
jur.rochester.edu 21

Mabel
Extending Human Interaction
and Robot Rescue Designs
Extending Human Interaction
and Robot Rescue Designs
Extending Human Interaction

Thomas Kollar, Jonathan Schmid, Eric Meisner, Micha
Elsner, Diana Calarese, Chikita Purav, Jenine Turner,
Thomas Kollar, Jonathan Schmid, Eric Meisner, Micha
Elsner, Diana Calarese, Chikita Purav, Jenine Turner,
Thomas Kollar, Jonathan Schmid, Eric Meisner, Micha

Dasun Peramunage, Gautam Altekar, and Victoria
Elsner, Diana Calarese, Chikita Purav, Jenine Turner,
Dasun Peramunage, Gautam Altekar, and Victoria
Elsner, Diana Calarese, Chikita Purav, Jenine Turner,

Sweetser
Dasun Peramunage, Gautam Altekar, and Victoria
Sweetser
Dasun Peramunage, Gautam Altekar, and Victoria

Advised by Dr. Chris Brown

Department of Computer Science

The sensors include sonar, cameras, keyboard, the dead
reckoning position and a microphone. The drivers for using
these sensors, as well as a library for writing behaviors, were
provided with the ActivMedia robot.2

In advance, we produced a map of the competition
areas using a tape measure. On this map we drew a graph
of places that the robot could go from any given place. This
map was not only used to visually direct people from one
place to another at the conference center, but it was also
used for localization purposes.

At the next level, the interpretation level, the programs
interpret the sensors to provide high-level assessments
about the environment and intentions of the person with
whom the robot is interacting. For example, the vision
component tells whether or not there is a face in the scene
(and its location) and it can also determine what the name
of the patron is (based on their nametag). The intentions
of the patron can also be determined from dialog. For
example, the robot can terminate a conversation if a patron
says “goodbye”.

At the top level is the control aspect (which is basically
a fi nite state machine). If the robot detects someone in
front of it then it starts dialog with him. Our system can
detect a person’s presence if he speaks, types, or if his face
is being tracked by the camera. If a person is not detected
by the robot then it will wander around to various points
on our map of the competition area searching for people,
all the while the robot is keeping track of its location (using
Monte Carlo Localization; discussed later). Should it fi nd a
person, then it will continue driving toward them until it
successfully reaches them, or, if unsuccessful, it will go back
to wandering points on the map.

When a person interacts with the robot, many things
can happen. Immediately, the robot starts trying to fi nd
his or her nametag. Once it has attained that information
it uses the information when speaking or displaying other
information on the screen. At the same time, the robot
would continue to track the patron’s face with the higher
camera. Anytime the patron speaks to it, Mabel parses the
words using Sphinx speech recognition and it then uses a

rtifi cial Intelligence (AI) has at its core the creation
of intelligent systems. The holy grail of this entire

subject is to create a general form of intelligence that can
reason, learn and interact intelligently in its environment
much as a human. However, the solution to this problem
has turned out to be more diffi cult than anyone could have
imagined. In this project, therefore, we have tried to move
toward a better understanding of what it takes to create a
truly intelligent system.

Mabel (the Mobile Table) is a robotic system developed
primarily by undergraduates at the University of Rochester
that can perform waypoint navigation, speech generation,
speech recognition, natural language understanding,
face fi nding, face following, nametag reading, and robot
localization. Mabel uses these components of intelligence
to interact with its environment in two distinct ways. It
can act as a robot host at a conference by giving people
information about the conference schedule. Mabel can also
act as a search and rescue robot by entering a mock disaster
scene, locating mock human victims, mapping the victims’
location, and returning safely out of the scene. Mabel was
the winner of the robot host event and tied for third place in
the robot search and rescue event at the 2003 International
Joint Conference on Artifi cial Intelligence (IJCAI) in
Acapulco, Mexico.

The overall design philosophy for Mabel was to integrate
human interaction with robotic control. We achieved this
goal by using an interactive speech system, a pan/tilt/zoom
camera that actively follows faces, and another pan/tilt/
zoom camera that reads patrons’ nametags. In this paper,
we present the changes that have occurred since the 2002
American Association for Artifi cial Intelligence (AAAI)
conference and the methods that we used to integrate the
hardware and software into a usable system.1

Robot Host
A general overview of the architecture for the

information-serving robot can be seen in Figure 1. One
can see that there are multiple layers in this system: the
sensor level, the interpretation level, and the decision level.

A

Volume 2 • Issue 2 • Fall 200422

Bayes net to decide what the person’s
intentions were when talking to it.
Given this information, the robot
can perform a query on a database
of events and produce a response
about an event, speaker, time that an
event occurred, time of day, or date.
Moreover, if any events matched the
query, then they would appear on the
screen.

Robot Search and Rescue
Using the robot search and rescue

system, one can teleoperate the
ActivMedia Pioneer 2AT robot to
locate and map victims in a mock
disaster scene and provide a map of
victim locations to mock rescuers.
The robot and its sensors are the only
things that the teleoperator can use to
navigate the scene. Points are awarded
in the competition for successfully
locating victims and creating useful
maps of the disaster area. Points are
deducted for making contact with
victims and for interacting with the
environment in a dangerous manner,
i.e. causing secondary collapses of
structures.

Our system consists of three core

components: the control, mapping,
and joystick applications. An overview
of this system can be seen in Figure
3. The control application, which
interfaces directly to the robots
actuators and sensors, is responsible for
obstacle avoidance, linear and angular
velocity control and communication
of sensor information back to the
user workstation. This program runs
completely autonomously on the
robot and there is no need for the
intervention of the teleoperator.

The mapping application is one of
the teleoperator’s tools for retrieving
information from the disaster scene.
It provides the user with a live
interactive 3D rendering of the robot
environment by mapping the raw
sonar readings and the internal robot
position <x, y, θ > to a 3D world. One
can see an example of the mapping
interface, as rendered by OpenGL, in
Figure 2. The teleoperator is also able
to load maps of the environment or
save maps for printing.

Monte Carlo Localization
Localization is the problem of

determining the spatial position of a

robot from its sensor readings (vision,
sonar, and dead reckoning). It is
implemented here using a technique
called Monte Carlo Localization
(MCL).3 As in other works, we are
only concerned with the readings from
the robot’s wheel encoders and range
devices.

There are various forms of
localization that vary in the ambition
of the problems that they attack. Local
techniques aim to correct drift from
the inaccuracy of dead reckoning (the
most well-known of these are Kalman
Filters). Global techniques aim to
locate the robot even when catastrophic
things happen. For example there
are two problems usually solved by
the global techniques: the wake-up
robot problem and the kidnapped
robot problem.3,4 The wake-up robot
problem occurs when the robot is
given no initial information about its
position and is expected to localize
itself in some environment. The
kidnapped robot problem occurs
when the robot is carried to another
location during its operation and is
expected to recover from this strange
occurrence where the dead reckoning

PTZ
Camera

Robot Base

Sonar Array Wheel
Counters

Datagram

Remote Shell

Image

Joystick
Control

3D State Visualization

Control

Robot Localization Speech Vision

Dead
ReckoningSonar Mic Text/ Camera 1 Camera 2Typed

Sensor Level

Interpretation

Decision Level

Above, Figure 1: The Mabel system structure
consists of three layers: sensory input and output,
interpretation of sensor data, and decision-making
about what to do given the analysis of input data.
Above Right, Figure 2: Real-time 3D mapping aids
the teleoperator in robot search and rescue. The red
lines are sonar readings and the yellow sphere is a
mapped victim. Right, Figure 3: Overview of the
robot search and rescue system.

jur.rochester.edu 23

probability coming from a Gaussian
distribution in the rho and theta
components of this movement. The
standard deviation and the mean of
this distribution were computed from
experimentation.

Moreover, for a new sensor reading
s and a normalization constant α
that enforces ΣpΣpΣ

i
= 1, we re-weight

the sample set S. We let < l, p > be a
sample and we recalculate p such that
p ← αP(s|l). This can be done in s|l). This can be done in s|l O(N) N) N
time.4

The probability P(s|l) is called the s|l) is called the s|l
sensor model. In our implementation
it is merely a Gaussian distribution
over the ideal sensor reading of the
robot given that sample’s location.
The P(s

i
|l) is measured by ray-tracing |l) is measured by ray-tracing |l

to get the ideal reading of the ith sensor
and then sampling from the Gaussian
using the difference of the ideal and
measured readings. Moreover, we
integrate these probabilities for each
sonar by multiplying them together.
This integrated probability gives us
P(s|l). The standard deviation and the s|l). The standard deviation and the s|l
mean of this Gaussian distribution
were derived from experimentation.

There are some cases where we
run into problems with Monte
Carlo Localization. First, since MCL
uses fi nite sample sets, it can (and
sometimes does) happen that none of
the samples are generated close to the
robot position.4 This causes the robot
to lose its location, never to recover.
There are some techniques to prevent
this from happening, but many of
these methods are not necessarily
mathematically sound.3 The solutions
usually involve introducing artifi cially
high amounts of noise into the sensor
measurements or by generating
samples near the most recent sensor
reading. We use a simple technique
of generating random samples around
a sample s

i
using a progressively larger

Gaussian distribution, should the
hypothesized position move into an
unmodeled space. We also take some
uniformly distributed random samples
on each round of MCL.

There is also the problem of the
dynamic environment. Regarding
our assumption that the environment
is static, “clearly this conditional
independence can be violated in the
presence of people (which often block
more than one sensor beam). In such

cases it might be advisable to sub-
sample the sensor readings and use a
reduced set for localization.”3 Thus,
we sub-sampled the sonar readings
using a distance fi lter to get the
readings that correspond to the world
and not the dynamic obstacles in the
world. Thereby the sensor readings
that come from unmodeled obstacles
were ruled out.4

Finally, there is the problem of
the map that is used as a model of
the world. In our system, we used
a simple mapping system that only
allows lines. Moreover, we had no
way of automatically generating these
maps from real data. In other words,
we used a tape measure to make the
maps by hand. Now when one is using
a simulator there are no problems and
everything works as expected, since
your model of the world matches
exactly with the world used by the
simulator. However, when one is
using MCL with real world data,
then the data will often not match
the modeled one due to sometimes
quite large errors in generating a map
by hand. This is a problem that we
didn’t have time to solve, and thus our
algorithm would have many problems
when working in the real world. In the
simulator, however, the convergence
and tracking of MCL worked very
well.

Vision
Mabel’s vision system is focused

on fi nding people in the environment,
and reading their nametags. Both
techniques make use of a general fi lter
cascade architecture that searched for
a pattern throughout the image using
a constant size detection window.
The fi lter cascade detects a single
rectangular bounding box around the
largest target pattern in the source
image, which can then be tracked over
multiple frames with an Alpha-Beta
fi lter to smooth over any noisy or
incorrect detections.

A fi lter cascade is a search technique
that focuses its searching effort on
small areas of the image that show
initial promise for matching the target
pattern. These small areas of the image
are called sub-windows and the initial
promise of a sub-window is determined
by the success of the fi rst classifi er.
If a sub-window of the image passes

does not match up with its range data.
Thus, global techniques must be more
powerful than local ones.

Localization is often considered
to be one of the most fundamental
problems of mobile robotics, since
without it a robot will have an
inaccurate internal representation of
its current position. 3,4 This can lead
to some disastrous consequences,
especially if there are stairs, ledges,
or other obstacles that cannot be
readily seen by the range devices
and which could have been avoided
if the perceived and actual positions
coincided.

MCL is a relatively new method
that provides a solution to the
global localization problem. We
implemented the MCL algorithm with
distance fi ltering as per other studies.3

The major benefi ts of using MCL over
the other approaches are that it can
globally localize the robot, it greatly
reduces the memory requirements in
comparison to Markov Localization,
it is more accurate than Markov
Localization, and it is implemented
easily.4

For MCL, we divide the new sensor
data into two groups: a new odometry
reading and a new range sensor
reading. S = {s

i
} such that i = 1,…N

is a set of N weighted and random
samples over a space. For example, in
our implementation of Monte Carlo
Localization this distribution would
initially be uniformly distributed.
Each sample is a two-tuple with a pose
and a probability of that pose. Thus, a
sample is: << x, y, θ >, p >. Moreover,
we assume ΣpΣpΣ

i
= 1.

Each time the robot obtains a
new odometry reading a, MCL
generates N new random samples
that approximate the robot’s new
position. Let s

i
be a given sample

from S and l’ denote its position, so
that “each sample is generated by
randomly drawing a sample from the
previously computed sample set [S], S], S
with likelihood determined by their p-
values [probability].”4 Thus, the value
for the new sample’s l can be generated
by sampling according to P(l|l’, a).

In our implementation this
probability (P(l|l’, a)), often called the
motion model, is computed by taking
the ideal movement of any sample,
and sampling a new position with a

Volume 2 • Issue 2 • Fall 200424

the initial classifi er, then additional
classifi ers are applied to it.5 We apply
a cascade of these fi lter-classifi ers to
each sub-window, testing for the
presence of several simple rectangular
features. While most fi lter cascade
architectures to date have utilized only
features within grayscale images, we
apply color models to create additional
feature channels as shown in the two
central images of Figure 4.

While searching through a feature
channel image, the sub-window often
detects a spatial pattern in several
adjacent locations. Also, the target
pattern might appear in more than
one location in the image. Jones and
Viola perform a disjoint-sets algorithm
to combine locally adjacent detections
and select the largest target region.
Our fi lter cascade algorithm instead
fi lls in each detected rectangle with
1s in an initially empty binary image.
This binary image shares the same
dimensions as the signal images and
the starting color image. A contour
fi nding algorithm is applied to the
binary image. The largest contour
from this detection image becomes
the fi lter cascade target. Adjacent
detections from the source image
overlap when fi lling the binary image,
and thus form only a single contour.
See the bottom of Figure 4. Spurious
detections from other similar objects
tend to create smaller contours and are
thus often ignored.

The person-fi nding algorithm
used both a skin colored channel
and an intensity channel (see the
right of Figure 4) for locating faces
in the detection window. To generate
the binary skin channel (where 1s
represent skin pixels), we test for the
presence of each pixel from the image
in a binary Hue/Saturation model (see
the left of Figure 4).

We fi rst generate this model from
images of human skin tones captured
in the environment by using a series
of pictures that were taken of various
individuals. The skin regions of each
individual were then isolated. To make
the model robust to all individuals, a
sample of different skin pigmentations
was carefully selected. From the
training set of skin images, the value of
the color in each pixel was calculated
using the HSV scale and plotted on a
Hue/Saturation graph. We save this as

a bitmap so that we can fi ll in missing
skin tone regions using a standard
image-editing program. This improves
the robustness of the skin detection.

The fi rst level of the fi lter cascade
for faces drags a sub-window
throughout the binary skin-tone
map. Sub-windows are eliminated as
possible faces if the sum of their pixels
is not over 25% of the sub-window, a
result that would suggest that there are
insuffi cient skin pixels on the object to
deem it a face. The second and third
levels both operate on a grayscale
intensity image. In the second level of
the fi lter cascade, we look for the eyes–a
trait that distinguishes faces from other
objects in most cases. We look for the
eyes by (1) summing the number of
skin-tone pixels within a rectangle
covering the forehead, (2) summing
the number of skin-tone pixels within
a rectangle covering the eyes, and (3)
subtracting the result of the second
step from the result of the fi rst step. If
the result of the subtraction is a large
positive number (thereby suggesting
the rectangle covering the forehead
and the eyes describe two dissimilar
entities), then we gain confi dence that
the sub-window spans a face. If the
sum tends to be near zero, then we lose
confi dence that the sub-window spans
a face and we terminate the cascade.
The result from step 3 must constitute
at least 8% of the sub-window to allow
the cascade to continue. Intuitively,
this requirement captures the idea that
the forehead should consist of many
skin tone pixels and the eye region
should consist of no skin-tone pixels
(thereby producing a high number
in the subtraction of step 3). In the
fi nal level in the cascade, we compare
a rectangle covering the area of the lips
to the chin below in a similar manner
as above. In this case, the chin region is
subtracted from the darker lips region
above it. We have empirically found
that this technique works well.

The nametag reading process
employs two different zoom levels
using a Canon PTZ camera. The
central control system activates the
tag reader during the person approach
phase. The tag is found at this outer
zoom level using the fi lter cascade,
and the camera is centered on its
position. When the alpha-beta fi ltered
tag location is centered in the image,

the camera zooms in. When the zoom
is completed, the image resolution is
increased from the usual 180 x120 to
a full 760 x 480. Ten frames of the
nametag are stored at high resolution
and read by the Abbyy Fine Reader
engine. The most frequent occurrence
of the fi rst two string tokens is assumed
to be the person’s fi rst and last names.

The nametag fi lter cascade consists
of four levels with each level paying
close attention for the presence of
a particular feature. The cascade’s
fi rst level eliminates all fi lter sub-
windows that lack a high percentage
of white pixels. In most instances,
the fi rst level eliminates close to
half the sub-windows in the image,
thereby narrowing down our options
signifi cantly.

The second level checks for the
presence of a colored bar at the top
of the nametag (see the bottom right
of Figure 5). We distinguish a bar
from other objects through the use of
a hue/saturation color model for the
bar, which was created by sampling
several images containing the bars.
Once the second level is complete,
the majority of the sub-windows are
centered vertically on the tag, but
remain uncentered horizontally.

The third and fourth levels attempt
to horizontally center sub-windows
on the tag. The third level begins the
process by (1) summing the pixels
in the sub-window containing the
tag text, (2) summing the pixels in
the sub-window to the left of the tag
text, and (3) subtracting the result of
step 2 from the result of step 1. If the
result of the subtraction in step 3 is a
high number, then we gain confi dence
that the sub-window is adequately
centered from the left of the tag. If
the result of the subtraction is a low
number, then we lose confi dence that
the sub-window is adequately centered
from the left. In the fourth level of the
operation, we perform the same series
of steps as done in the third level. This
time, however, we consider the sub-
window to the right. If the cascade
passes the fourth level, then we can
be reasonably confi dent that the sub-
window is centered on the tag.

In order to ensure quality text
reading, we implemented rotation
invariance on the high resolution
frames of the nametag. This is done

jur.rochester.edu 25

Throughout the years the personnel has
been diverse, having an unusually high
proportion of women for computer
science fi elds. Another unique aspect
of this project has been to have a
student-run class created with the help
of Professor Chris Brown’s continuous
and overwhelming support. The result
has been an incredible experience
for undergraduates: an opportunity
to work in a team environment, to
work on unique research, interact
with professors, and to gain personal
recognition while an undergraduate.

Acknowledgments
Thanks to Abbyy Finereader for

providing their optical character
recognition at a greatly discounted
price. This research was funded by
NSF Research Infrastructure and
associated Research Experiences
for Undergraduates grant “Spatial
Intelligence,” number EIA-0080124.

During the fall of 2002 and the spring and summer
of 2003, there were about six people working on
the project full time. Thomas Kollar focused on
localization, navigation, speech recognition, TTS,
robot search and rescue, and global integration. Eric
Meisner and Chikita Purav also worked on the MCL
algorithm. Jon Schmid, Dasun Peramunage, and
Gautam Altekar focused on the vision components of
the robot. Micha Elsner, Diana Calarese, and Jenine
Turner worked on the natural language understanding
and GUI. Eric Meisner worked on mapping and robot
search and rescue designs.

by calculating the angle formed
between the blue rectangular bar and
the bottom of the image. The image is
rotated to cancel the calculated angle.

Speech
Interaction is initiated whenever

the robot recognizes that someone is
in front of it, when someone speaks
to the robot loudly enough to trigger
speech recognition, or when someone
types or clicks in the GUI. The
communication system never initiates
utterances of its own; it responds to
user’s input by directly answering
their questions, then waits for more
input. Interaction is terminated when
the person stops using input functions
and walks away.

The robot handles typed input by
fi ltering out keywords relevant to the
conference, then using a Bayesian
tagger to fi nd the type of information
the user is asking for.1 The graphical
interface transforms clicks in the
window to tags and fi ltered output
identical to the result of Bayesian
fi ltering. The system then processes
both typed text and clicks identically.6

After tagging, the robot
immediately handles some
conversational pleasantries with
randomly chosen rote responses. This
allows it to deal with ‘Hello’, ‘Thank
you’ and other statements that are
not requests for information. Real
questions are turned into SQL queries
that retrieve information from a
database, which was hand-constructed
from the conference schedule.

The robot uses graphical display,
text display and text-to-speech as
output modes. Graphical output is
an unranked table containing the
information the user requested.
The user can click on any item in
the table for more information.
Text display uses a natural language
generation algorithm. This algorithm
fi rst constructs a core sentence of the
form:

< speaker >< verb >< event >
It guesses the verb by examining

the event, and if there is no speaker,
it uses an expletive construction such
as ’there was’ to mimic the same
basic form, then it recursively adds
prepositional phrases until it has used
up the remaining information. If there
is too much information to fi t on
the screen, it omits some and adds a
phrase containing ’more’ or ’others’ to
the end of the sentence. Text to speech
speaks the same output as is displayed
graphically; it uses Microsoft Speech
SDK.

Because of the technical
problems inherent when using
speech recognition in noisy settings
with unfamiliar speakers, speech
recognition was handled separately. It
uses CMU Sphinx.1

Conclusion
This is the second of the

Undergraduate Robot Research
Team’s papers, which now have
appeared two years in a row in the
AAAI robotics workshop proceedings.

Left, Figure 4: The process of fi nding a face. Above, Figure 5: The
process of fi nding a nametag.

