
Mabel: Extending Human Interaction and Robot Rescue Designs

Thomas Kollar, Jonathan Schmid, Eric Meisner, Micha Elsner, Diana Calarese, Chikita Purav, Chris Brown
Jenine Turner, Dasun Peramunage, Gautam Altekar, and Victoria Sweetser

University of Rochester
Computer Science Department

PO Box 270226
Rochester, NY 14627

brown@cs.rochester.edu, tk010j@mail.rochester.edu

Abstract

Mabel (the Mobile Table) is a robotic system that can perform
waypoint navigation, speech generation, speech recognition,
natural language understanding, face finding, face following,
nametag reading, and localization. Mabel can interact intel-
ligently to give information about the conference to patrons.
Major additions to this year’s design are Monte Carlo Lo-
calization, Filter-Cascade techniques for vision applications,
and an improved robot search and rescue system using a 3D
OpenGL mapping system. Mabel was the winner of the 2003
robot host event and tied for third place in the robot search
and rescue event at IJCAI 2003 in Acapulco, Mexico.

Introduction
The American Association for Artificial Intelligence
(AAAI) holds robotic competitions each year at its annual
conference. At the 2003 conference, there were the robot
host, robot search and rescue, and robot challenge events.
The robot host event involved giving people information
about the conference schedule over a large area. The robot
search and rescue event involved a robot entering a mock
disaster scene, locating mock human victims, mapping the
victims’ location, and returning safely out of the scene with-
out causing damage to the arena. Finally, the robot challenge
event required a robot to be dropped off at the conference
center, navigate its way to the registration desk, register for
the conference, navigate to the auditorium, and give a talk
on itself.

Mabel, a robotic system developed mainly by undergrad-
uates at the University of Rochester, competed in the robot
host and robot search and rescue events. A picture of Mabel
as used in the robot host event can be seen in Figure 1. Ma-
bel serves information to conference patrons by using way-
point navigation, Monte Carlo Localization, speech gener-
ation, speech recognition, natural language understanding,
face finding, face following, and nametag reading. More-
over, with a change of body, Mabel can also find victims in
a mock disaster scene.

Mabel competed at AAAI 2002, and many of the same
philosophies carried over to IJCAI 2003. The overall design
philosophy for Mabel was to integrate human interaction

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Information Serving Configuration for Mabel

with robotic control. We achieved this goal by using an in-
teractive speech system, a pan/tilt/zoom camera that actively
follows faces, and another pan/tilt/zoom camera that reads
patrons’ nametags. In this paper, we present the changes
that have occurred since AAAI 2002 (Schmid, Kollar, et.
al., 24-31). Moreover, we will discuss the methods that we
used to integrate the hardware and software into a usable
system. We will again discuss what worked and what we
can improve upon in the future.

Hardware and Software
The devices available for our use included: an ActivMedia
Pioneer 2 AT mobile robot, an EVI-D30 Sony Pan Tilt Zoom
camera, a Canon VC-C4 Pan Tilt Zoom camera, a direc-
tional microphone, a ViewSonic AirPanel, and a 1.3 GHz
Pentium IV IBM laptop. A custom body was built on top
of the robot, as can be seen from Figure 1. An extra sonar
ring was added just below the keyboard to give extra range
readings.

The effectors this year included speaking, nametag read-
ing (and speaking), a pan/tilt/zoom camera, and the wheel

motors on the robot. The sensors of the robot include sonar
range detectors, wheel counters, two pan/tilt/zoom cameras,
and a microphone. The pan/tilt/zoom camera under the mon-
itor reads nametags while the camera above the monitor
searches for and follows faces. An upgraded facefinding al-
gorithm allows the robot to search for people while moving,
since it no longer uses motion.

The libraries and software packages that were used in-
clude: the Intel Image Processing Library, the Intel OpenCV
library, CMU’s Sphinx speech recognition system, OpenGL
3D modeling library, Microsoft text to speech SDK, Mi-
crosoft DirectPlay, Microsoft DirectX, and ActivMedia’s
ARIA robot control language (IBM Viavoice, web) (Intel
OpenCV, web) (ARIA, web). Much of this project was pro-
grammed in the Python programming language. Any code
that was done in C++ was interfaced into Python using the
Simple Wrapper and Interface Generator (SWIG, web).

Thus, two different systems were built using these tools.
One is an information serving robot and the other is a rescue
robot. We will discuss what these systems do at a high level
now.

Information Serving
A general overview of the architecture for the information
serving robot can be seen in Figure 2. One can see that there
are multiple layers in this system: the sensor level, the inter-
pretation level, and the decision level. The sensors include
sonars, cameras, keyboard, the dead reckoning position and
a microphone. The drivers for using these sensors, as well
as a library for writing behaviors, were provided with the
ActivMedia robot (ARIA, web).

Moreover, we produced an a priori map of the competition
areas using a tape measure. On this map we drew a graph
of places that the robot could go from any given place. This
map was not only used to visually direct people from one
place to another at the conference center, but it was also used
for localization purposes.

At the next level, the interpretation level, the programs
would interpret the sensors to provide high-level assess-
ments about the environment and intentions of the person
with whom the robot is interacting. For example, the vision
component would tell whether or not there was a face in the
scene (and its location) and it could also determine what the
name of the patron was (based on their nametag). The in-
tentions of the patron could also be determined from dialog.
For example, the robot could leave a conversation if they
said “goodbye”.

Thus, at the top level is the control aspect (which is ba-
sically a finite state machine). If the robot gets input that
a person is present in front of the robot then it starts dia-
log with them. In our system, a person can be present if
they speak, type input, or if their face is being tracked by
the camera and they are close enough to the robot. If a per-
son is not detected by the robot then it will wander around
to various points on our map of the competition area (and
would localize at the same time), all the time searching for
people. Should it find a person, then it will continue driving
toward them until it either finds them, or it will go back to
wandering points on the map.

Figure 2: Mabel System Structure consists of three layers:
sensory input and output, interpretation of sensor data and
decisions about what to do given that data.

Whenever the robot was wandering it would use Monte
Carlo Localization to determine its location on the map.
This technique uses filtered sonar readings and the internal
position of the robot to correct the error that occurs in robot
movement. This technique will be discussed in depth later
in this paper.

When a person was interacting with the robot, many
things would happen. Immediately, the robot would start
trying to find their nametag. Once it had attained that in-
formation it would use the information when speaking or
displaying other information on the screen. At the same
time, the robot would continue to track the patron’s face
with the higher camera. Anytime that someone spoke to it, it
would parse the words using Sphinx speech recognition and
it would then use a Bayes net to decide what their intentions
were when talking to it. Given this information, and a query
that was done on a database of events, a response about an
event, speaker, time that an event occurred, time of day, or
date would be spoken and printed to the screen. Moreover,
if any events matched the query, then they would appear on
the screen.

Robot Search And Rescue

Using the robot search and rescue system, one can teleop-
erate the ActivMedia Pioneer 2AT robot to locate and map
victims in a mock disaster scene and provide a map of vic-
tim locations to mock rescuers. The robot and its sensors
are the only things that the teleoperator can use to navigate
the scene. Points are awarded in the competition for suc-
cessfully locating victims, and creating useful maps of the
disaster area. Points are deducted for making contact with
victims and for interacting with the environment in a danger-
ous manner, i.e. causing secondary collapses of structures.

The hardware required for this included an ActivMedia
Pioneer 2AT mobile robot, a small body, a flashlight, a lap-
top, a webcam and an ethernet connection to the base station.
One can see the design in Figure 4. The ethernet cord pro-
duced a better connection than wireless ethernet could have

Figure 3: Sample interaction for the information server.

Figure 4: Robot Search And Rescue Configuration for Ma-
bel

provided. The video was cleaner, the connection was faster,
and there was always a reliable connection to the robot.

Our system consists of three core components: the con-
trol, mapping, and joystick applications. An overview of
this system can be seen in Figure 5. The control applica-
tion, which interfaces directly to the robots actuators and
sensors, is responsible for obstacle avoidance, linear and an-
gular velocity control and communication of sensor infor-
mation back to the user workstation. This program was run-
ning on the robot and was at the core of the system. The
teleoperator would never have to touch this program.

The mapping application is one of the teleoperator’s tools
for retrieving information from the disaster scene. It pro-
vides the user with a live interactive 3D rendering of the
robot environment by mapping the raw sonar readings and
the internal robot position< x, y, θ > to a 3D world. This
rendering was done using OpenGL. One can see an example
of the mapping interface in Figure 6. The teleoperator was
also able to load maps of the environment or save maps for
printing.

The teleoperator would use a joystick to control the
robot’s movement, where the buttons would plot victims’

Figure 5: Overview of the Robot Search And Rescue sys-
tem.

Figure 6: Real-time 3D mapping aids the teleoperator in
robot search and rescue. The red lines are sonar readings
and the yellow sphere is a mapped victim.

locations or change whether the robot should be in an au-
tonomous state or in a teleoperated state. Input from the
joystick was obtained from Microsoft’s DirectPlay library.
This input would then be transmitted over the network to the
control application, for use in controlling the movement of
the robot.

Moreover, we had many applications that needed to be run
simultaneously. The python programming language allowed
us to start and stop all of these with the click of a button,
thus streamlining the start procedure and reducing startup
time. Moreover, python helped to make the system robust to
network failures or other catastrophes where we might lose
a connection with the robot.

Monte Carlo Localization

Localization is the problem of determining the position of
the robot given its sensor readings (vision, sonar, and dead
reckoning). It is implemented here using a technique called
Monte Carlo Localization. In this project a standard Monte
Carlo Localization algorithm with distance filtering was im-
plemented as per (Thrun et. al., 99-141). As in that work, we
are only concerned with the readings from the robot’s wheel
encoders and range devices.

Background for other Techniques There are various
forms of localization that vary in the ambition of the prob-
lems that they attack. Local techniques aim to correct drift
from the inaccuracy of dead reckoning (the most well known
of these are Kalman Filters). Global techniques aim to lo-
cate the robot even when catastrophic things happen. For ex-
ample there are two problems usually solved by the global
techniques: the wake-up robot problem and the kidnapped
robot problem (Fox et. al, 391-427)(Thrun et. al., 99-141).
The wake-up robot problem occurs when the robot is given
no initial information about its position and is expected to
localize itself in some environment. The kidnapped robot
problem occurs when the robot is carried to another loca-
tion during its operation and is expected to recover from
this strange happenstance where the dead reckoning does
not match up with its range data. Thus, global techniques
must be more powerful than local ones.

Localization is often considered to be one of the most
fundamental problems of mobile robotics (Fox et. al, 391-
427)(Thrun et. al., 99-141), since without it a robot will
have an inaccurate internal representation of its current po-
sition. This can lead to some disastrous consequences, espe-
cially if there are stairs, ledges, or other obstacles that cannot
be readily seen by the range devices and which could have
been avoided if the perceived and actual positions coincided.
Thus, maybe the robot will run off a cliff, fall into a hole,
or run into something that it could have otherwise avoided.
This is not to say that an internal map is needed for local-
ization from the start. (Montemerlo et. al., 593-598) gives a
nice solution to the simultaneous mapping and localization
problem (often abbreviated SLAM).

There are a variety of ways to localize a robot. Some of
these include: Kalman Filtering localization, Markov local-
ization and Monte Carlo Localization. Moreover, we will go
in depth into the Monte Carlo localization, since this is the
technique used in this project.
Kalman Filter localization The Kalman filter cannot
solve any of the global localization problems. However, it
does a good job of tracking the location of a robot, given
an original known location. Kalman filtering presumes that
inaccuracies in position over time can be modeled by a uni-
modal Gaussian distribution (one that has only one peak).
Thus, the Kalman filter only has one hypothesis as to the
location of the robot. Thereby, this version of the Kalman
Filter is inadequate as a solution to the global localization
problem (Fox et. al, 391-427).

However, the Kalman Filter can be extended to have
multiple hypotheses. These represent beliefs using mixtures
of Gaussians, instead of a single Gaussian, thereby allowing
the robot to pursue multiple hypotheses (Thrun et. al., 99-
141). (Jensfelt and Kristensen, 2001) even uses topological
world models and landmarks, along with a multi-hypothesis
Kalman filter to localize the robot. The latter does not
take raw sensor input, but relies on higher level features to
localize the robot. It would nice if the localization could be
a black box to an end user. This would not be the case with
the method described by (Jensfelt and Kristensen, 2001).

Figure 7: The MCL(X,a,o) from (Thrun et. al., 99-141), a
is any odometry reading,wi are weights forx, ando are the
range sensor readings
X′ = ®
for i = 0 to m do

generate randomx from X according tow1, ..., wm

generate randomx′ ∼p(x′|a, x)

w′ = p(o|x′)
add(< x′, w′ > to X′

end for

normalize the importance factorsw′ in X′

returnX′

Markov Localization The mathematical framework for
Markov Localization is based around the Markov assump-
tion, which in this case will state that the robot’s location
is the only state in the environment that affects sensor read-
ings (Fox et. al, 391-427). Of course, in a dynamic envi-
ronment, this assumption is invalidated. The way that most
researchers get around it is by using filters on the sensor
readings as in (Fox et. al, 391-427).

In Markov Localization there is no single hypothesis as to
the current location of the robot, but a probability distribu-
tion over the state of all such hypotheses. A large state space
can be used to store and retrieve the belief of the robot be-
ing at a given location. The probability distribution is stored
in a very large three dimensional grid with axesx,y, and
theta. For example, if we have a100x50 meter space with
a 3 degree accuracy of theta and a 5cm accuracy of position
in x andy , then we have a storage requirement of6 ∗ 109

cells. In the naive implementation the robot would have to
update all of these cells each time it received new informa-
tion from the environment. For a large state space this takes
too much time. Thus, specialized techniques have to be in-
corporated into these algorithms so that all of the cells do
not have to be updated after every sensor measurement (Fox
et. al, 391-427). There are also other methods of storing
this state space. One of the methods uses oct-trees to resize
the cells dynamically, thereby reducing their number(Del-
laert et. al., 1999).

Either way, Markov localization provides a way to have
multiple beliefs about the location of the robot. Moreover,
it can solve the global localization problem. After apply-
ing some filters to the range sensor data, we can perform
Markov Localization in a dynamic environment. The filters
discussed in (Fox et. al, 391-427) include a distance filter,
where range sensor readings from unmodeled obstacles are
disregarded, and an entropy filter, where the robot only takes
sensor readings that make it more sure of its position.

The Monte Carlo Localization Algorithm
MCL is a relatively new method that provides a solution to
the global localization problem and was implemented for the
Mabel system. We will discuss the algorithm in depth here.
We implemented the algorithm in Figure 7 with distance fil-
tering as per (Thrun et. al., 99-141). The major benefits of
using MCL over the other approaches are the following: it
can globally localize the robot, it greatly reduces the mem-

ory requirements in comparison to Markov Localization, it
is more accurate than Markov Localization, and it is imple-
mented easily (Fox et. al., 1999).

For MCL, we divide the new sensor data into two groups:
a new odometry reading and a new range sensor reading.
S = si|i = 1, ...N is a set ofN weighted and random
samples over a space. For example, in our implementa-
tion of Monte Carlo Localization this distribution would ini-
tially be uniformly distributed. Each sample is a two-tuple
with a pose and a probability of that pose. Thus, a sample
is:<< x, y, θ >, p >. Moreover, we assume

∑
pi = 1.

Each time the robot gets a new odometry readinga,
MCL generatesN new random samples that approximate
the robot’s new position. Letsi be a given sample fromS
andl′ denote its position. According to (Fox et. al., 1999),
“Each sample is generated byrandomlydrawing a sample
from the previously computed sample set [S], with likeli-
hood determined by their p-values [probability].” Thus, the
value for the new sample’sl can be generated by sampling
according toP (l|l′, a).

In our implementation this probability (P (l|l′, a)), often
called the motion model, is computed by taking the ideal
movement of any sample, and sampling a new position with
a probability coming from a Gaussian distribution in therho
andtheta components of this movement. The standard devi-
ation and the mean of this distribution were computed from
experimentation.

Figure 8: Uniform distribution over the space.

Figure 9: Convergence of MCL on the location of the robot.

Moreover, for a new sensor readings and a normalization
constantα that enforces

∑
pi = 1, we re-weight the sample

setS. We let < l, p > be a sample and we recalculatep

such thatp ← αP (s|l). This can be done inO(N) time
according to (Fox et. al., 1999).

The probabilityP (s|l) is often called the sensor model.
In our implementation it is merely a Gaussian distribution
over the ideal sensor reading of the robot given that sam-
ple’s location. TheP (si|l) is measured by ray-tracing to get
the ideal reading of theith sensor and then sampling from
the Gaussian using the difference of the ideal and measured
readings. Moreover, we integrate these probabilities for each
sonar by multiplying them together. This integrated proba-
bility gives usP (s|l). The standard deviation and the mean
of this Gaussian distribution were derived from experimen-
tation.

There are some cases where we run into problems with
Monte Carlo Localization. First, since MCL uses finite sam-
ple sets, it can (and sometimes does) happen that none of
the samples are generated close to the robot position (Fox
et. al., 1999). This causes the robot to lose its location,
never to recover. There are some techniques to prevent this
from happening. However, many of these methods are not
necessarily mathematically sound (Thrun et. al., 99-141).
The solutions usually involve introducing artificially high
amounts of noise into the sensor measurements or by gen-
erating samples by the most recent sensor reading. We use
a simple technique of generating random samples around a
samplesi using a progressively larger Gaussian distribution,
should the hypothesized position move into an unmodeled
space. We would also take some uniformly distributed ran-
dom samples on each round of MCL.

There is also the problem of the dynamic environment.
Regarding our assumption that the environment is static,
(Thrun et. al., 99-141) says, “Clearly this conditional inde-
pendence can be violated in the presence of people (which
often block more than one sensor beam). In such cases it
might be advisable to subsample the sensor readings and use
a reduced set for localization (Fox et. al, 391-427).” Thus,
he suggests that we subsample the sonar readings using a
distance filter or an entropy filter to get the readings that
correspond to the world, and not to the dynamic obstacles in
the world. In this project, we used the distance filter to rule
out sensor readings that come from unmodeled obstacles, as
per (Fox et. al, 391-427).

Finally, there is the problem of the map that is used as a
model of the world. In our system, we used a simple map-
ping system that only allowed lines. Moreover, we had no
way of automatically generating these maps from real data.
In other words, we used a tape measure to make the maps by
hand. Now when one is using a simulator there are no prob-
lems and everything works as expected, since your model of
the world matches exactly with the world used by the sim-
ulator. However, when one is using MCL with real world
data, then the data will often not match the modeled one due
to sometimes quite large errors in generating a map by hand.
This is a problem that we didn’t have time to solve, and thus
our algorithm would have many problems when working in
the real world. In the simulator, however, the convergence
and tracking of MCL worked very well.

Speech
The communications system is responsible for interacting
with patrons by finding out which information they want,
retrieving it if possible and giving it to them. The various
inputs and outputs can be seen in Figure 10. It supports three
input modes; speech recognition, typed input and graphical
input via a touch screen.

Interaction is turned on whenever the robot recognizes
that someone is in front of it, when someone speaks to the
robot loudly enough to trigger speech recognition, or when
someone types or clicks in the GUI. The communication
system never initiates utterances of its own; it responds to
user’s input by directly answering their questions, then waits
for more input. Interaction turns off when the person stops
using input functions and walks away.

The robot handles typed input by filtering out keywords
relevant to the conference, then using a Bayesian tagger to
find the type of information the user is asking for. This al-
gorithm is essentially unaltered from (Schmid, Kollar, et.
al., 24-31). The graphical interface transforms clicks in the
window to tags and filtered output identical to the result of
Bayesian filtering. The system then processes both typed
text and clicks identically, as in (Deneke, 1997).

After tagging, the robot immediately handles some con-
versational pleasantries with randomly chosen rote re-
sponses. This allows it to deal with ’Hello’, ’Thank you’ and
other statements that are not requests for information. Real
questions are turned into SQL queries that retrieve informa-
tion from a database. The database was hand-constructed
from the conference schedule, and includes the same infor-
mation as the schedule.

The robot uses graphical display, text display and text-
to-speech as output modes. Graphical output is an unranked
table containing the information the user requested. The user
can click on any item in the table for more information.

Text display uses a natural language generation algorithm.
This algorithm first constructs a core sentence of the form:

< speaker >< verb >< event >
It guesses the verb by examining the event, and if there is

no speaker, it uses an expletive construction such as ’there
was’ to mimic the same basic form. Then it recursively adds
prepositional phrases until it has used up the remaining in-
formation. If there is too much information to fit on the
screen, it omits some and adds a phrase containing ’more’
or ’others’ to the end of the sentence. Text to speech speaks
the same output as is displayed graphically; it uses Microsoft
Speech SDK.

Because of the technical problems inherent when using
speech recognition in noisy settings with unfamiliar speak-
ers, speech recognition was handled separately. It uses CMU
Sphinx as in (Schmid, Kollar, et. al., 24-31). An example
conversation can be seen in Figure 11.

Vision
Mabel the mobile infoserver’s vision system focused on
finding people in the environment, and reading their
nametags (see Figures 12 and 13). Both techniques made
use of a general filter cascade architecture that searched for

Figure 10: The inputs and outputs for the speech system.

a pattern throughout the image using a constant size detec-
tion window. The filter cascade detects a single rectangular
bounding box around the largest target pattern in the source
image, which can then be tracked over multiple frames with
an Alpha-Beta filter to smooth over any noisy or incorrect
detections. For a detailed description of the Alpha-Beta fil-
ter see the next section.

A filter cascade is a search technique that focuses its
searching effort on small areas of the image that show initial
promise for matching the target pattern. These small areas
of the image are called sub-windows and the initial promise
of a sub-window is determined by the success of the first
classifier. If a sub-window of the image passes the initial
classifier, then additional classifiers are applied to it. We ap-
ply a cascade of these filter-classifiers to each sub window,
testing for the presence of several simple rectangular fea-
tures. See (Viola and Jones, 2001) for a detailed description
of this process. While most filter cascade architectures to
date have utilized only features within grayscale images, we
apply color models to create additional feature channels as
shown in the two central images of Figure 14.

While searching through a feature channel image, the sub-
window often detects a spatial pattern in several adjacent
locations. Also, the target pattern might appear in more
than one location in the image. Jones and Viola perform
a disjoint-sets algorithm to combine locally adjacent detec-
tions and select the largest target region. Our filter cascade
algorithm instead fills in each detected rectangle with 1s in
an initially empty binary image. This binary image shares
the same dimensions as the signal images and the starting
color image. A contour finding algorithm is applied to the

Hello, Mabel.

MABEL: Hello.

Where is Henry?

MABEL: There are two events that will occur given by Henry.

Please look below for more information.

(Chart display shows : Cholula 7, Cholula 3)

<click on Cholula 7 in chart>

MABEL: (Chart display shows data on the event in Cholula 7;

map display shows route from robot location to

Cholula 7)

What is the keynote address?

MABEL: Keynote address–Computer Vision–AI or Non-AI Problem is

held in the Juan Ruiz Alarcon Theater of the Acapulco convention

center at 9 AM on August 12.

(Chart display shows details of the event.)

Will you marry me?

MABEL: Can you try to be a bit clearer?

Bye.

MABEL: Have a nice day, bye.

Figure 11: Sample conversation.

binary image. The largest contour from this detection image
becomes the filter cascade target. Adjacent detections from
the source image overlap when filling the binary image, and
thus form only a single contour. See the bottom of Figure
14. Spurious detections from other similar objects tend to
create smaller contours and are thus often ignored.

The person-finding algorithm used both a skin colored
channel and an intensity channel (see the right of Figure 14)
for locating faces in the detection window. To generate the
binary skin channel (where 1s represent skin pixels), we test
for the presence of each pixel from the image in a binary
Hue/Saturation model (see the left of Figure 14).

We first generate this model from images of human skin
tones captured in the environment by using a series of pic-
tures that were taken of various individuals. The skin regions
of each individual were then isolated. To make the model
robust to all individuals, a sample of different skin pigmen-
tations was carefully selected. From the training set of skin
images, the value of the color in each pixel was calculated
using the HSV scale and plotted on a Hue/Saturation graph.
We save this as a bitmap so that we can fill in missing skin
tone regions using a standard image-editing program. This
improves the robustness of the skin detection.

The first level of the filter cascade for faces drags a sub-
window throughout the binary skin-tone map. Sub-windows
are eliminated as possible faces if the sum of their pixels is
not over 25% of the sub-window, a result that would sug-
gest that there are insufficient skin pixels on the object to
deem it a face. The second and third levels both operate on
a grayscale intensity image. In the second level of the filter
cascade, we look for the eyes–a trait that distinguishes faces

Figure 12: This demonstrates the finding of a face.

Figure 13: This demonstrates the finding of a nametag.

Figure 14: The process of finding a face.

Figure 15: This demonstrates the process of finding the
nametag.

from other objects in most cases. We look for the eyes by
(1) summing the number of skin-tone pixels within a rect-
angle covering the forehead, (2) summing the number of
skin-tone pixels within a rectangle covering the eyes, and
(3) subtracting the result of the second step from the result
of the first step. If the result of the subtraction is a large pos-
itive number (thereby suggesting the the rectangle convering
the forehead and the eyes describe two dissimilar entities),
then we gain confidence that the sub-window spans a face. If
the sum tends to be near zero , then we lose confidence that
the sub-window spans a face and we terminate the cascade.
Note that the result from step (3) must constitute at least 8%
of the sub-window to allow the cascade to continue. Intu-
itively, this requirement captures the idea that the forehead
should consist of many skin tone pixels and the eye region
should consist of no skin-tone pixels (thereby producing a
high number in the subtraction of step 3). In the final level
in the cascade, we compare a rectangle covering the area of
the lips to the chin below in a similar manner as above. In
this case, the chin region is subtracted from the darker lips
region above it. We have empirically found that this tech-
nique works well.

The nametag reading process employs two different zoom
levels using a Canon PTZ camera. The central control
system activates the tag reader during the person approach
phase. The tag is found at this outer zoom level using the fil-
ter cascade, and the camera is centered on its position. When
the alpha-beta filtered tag location is centered in the image,
the camera zooms in. When the zoom is completed, the im-
age resolution is increased from the usual 180x120 to a full
760 x 480. Ten frames of the nametag are stored at high
resolution and read by the Abby Fine Reader engine. The
most frequent occurrence of the first two string tokens are
assumed to be the person’s first and last names.

The nametag filter cascade consists of four levels with
each level paying close attention for the presence of a par-
ticular feature. The cascade’s first level eliminates all filter
sub-windows that lack a high percentage of white pixels. In
most instances, the first level eliminates close to half the sub-

Figure 16: This shows how the nametag picture would have
been rotated before processing.

windows in the image, thereby narrowing down our options
significantly.

The second level checks for the presence of a colored bar
at the top of the nametag (see the bottom right of Figure 15).
We distinguish a bar from other objects through the use of
a hue/saturation color model for the bar, which was created
by sampling several images containing the bars. Once the
second level is complete, the majority of the sub-windows
are centered vertically on the tag, but remain uncentered in
the horizontal directions (i.e., to the left and to the right).

The third and fourth levels attempt to horizontally center
sub-windows on the tag. The third level begins the process
by (1) summing the pixels in the sub-window containing the
tag text, (2) summing the pixels in the sub-window to the left
of the tag text, and (3) subtracting the result of step 2 from
the result of step 1. If the result of the subtraction in step 3 is
a high number, then we gain confidence that the sub-window
is adequately centered from the left of the tag. If the result
of the subtraction is a low number, then we lose confidence
that the sub-window is adequately centered from the left. In
the fourth level of the operation, we perform the same series
of steps as done in the third level. This time, however, we
consider the sub-window to the right. If the cascade passes
the fourth level, then we can be reasonably confident that the
sub-window is centered on the tag.

In order to ensure quality text reading, we implemented
rotation invariance on the high resolution frames of the
nametag. This is done by calculating the angle formed be-
tween the blue rectangular bar and the bottom of the image.
The image is rotated to cancel the calculated angle (see Fig-
ure 16).

Alpha-Beta Filter
Let X be the object’s position along the x screen dimension
and Y be the object’s position along the y screen dimen-
sion. Then letX̂ and Ŷ denote the object’s velocity along
the x and y screen dimensions, respectively. Then we can
represent the entire state of an object being tracked with the
vectorx = [X, X̂, Y, Ŷ].

Theα− β filter for state prediction has the form

x̂(k + 1|k + 1) = x̂(k + 1|k) +
(

α
β/∆t

)
D (1)

wherex̂(k + 1|k + 1) is an updated estimate ofx given
z(k+1), the measurement of the object’s tracking state at
time k+1. We assume thatz(k + 1) consists of the two po-
sition components(X, Y) but not the velocity components

(X̂, Ŷ). The state estimate (i.e., prediction of an object’s
position and velocity in the next frame) is the sum of the
statex̂(k + 1|k) predicted from the last estimate and the
weighted difference between the actual measurement and
the predicted measurement (Brown, 1995). The difference
between the actual measurement and the predicted measure-
ment is know as the innovation and is denoted by

D = z(k + 1)− ẑ(k + 1|k) (2)

The weight is a vector consisting ofα, β and∆t compo-
nents. The values forα andβ can be derived from

α = −λ2 + 8λ− (λ + 4)
√

λ2 + 8λ

8
(3)

and

β =
λ2 + 4λ− λ

√
λ2 + 8λ

4
(4)

whereλ is the object’s maneuvering index. For our track-
ing uses, we experimentally determined the optimal value of
λ to be 0.2. Finally, we let∆t = 1 since the time difference
between observations is 1 image frame.

Discussion
During the fall of 2002 and the spring and summer of 2003,
there about six people working on the project full time.
Thomas Kollar focused on localization, navigation, speech
recognition, TTS, robot search and rescue, and global inte-
gration. Eric Meisner and Chikita Purav also worked on the
MCL algorithm. Jon Schmid, Dasun Peramunage, and Gau-
tam Altekar focused on the vision components of the robot.
Micha Elsner, Diana Calarese, and Jenine Turner worked on
the natural language understanding and GUI. Eric Meisner
worked on mapping and robot search and rescue designs.

The whole system was developed in a Microsoft Windows
lab and with a common CVS tree. CVS made integration
fairly painless. Since programs in Python have fast devel-
opment time, it proved to be a very useful tool this year.
Python is a high level programming language and can inter-
face to C++ or C code by using a program called SWIG. Any
code that needed to be fast and less processor intensive, we
wrote in C++. Then, using SWIG, we would use those func-
tions in our python program. Thus, the vision code, robot
control code, and the interface to the speech recognition and
text to speech engines were all written in C++. The GUI and
the decision making were implemented in Python and inter-
faced to all the other parts through SWIG. In fact, our design
was also simplified to not even need a network connection
to communicate.

Acknowledgments
Thanks to Abby Finereader for providing their optical char-
acter recognition at a greatly discounted price. This research
was funded by NSF Research Infrastructure and associated
Research Experiences for Undergraduates grant ”Spatial In-
telligence”, number EIA-0080124.

References
ActivMedia ARIA robot control language,
http://robots.activmedia.com/aria/
Brown, C.B. (ed.) (1995). Tutorial on Filtering, Restora-
tion, and State Estimation. Technical Report 534, Univer-
sity of Rochester, Department of Computer Science.
CMU Sphinx, http://fife.speech.cs.cmu.edu/sphinx/
Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebas-
tian Thrun, “Monte Carlo Localization for Mobile Robots,”
IEEE International Conference on Robotics and Automa-
tion, 1999.
Matthias Denecke. An Information-based Approach for
Guiding Multi-Modal Human-Computer Interaction. Pro-
ceedings of IJCAI-97, 1997.
Dieter Fox, Wolfram Burgard, Frank Dellaert, Sebastian
Thrun, “Monte Carlo Localization: Efficient Position Esti-
mation for Mobile Robots,AAAI, 1999.
Dieter Fox, Wolfram Burgard, Sebastian Thrun, “Markov
Localization for Mobile Robots in Dynamic Environ-
ments,”Journal of Artificial Intelligence Research,Vol. 11,
pp. 391-427, 1999.
IBM ViaVoice SDK for Windows, http://www-
3.ibm.com/software/speech/dev/
Intel Open Source Computer Vision Library,
http://www.intel.com/research/mrl/research/opencv/
Patric Jensfelt, Steen Kristensen, “Active Global Localiza-
tion for a Mobile Robot Using Multiple Hypothesis Track-
ing,” IEEE Transactions on Robotics and Automation, Vol.
17, No. 5, 2001.
Kortenkamp, D., Bonasso, R., and Murphy, R. eds.
1998.AI and Mobile Robots. Menlo Park, Calif.: AAAI
press/MIT press.
Maxwell, B., Meeden, L., Addo, N., Brown, L., Dickson,
P., Ng, J., Olshfski, S., Silk, E., and Wales, J. 1999. Al-
fred: The Robot Waiter Who Remembers You. Proceedings
AAAI Workshop on Robotics. Menlo Park, Calif.: AAAI
Press.
Michael Montemerlo, Sebastian Thrun, Daphne Koller,
Ben Wegbreit, “FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping Problem,”AAAI
2002 Conference Proceedings,pp. 593-598, 2002.
Stuart Russel and Peter Norvig,
Artificial Intelligence: A Modern Approach, Prentice
Hall, 1995.
Schmid, J., Kollar, T., Meisner, E., Sweetser, V., Feil-
Seifer, D., Brown, C., Atwood, B., Turner, J., Calrese,
D., Cragg, S., Chaudhary, H., and Isman, M. 2002. Ma-
bel: Building a Robot Designed for Human Interaction.
Proceedings of the AAAI Workshop on Robotics: AAAI
Technical Report WS-02-18. p. 24-31. AAAI Press.
Simple Wrapper and Interface Generator,
http://www.swig.org
Sebastian Thrun, “AAAI Tutorial on
Probabilistic Robotics,” Web: www-
2.cs.cmu.edu/˜thurn/tutorial/index.htm,2002.

Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Del-
laert, “Robust Monte Carlo localization for mobile robots,”
Artificial Intelligence,Vol. 128, pp. 99-141, 2001.
Ryuichi UEDA, Takeshi FUKASE, Yuichi KOBAYASHI,
Tamio ARAI, Hideo YUASA, Jun OTA, “Uniform Monte
Carlo Localization – Fast and Robust Self-localization
Method for Mobile Robots,”Proceedings of the 2002 IEEE
International Conference on Robotics and Automation, pp.
1353-1358, 2002.
Viola, P. and Jones, M. Robust real-time object detection.
Technical Report 2001/01, Compaq CRL, February 2001.

