolog database just had facts in it.
A more complex kind of Prolog clause is a rule.

A rule has

e a head (a single Prolog atom),

e then the ‘if’ symbol ( :- ),

e then a body (a comma-separated list of atoms),
e then a fullstop.

For example:

loves (N1, N2) :-
child_of (N2, N1).

(Read this as: ‘N1 loves N2 if N2 is a child of N1'.)



Query-matching with rules

When a query is made, Prolog searches the clauses in order.

o If the clause is a fact, Prolog tries to match the query to it directly.

o If the clause is a rule, Prolog tries to match the query to the rule's head.
If the head matches, then the result state is defined as follows:

— The query matching the head of the rule is deleted from the list of
queries.

— All the terms in the body of the rule become queries themselves, and
are added to the list.

Rules thus introduce searches of depth greater than 1.

Note: new queries are added to the front of the list of queries.
So Prolog implements a depth-first search.




An example

Consider this simple database:

child_of (charlie, harry).
child_of (charlie, will).
loves (N1, N2) :-

child_of (N2, N1).

And the query  loves(will, charlie).

e Prolog runs through the clauses in order, trying to match each one.
e The first two clauses fail directly.

e [he head of the third clause matches, if we bind N1 to charlie and N2
towill.

e We now generate a new sub-query to test:
child of (charlie, will).

e We test this query against each clause in the database, left-to-right. And
this succeeds.



Visualising the search

child_of (charlie, harry).
child_of (charlie, will).
loves (N1, N2) :-

child_of (N2, N1). ?- loves(will, charlie).
Queries:{loves(will, charlie)} < START
Variable bindings: {} STATE
try: loves(will,charlie) try: loves(will, charlie) try: loves(will, charlie) < ACTIONS
child_of(charlie,harry) child_of(charlie, will) loves(N1, N2) :—-

child_of(N2, N1)

fail fail Queries: {child_of(charlie,will)} - NEW
Variable bindings: {N1=will,N2=charlie} STATE

try: child_of(charlie,will)  try: child_of(charlie, will) -~ A ~T10NS
child_of(charlie,harry) child_of(charlie, will)

fail Queries: {} <1 GOAL

Lecture 4

Variable bindings: {N1=will,N2=charlie} STATE

16



Tracing

Prolog has a trace facility, to display its reasoning process.

Here's a trace of the previous query.

?- trace, loves(will,charlie).
Call: (8) loves(will, charlie) ?
Call: (9) child_of(charlie, will) ?
Exit: (9) child_of(charlie, will) ?
Exit: (8) loves(will, charlie) 7

Note:

e The numbers tell us how deep in the search Prolog is. (1-7 are part of
SWI's user interface.)

e The default trace doesn'’t report intermediary ‘fail’ nodes.



Recursion in Prolog

Prolog rules can be recursive.

Here's an example of a recursive rule for defining ‘descendant of':

descendant_of (N1, N2) :-
child_of (N1, N2).

descendant_of (N1, N2) :-
child_of (N1, Nmid),
descendant_of (Nmid, N2).

The first of these rules is the base case.
The second rule is the recursive case.

N.B. The base case always has to appear first!



Term unification

When Prolog attempts to match two atoms, their predicates must be iden-
tical, and their arguments have to unify.

We can test matches explicitly using the infix = operator:

7- happy(bill) = sad(bill).
No

We can also use = to test directly for term unification:

?7- X = bill.
X = bill



Term unification

A variable can unify with any term, provided that it can be substituted
consistently for that term throughout the predicate.

How will Prolog respond to the following queries?

?- foo(X, X) = foo(bar, bar).

?- foo(X, Y) = foo(bar, bar).

?- foo(X, X) foo(bar, baz).




Complex terms

Terms don't need to be constants or variables: they can also be more complex
expressions.

e A whole atom can be a term: e.g. loves(child of (john), mary)

Prolog has a set of inbuilt operators (e.g. :, -, \), which allow the creation
of arbitrarily complex terms (e.g. a:b:c, a-b-X).

How will Prolog respond to the following queries?

?7- a/b/c = a:b:c.

?- a/b/c

a/b/X.

7- f(gla/b), Y) = £(g(2D), p).



Lists in Prolog

One special form of complex expression is a list. For instance:
corgis_of(liz, [rover, fido]).

e Prolog represents the empty list using a special symbol, [].

e Prolog represents a non-empty list as a binary structure [x|y], where

— x is any Prolog term (simple or complex),

— 1y is a list (empty or non-empty).

A list with one element is shown as [e| [1].

A list with two elements is shown as [e| [e2| [1]].

To make things simple, there's a shorthand:
E.g. [a] is a shorthand for [a| []].
E.g. [a, bl is a shorthand for [al| [b| [1]].



Term unification

We can confirm these shorthand representations by unifying:

7- [al[]] = X.

X = [al

Yes

7- [alX] = [a].

X =[]

Yes

?- [alX] = [a, b, c].
X = [b, c]

Yes

?_




A predicate for testing list membership

There's an inbuilt predicate called member/2 that works like this:

?- member(a, [b, a, cl).
Yes

?- member(a, [b, c, dl).
No

We can define our own version of this predicate. Note the recursion!

member* (X, [X|Rest]). Jbase case

member* (X, [Y|Rest]) :- Jirecursive case
member* (X, Rest).



