
1

Ch. 5 Controlling Backtracking

Backtracking

• Backtracking is the attempt to (re)satisfy a

goal by exploring alternative ways to
satisfy it.

• Chronological backtracking is backtracking

in which we always go back to the most
recent goal which still has unexplored
possible alternative solutions.

Backtracking

• Prolog will automatically backtrack if this is

necessary to satisfy a goal.

• After a query returns an answer, we can
ask for additional answers by typing a

semi-colon (;). This causes backtracking to
look for alternative solutions.

Example

parent(bill, sally).

parent(sue, sally).

?- parent(X, sally).

X = bill ;

X = sue ;

No

Example

• Given this query, the system tries the first
fact, which succeeds giving the answer
bill.

• The semi-colon initiates backtracking, so
the system tries the second fact, which
also succeeds giving the answer sue.

• The next semi-colon initiates backtracking
again, but there are no more relevant facts
or rules to use, so the goal fails.

Backtracking Example

member(Head, [Head|_]).

member(X, [_|Tail]) :- member(X, Tail).

?- member(X, [a,b,c]).

X = a ;

X = b ;

X = c ;

No

2

And-Or Tree for member Procedure

mem(H,[H|_])

mem(X,[a,b,c])

mem(X,[b,c])

X=H

H=a ; X=H

mem(H,[H|_]) mem(X,[c])

mem(H,[H|_]) mem(X,[])

H=b ;

H=c ; fail

X=H

fail

fail

fail

Example

(ex) a double-step function:

f(X, 0) :- X<3.

f(X, 2) :- 3=<X, X<6.

f(X, 4) :- 6=<X.

?- f(8, Y).

Y = 4

Example

• Given this query, the system tries the first
rule, but this fails because 8 is not less
than 3.

• It then tries the second rule, but this also
fails because 8 is not less than 6.

• Finally, it tries the third rule and this one
succeeds giving an answer of 4.

And-Or Tree for Double-Step Function

f(X,0)

?- f(8,Y)

f(X,2) f(X,4)

X<3 3=<X X<6 6=<X

Y=0

Y=2

Y=4

X=8 X=8 X=8

no yes no yes

Pointless Backtracking

?- f(1,Y).

Y=0 ;

No

Pointless Backtracking

• Given this query, the first clause of the f
procedure returns the answer Y=0.

• Entering the semi-colon triggers a search
for alternative solutions.

• But this backtracking is pointless since we
already know it cannot succeed.

• For any given input, the f procedure can

produce only one possible output.

3

And-Or Tree for Pointless Backtracking

f(X,0)

f(1,Y)

f(X,2) f(X,4)

X<3 3=<X X<6 6=<X

Y=0

Y=2

Y=4

X=1 X=1 X=1

yes ;

fail
no no

Preventing Pointless Backtracking

• We can prevent pointless backtracking by
using the cut command.

• Cuts are used to make code more efficient.

• Cut is symbolized by the exclamation point (!).

• A cut is a goal that always succeeds.

• A cut is like a one-way door that lets you out,
but doesn’t let you back in.

Example with Cuts

(ex) the double-step function with cuts:

f(X, 0) :- X<3, !.

f(X, 2) :- 3=<X, X<6, !.

f(X, 4) :- 6=<X.

Example with Cuts

• This version of the f procedure returns the
same values as the previous version, but

now, once an answer has been found,
pointless backtracking is prevented by the
use of cuts.

• It is unnecessary to add a cut to the third
clause, because there are no alternatives
beyond it.

And-Or Tree for f with Cuts

f(X,0)

f(1,Y)

f(X,2) f(X,4)

X<3 3=<X X<6 6=<X

Y=0

X=1

yes ;

fail

! ! !

Green Cuts

(ex) f with green cuts:

f(X, 0) :- X<3, !.

f(X, 2) :- 3=<X, X<6, !.

f(X, 4) :- 6=<X.

• The types of cuts used in this example are
called green cuts.

4

Green Cuts

• The defining feature of green cuts is that if
they are removed then the procedure will

still produce correct answers, although
maybe less efficiently.

Further Inefficiencies

(ex) f with green cuts:

f(X, 0) :- X<3, !.

f(X, 2) :- 3=<X, X<6, !.

f(X, 4) :- 6=<X.

Further Inefficiencies

• Although the cuts have removed some
inefficiencies from this code, there are

still other sources of inefficiency:

– 3=<X is a redundant test since we
already know that X<3 is false.

– 6=<X is a redundant test since we
already know that X<6 is false.

Removing more inefficiencies

• Getting rid of the redundant tests, we get
the following definition for f:

f(X, 0) :- X<3, !.

f(X, 2) :- X<6, !.

f(X, 4).

Removing more inefficiencies

• This code can be read as:

if X<3 then Y=0;

else if X<6 then Y=2;

else Y=4;

• This is the most efficient version of this
procedure.

Red Cuts

(ex) f with red cuts:

f(X, 0) :- X<3, !.

f(X, 2) :- X<6, !.

f(X, 4).

• The types of cuts used in this code are
called red cuts.

5

Red Cuts

• The defining feature of red cuts is that if
they are removed from the procedure then

the procedure may produce incorrect
answers.

Removing Red Cuts

(ex) If we remove the cuts, we get:

f(X, 0) :- X<3.

f(X, 2) :- X<6.

f(X, 4).

?- f(2, X).

X = 0; % right answer

X = 2; % wrong answer

X = 4; % wrong answer

No

Another Example

• the max procedure:

max(X, Y, X) :- X>=Y.

max(X, Y, Y) :- X<Y.

• can be rewritten with a red cut as:

max1(X, Y, X) :- X>=Y, !.

max1(X, Y, Y).

What Cut Does

1. Cannot backtrack through a cut.

2. Cannot try alternative rules for the
parent goal of the cut.

cut example

b.

d.

e.

f.

v.

a :- b, c, d.

c :- e, !, f, fail.

c :- v.

cut example trace
[trace] 3 ?- a.

Call: (7) a ? creep

Call: (8) b ? creep
Exit: (8) b ? creep
Call: (8) c ? creep

Call: (9) e ? creep
Exit: (9) e ? creep
Call: (9) f ? creep
Exit: (9) f ? creep

Call: (9) fail ? creep
Fail: (9) fail ? creep
Fail: (8) c ? creep

Fail: (7) a ? creep
No

6

An Effect of Cut

1 ?- member(X, [a, b, c]).

X = a ;

X = b ;

X = c ;

No

An Effect of Cut

• member procedure with cuts

mem1(H, [H|_]) :- !.

mem1(E, [_|T]) :- mem1(E, T).

2 ?- mem1(X, [a, b, c]).

X = a ;

No

Prolog Negation

(ex) Mary likes all animals except snakes.

likes(mary, X) :- animal(X), \+ snake(X).

Prolog Negation

• Negation in Prolog can be written as:

\+ P

\+(P)

not P

not(P)

Prolog Negation

• Negation in Prolog is not logical negation
but instead is negation as failure.

Prolog Negation

logical not: P ¬P

T F

F T

negation as failure: P \+P

succeeds fails

fails succeeds

7

The Closed-World Assumption

?- human(mary).

No

?- \+ human(mary).

Yes

The Closed-World Assumption

• These answers have their usual meanings

only under the closed-world assumption –
the knowledge-base contains all relevant
information about the given domain.

• Therefore if something is not provable
using the available facts and rules, then it
must be false.

A definition of not in Prolog

not can be defined in Prolog as:

not P ≡ (P, !, fail) ; true

A Problem with not

good_standard(jeanLuis).

expensive(jeanLuis).

good_standard(francesco).

reasonable(Restaurant) :- \+ expensive(Restaurant).

?- good_standard(X), reasonable(X).

X = francesco

?- reasonable(X), good_standard(X).

No – because there is an expensive restaurant, the

first goal fails!

Explanation of a Problem with not

reasonable(Restaurant) :-

\+ expensive(Restaurant).

• The effect of this rule differs depending on
whether or not Restaurant is bound.

• If Restaurant is bound, then that restaurant
is assumed to be reasonable if it is not
provable that it is expensive. This is what
happened in the first query.

Explanation of a Problem with not

reasonable(Restaurant) :- \+ expensive(Restaurant).

• If Restaurant is unbound, then the system tries to

find an expensive restaurant. If it doesn’t find one

then reasonable(Restaurant) succeeds, but if it

does find one (any one) then

reasonable(Restaurant) fails! Therefore this rule

cannot be used to find a reasonable restaurant.

This is what happened in the second query.

• Therefore, the ordering of goals in a query can

matter.

