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The sensors include sonar, cameras, keyboard, the dead 
reckoning position and a microphone. The drivers for using 
these sensors, as well as a library for writing behaviors, were 
provided with the ActivMedia robot.2

In advance, we produced a map of the competition 
areas using a tape measure. On this map we drew a graph 
of places that the robot could go from any given place. This 
map was not only used to visually direct people from one 
place to another at the conference center, but it was also 
used for localization purposes.

At the next level, the interpretation level, the programs 
interpret the sensors to provide high-level assessments 
about the environment and intentions of the person with 
whom the robot is interacting. For example, the vision 
component tells whether or not there is a face in the scene 
(and its location) and it can also determine what the name 
of the patron is (based on their nametag). The intentions 
of the patron can also be determined from dialog. For 
example, the robot can terminate a conversation if a patron 
says “goodbye”.

At the top level is the control aspect (which is basically 
a fi nite state machine). If the robot detects someone in 
front of it then it starts dialog with him. Our system can 
detect a person’s presence if he speaks, types, or if his face 
is being tracked by the camera. If a person is not detected 
by the robot then it will wander around to various points 
on our map of the competition area searching for people, 
all the while the robot is keeping track of its location (using 
Monte Carlo Localization; discussed later). Should it fi nd a 
person, then it will continue driving toward them until it 
successfully reaches them, or, if unsuccessful, it will go back 
to wandering points on the map.

When a person interacts with the robot, many things 
can happen. Immediately, the robot starts trying to fi nd 
his or her nametag. Once it has attained that information 
it uses the information when speaking or displaying other 
information on the screen. At the same time, the robot 
would continue to track the patron’s face with the higher 
camera. Anytime the patron speaks to it, Mabel parses the 
words using Sphinx speech recognition and it then uses a 

rtifi cial Intelligence (AI) has at its core the creation 
of intelligent systems. The holy grail of this entire 

subject is to create a general form of intelligence that can 
reason, learn and interact intelligently in its environment 
much as a human. However, the solution to this problem 
has turned out to be more diffi cult than anyone could have 
imagined. In this project, therefore, we have tried to move 
toward a better understanding of what it takes to create a 
truly intelligent system.

Mabel (the Mobile Table) is a robotic system developed 
primarily by undergraduates at the University of Rochester 
that can perform waypoint navigation, speech generation, 
speech recognition, natural language understanding, 
face fi nding, face following, nametag reading, and robot 
localization. Mabel uses these components of intelligence 
to interact with its environment in two distinct ways. It 
can act as a robot host at a conference by giving people 
information about the conference schedule. Mabel can also 
act as a search and rescue robot by entering a mock disaster 
scene, locating mock human victims, mapping the victims’ 
location, and returning safely out of the scene. Mabel was 
the winner of the robot host event and tied for third place in 
the robot search and rescue event at the 2003 International 
Joint Conference on Artifi cial Intelligence (IJCAI) in 
Acapulco, Mexico. 

The overall design philosophy for Mabel was to integrate 
human interaction with robotic control. We achieved this 
goal by using an interactive speech system, a pan/tilt/zoom 
camera that actively follows faces, and another pan/tilt/
zoom camera that reads patrons’ nametags. In this paper, 
we present the changes that have occurred since the 2002 
American Association for Artifi cial Intelligence (AAAI) 
conference and the methods that we used to integrate the 
hardware and software into a usable system.1

Robot Host
A general overview of the architecture for the 

information-serving robot can be seen in Figure 1. One 
can see that there are multiple layers in this system: the 
sensor level, the interpretation level, and the decision level. 
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Bayes net to decide what the person’s 
intentions were when talking to it. 
Given this information, the robot 
can perform a query on a database 
of events and produce a response 
about an event, speaker, time that an 
event occurred, time of day, or date. 
Moreover, if any events matched the 
query, then they would appear on the 
screen.

Robot Search and Rescue
Using the robot search and rescue 

system, one can teleoperate the 
ActivMedia Pioneer 2AT robot to 
locate and map victims in a mock 
disaster scene and provide a map of 
victim locations to mock rescuers. 
The robot and its sensors are the only 
things that the teleoperator can use to 
navigate the scene. Points are awarded 
in the competition for successfully 
locating victims and creating useful 
maps of the disaster area. Points are 
deducted for making contact with 
victims and for interacting with the 
environment in a dangerous manner, 
i.e. causing secondary collapses of 
structures.

Our system consists of three core 

components: the control, mapping, 
and joystick applications. An overview 
of this system can be seen in Figure 
3. The control application, which 
interfaces directly to the robots 
actuators and sensors, is responsible for 
obstacle avoidance, linear and angular 
velocity control and communication 
of sensor information back to the 
user workstation. This program runs 
completely autonomously on the 
robot and there is no need for the 
intervention of the teleoperator.

The mapping application is one of 
the teleoperator’s tools for retrieving 
information from the disaster scene. 
It provides the user with a live 
interactive 3D rendering of the robot 
environment by mapping the raw 
sonar readings and the internal robot 
position <x, y, θ > to a 3D world. One 
can see an example of the mapping 
interface, as rendered by OpenGL, in 
Figure 2. The teleoperator is also able 
to load maps of the environment or 
save maps for printing.

Monte Carlo Localization
Localization is the problem of 

determining the spatial position of a 

robot from its sensor readings (vision, 
sonar, and dead reckoning). It is 
implemented here using a technique 
called Monte Carlo Localization 
(MCL).3 As in other works, we are 
only concerned with the readings from 
the robot’s wheel encoders and range 
devices.

There are various forms of 
localization that vary in the ambition 
of the problems that they attack. Local 
techniques aim to correct drift from 
the inaccuracy of dead reckoning (the 
most well-known of these are Kalman 
Filters). Global techniques aim to 
locate the robot even when catastrophic 
things happen. For example there 
are two problems usually solved by 
the global techniques: the wake-up 
robot problem and the kidnapped 
robot problem.3,4 The wake-up robot 
problem occurs when the robot is 
given no initial information about its 
position and is expected to localize 
itself in some environment. The 
kidnapped robot problem occurs 
when the robot is carried to another 
location during its operation and is 
expected to recover from this strange 
occurrence where the dead reckoning 
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Above, Figure 1: The Mabel system structure 
consists of three layers: sensory input and output, 
interpretation of sensor data, and decision-making 
about what to do given the analysis of input data. 
Above Right, Figure 2: Real-time 3D mapping aids 
the teleoperator in robot search and rescue.  The red 
lines are sonar readings and the yellow sphere is a 
mapped victim. Right, Figure 3: Overview of the 
robot search and rescue system.
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probability coming from a Gaussian 
distribution in the rho and theta 
components of this movement. The 
standard deviation and the mean of 
this distribution were computed from 
experimentation.

Moreover, for a new sensor reading 
s and a normalization constant α
that enforces ΣpΣpΣ

i
= 1, we re-weight 

the sample set S. We let < l, p > be a 
sample and we recalculate p such that 
p ← αP(s|l). This can be done in s|l). This can be done in s|l O(N) N) N
time.4

The probability P(s|l) is called the s|l) is called the s|l
sensor model. In our implementation 
it is merely a Gaussian distribution 
over the ideal sensor reading of the 
robot given that sample’s location. 
The P(s

i
|l) is measured by ray-tracing |l) is measured by ray-tracing |l

to get the ideal reading of the ith sensor 
and then sampling from the Gaussian 
using the difference of the ideal and 
measured readings. Moreover, we 
integrate these probabilities for each 
sonar by multiplying them together. 
This integrated probability gives us 
P(s|l). The standard deviation and the s|l). The standard deviation and the s|l
mean of this Gaussian distribution 
were derived from experimentation.

There are some cases where we 
run into problems with Monte 
Carlo Localization. First, since MCL 
uses fi nite sample sets, it can (and 
sometimes does) happen that none of 
the samples are generated close to the 
robot position.4 This causes the robot 
to lose its location, never to recover. 
There are some techniques to prevent 
this from happening, but many of 
these methods are not necessarily 
mathematically sound.3 The solutions 
usually involve introducing artifi cially 
high amounts of noise into the sensor 
measurements or by generating 
samples near the most recent sensor 
reading. We use a simple technique 
of generating random samples around 
a sample s

i
using a progressively larger 

Gaussian distribution, should the 
hypothesized position move into an 
unmodeled space. We also take some 
uniformly distributed random samples 
on each round of MCL.

There is also the problem of the 
dynamic environment. Regarding 
our assumption that the environment 
is static, “clearly this conditional 
independence can be violated in the 
presence of people (which often block 
more than one sensor beam). In such 

cases it might be advisable to sub-
sample the sensor readings and use a 
reduced set for localization.”3 Thus, 
we sub-sampled the sonar readings 
using a distance fi lter to get the 
readings that correspond to the world 
and not  the dynamic obstacles in the 
world. Thereby the sensor readings 
that come from unmodeled obstacles 
were ruled out.4

Finally, there is the problem of 
the map that is used as a model of 
the world. In our system, we used 
a simple mapping system that only 
allows lines. Moreover, we had no 
way of automatically generating these 
maps from real data. In other words, 
we used a tape measure to make the 
maps by hand. Now when one is using 
a simulator there are no problems and 
everything works as expected, since 
your model of the world matches 
exactly with the world used by the 
simulator. However, when one is 
using MCL with real world data, 
then the data will often not match 
the modeled one due to sometimes 
quite large errors in generating a map 
by hand. This is a problem that we 
didn’t have time to solve, and thus our 
algorithm would have many problems 
when working in the real world. In the 
simulator, however, the convergence 
and tracking of MCL worked very 
well. 

Vision
Mabel’s vision system is focused 

on fi nding people in the environment, 
and reading their nametags. Both 
techniques make use of a general fi lter 
cascade architecture that searched for 
a pattern throughout the image using 
a constant size detection window. 
The fi lter cascade detects a single 
rectangular bounding box around the 
largest target pattern in the source 
image, which can then be tracked over 
multiple frames with an Alpha-Beta 
fi lter to smooth over any noisy or 
incorrect detections.

A fi lter cascade is a search technique 
that focuses its searching effort on 
small areas of the image that show 
initial promise for matching the target 
pattern. These small areas of the image 
are called sub-windows and the initial 
promise of a sub-window is determined 
by the success of the fi rst classifi er. 
If a sub-window of the image passes 

does not match up with its range data. 
Thus, global techniques must be more 
powerful than local ones.

Localization is often considered 
to be one of the most fundamental 
problems of mobile robotics, since 
without it a robot will have an 
inaccurate internal representation of 
its current position. 3,4 This can lead 
to some disastrous consequences, 
especially if there are stairs, ledges, 
or other obstacles that cannot be 
readily seen by the range devices 
and which could have been avoided 
if the perceived and actual positions 
coincided.

MCL is a relatively new method 
that provides a solution to the 
global localization problem. We 
implemented the MCL algorithm with 
distance fi ltering as per other studies.3

The major benefi ts of using MCL over 
the other approaches are that it can 
globally localize the robot, it greatly 
reduces the memory requirements in 
comparison to Markov Localization, 
it is more accurate than Markov 
Localization, and it is implemented 
easily.4

For MCL, we divide the new sensor 
data into two groups: a new odometry 
reading and a new range sensor 
reading. S = {s

i
} such that i = 1,…N 

is a set of N weighted and random 
samples over a space. For example, in 
our implementation of Monte Carlo 
Localization this distribution would 
initially be uniformly distributed. 
Each sample is a two-tuple with a pose 
and a probability of that pose. Thus, a 
sample is: << x, y, θ >, p >. Moreover, 
we assume ΣpΣpΣ

i
= 1.

Each time the robot obtains a 
new odometry reading a, MCL 
generates N new random samples 
that approximate the robot’s new 
position. Let s

i
be a given sample 

from S and l’ denote its position, so 
that “each sample is generated by 
randomly drawing a sample from the 
previously computed sample set [S], S], S
with likelihood determined by their p-
values [probability].”4 Thus, the value 
for the new sample’s l can be generated 
by sampling according to P(l|l’, a).

In our implementation this 
probability (P(l|l’, a)), often called the 
motion model, is computed by taking 
the ideal movement of any sample, 
and sampling a new position with a 
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the initial classifi er, then additional 
classifi ers are applied to it.5 We apply 
a cascade of these fi lter-classifi ers to 
each sub-window, testing for the 
presence of several simple rectangular 
features. While most fi lter cascade 
architectures to date have utilized only 
features within grayscale images, we 
apply color models to create additional 
feature channels as shown in the two 
central images of Figure 4.

While searching through a feature 
channel image, the sub-window often 
detects a spatial pattern in several 
adjacent locations. Also, the target 
pattern might appear in more than 
one location in the image. Jones and 
Viola perform a disjoint-sets algorithm 
to combine locally adjacent detections 
and select the largest target region. 
Our fi lter cascade algorithm instead 
fi lls in each detected rectangle with 
1s in an initially empty binary image. 
This binary image shares the same 
dimensions as the signal images and 
the starting color image. A contour 
fi nding algorithm is applied to the 
binary image. The largest contour 
from this detection image becomes 
the fi lter cascade target. Adjacent 
detections from the source image 
overlap when fi lling the binary image, 
and thus form only a single contour. 
See the bottom of Figure 4. Spurious 
detections from other similar objects 
tend to create smaller contours and are 
thus often ignored.

The person-fi nding algorithm 
used both a skin colored channel 
and an intensity channel (see the 
right of Figure 4) for locating faces 
in the detection window. To generate 
the binary skin channel (where 1s 
represent skin pixels), we test for the 
presence of each pixel from the image 
in a binary Hue/Saturation model (see 
the left of Figure 4).

We fi rst generate this model from 
images of human skin tones captured 
in the environment by using a series 
of pictures that were taken of various 
individuals. The skin regions of each 
individual were then isolated. To make 
the model robust to all individuals, a 
sample of different skin pigmentations 
was carefully selected. From the 
training set of skin images, the value of 
the color in each pixel was calculated 
using the HSV scale and plotted on a 
Hue/Saturation graph. We save this as 

a bitmap so that we can fi ll in missing 
skin tone regions using a standard 
image-editing program. This improves 
the robustness of the skin detection.

The fi rst level of the fi lter cascade 
for faces drags a sub-window 
throughout the binary skin-tone 
map. Sub-windows are eliminated as 
possible faces if the sum of their pixels 
is not over 25% of the sub-window, a 
result that would suggest that there are 
insuffi cient skin pixels on the object to 
deem it a face. The second and third 
levels both operate on a grayscale 
intensity image. In the second level of 
the fi lter cascade, we look for the eyes–a 
trait that distinguishes faces from other 
objects in most cases. We look for the 
eyes by (1) summing the number of 
skin-tone pixels within a rectangle 
covering the forehead, (2) summing 
the number of skin-tone pixels within 
a rectangle covering the eyes, and (3) 
subtracting the result of the second 
step from the result of the fi rst step. If 
the result of the subtraction is a large 
positive number (thereby suggesting 
the rectangle covering the forehead 
and the eyes describe two dissimilar 
entities), then we gain confi dence that 
the sub-window spans a face. If the 
sum tends to be near zero, then we lose 
confi dence that the sub-window spans 
a face and we terminate the cascade.  
The result from step 3 must constitute 
at least 8% of the sub-window to allow 
the cascade to continue. Intuitively, 
this requirement captures the idea that 
the forehead should consist of many 
skin tone pixels and the eye region 
should consist of no skin-tone pixels 
(thereby producing a high number 
in the subtraction of step 3). In the 
fi nal level in the cascade, we compare 
a rectangle covering the area of the lips 
to the chin below in a similar manner 
as above. In this case, the chin region is 
subtracted from the darker lips region 
above it. We have empirically found 
that this technique works well.

The nametag reading process 
employs two different zoom levels 
using a Canon PTZ camera. The 
central control system activates the 
tag reader during the person approach 
phase. The tag is found at this outer 
zoom level using the fi lter cascade, 
and the camera is centered on its 
position. When the alpha-beta fi ltered 
tag location is centered in the image, 

the camera zooms in. When the zoom 
is completed, the image resolution is 
increased from the usual 180 x120 to 
a full 760 x 480. Ten frames of the 
nametag are stored at high resolution 
and read by the Abbyy Fine Reader 
engine. The most frequent occurrence 
of the fi rst two string tokens is assumed 
to be the person’s fi rst and last names.

The nametag fi lter cascade consists 
of four levels with each level paying 
close attention for the presence of 
a particular feature. The cascade’s 
fi rst level eliminates all fi lter sub-
windows that lack a high percentage 
of white pixels. In most instances, 
the fi rst level eliminates close to 
half the sub-windows in the image, 
thereby narrowing down our options 
signifi cantly.

The second level checks for the 
presence of a colored bar at the top 
of the nametag (see the bottom right 
of Figure 5). We distinguish a bar 
from other objects through the use of 
a hue/saturation color model for the 
bar, which was created by sampling 
several images containing the bars. 
Once the second level is complete, 
the majority of the sub-windows are 
centered vertically on the tag, but 
remain uncentered horizontally.

The third and fourth levels attempt 
to horizontally center sub-windows 
on the tag. The third level begins the 
process by (1) summing the pixels 
in the sub-window containing the 
tag text, (2) summing the pixels in 
the sub-window to the left of the tag 
text, and (3) subtracting the result of 
step 2 from the result of step 1. If the 
result of the subtraction in step 3 is a 
high number, then we gain confi dence 
that the sub-window is adequately 
centered from the left of the tag. If 
the result of the subtraction is a low 
number, then we lose confi dence that 
the sub-window is adequately centered 
from the left. In the fourth level of the 
operation, we perform the same series 
of steps as done in the third level. This 
time, however, we consider the sub-
window to the right. If the cascade 
passes the fourth level, then we can 
be reasonably confi dent that the sub-
window is centered on the tag.

In order to ensure quality text 
reading, we implemented rotation 
invariance on the high resolution 
frames of the nametag. This is done 
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Throughout the years the personnel has 
been diverse, having an unusually high 
proportion of women for computer 
science fi elds. Another unique aspect 
of this project has been to have a 
student-run class created with the help 
of Professor Chris Brown’s continuous 
and overwhelming support. The result 
has been an incredible experience 
for undergraduates: an opportunity 
to work in a team environment, to 
work on unique research, interact 
with professors, and to gain personal 
recognition while an undergraduate.
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by calculating the angle formed 
between the blue rectangular bar and 
the bottom of the image. The image is 
rotated to cancel the calculated angle.

Speech
Interaction is initiated whenever 

the robot recognizes that someone is 
in front of it, when someone speaks 
to the robot loudly enough to trigger 
speech recognition, or when someone 
types or clicks in the GUI. The 
communication system never initiates 
utterances of its own; it responds to 
user’s input by directly answering 
their questions, then waits for more 
input. Interaction is terminated when 
the person stops using input functions 
and walks away.

The robot handles typed input by 
fi ltering out keywords relevant to the 
conference, then using a Bayesian 
tagger to fi nd the type of information 
the user is asking for.1 The graphical 
interface transforms clicks in the 
window to tags and fi ltered output 
identical to the result of Bayesian 
fi ltering. The system then processes 
both typed text and clicks identically.6

After tagging, the robot 
immediately handles some 
conversational pleasantries with 
randomly chosen rote responses. This 
allows it to deal with ‘Hello’, ‘Thank 
you’ and other statements that are 
not requests for information. Real 
questions are turned into SQL queries 
that retrieve information from a 
database, which was hand-constructed 
from the conference schedule.

The robot uses graphical display, 
text display and text-to-speech as 
output modes. Graphical output is 
an unranked table containing the 
information the user requested. 
The user can click on any item in 
the table for more information. 
Text display uses a natural language 
generation algorithm. This algorithm 
fi rst constructs a core sentence of the 
form:

< speaker >< verb >< event >
It guesses the verb by examining 

the event, and if there is no speaker, 
it uses an expletive construction such 
as ’there was’ to mimic the same 
basic form, then it recursively adds 
prepositional phrases until it has used 
up the remaining information. If there 
is too much information to fi t on 
the screen, it omits some and adds a 
phrase containing ’more’ or ’others’ to 
the end of the sentence. Text to speech 
speaks the same output as is displayed 
graphically; it uses Microsoft Speech 
SDK.

Because of the technical 
problems inherent when using 
speech recognition in noisy settings 
with unfamiliar speakers, speech 
recognition was handled separately. It 
uses CMU Sphinx.1

Conclusion
This is the second of the 

Undergraduate Robot Research 
Team’s papers, which now have 
appeared two years in a row in the 
AAAI robotics workshop proceedings. 

Left, Figure 4: The process of fi nding a face. Above, Figure 5: The 
process of fi nding a nametag.


