O(log(N)log(M)) like multiplication, though it is slower.
If n = O(log(N)) and p(n) is a polynomial, then an algorithm that runs in time
™ for some constant ¢ is said to run in exponential time (in the length of N). So

O(Nlog(N)) and O(v/N) are exponential. The current running time for finding a factor

of N is k V/10a(N)(oglog(N)? which is slower than polynomial but faster than exponential. Fac-
toring a 20 digit number using trial division (which is exponential) would take longer than
the age of the universe. In 1996, a 130-digit RSA challenge number was factored in 500
MIPS years.

The set of problems whose solutions have polynomial time algorithms is called P. There’s
a large set of problems for which no known polynomial time algorithm exists for solving
them (though you can check that a given solution is correct in polynomial time) called NP.
Many of the solutions differ from each other by polynomial time algorithms. So if you could
solve one in polynomial time, you could solve them all in polynomial time. It is known that,
in terms of running times, P< NP < exponential.

One NP problem: find simultaneous solutions to a system of non-linear polynomial equa-
tions mod 2. Like z12575 + 2473 + 27 = 0(mod2), 2129 + 22 + 24 = 1(mod2), If you
could solve this problem quickly you could crack DES quickly.

Another NP problem is the following: given a fixed, finite set of points in the plane,
find the shortest path starting at one and going through each of the rest exactly once and
returning to the original point.

DES

The U.S. government in the early 1970’s wanted an encryption process on a small chip that
would be widely used and safe. In 1973 and 1974 the National Bureau of Standards solicited
data security systems from business and academia. I.B.M. submitted the Data Encryption
Standard (DES) and it was accepted and published in 1975. DES is widely used in business
in the United States: PIN numbers, phone conversations, bank transactions, and many
other types of data are encrypted with DES. The DES algorithm is somewhat complicated
to describe, for that reason, I have invented a similar, simpler algorithm I call Baby DES. 1
will first describe that, then I will explain who to expand all the parameters to get the real
DES. In the cryptanalysis course we will apply linear and differential cryptanalysis to Baby
DES for simplicity.

First Baby DES

You and your addressee have a shared 10 bit key. From that key you will make subkeys.
You break your plaintext message into blocks of 8 bit binary numbers, like 10111101. There
are then 2% possible plaintext blocks. Baby DES will encrypt one block at a time. Identical
blocks will be encrypted identically.

Encryption is by IP ! oIlp, 0 © oIl o I P which is the composition of 5 maps which will
be described below. Recall, the above notation means that you do I P first, [I1, second, etc.

14

All additions are bit-by-bit mod 2 additions (XOR). So

10101
+ 11001

There are 3 kinds of maps:
i) IP is the initial permutation. It is (1,5,2,0,3,7,4,6); it is known. When I say known I mean
that it is always the same and everybody knows what it is. Let m; € {0,1}. Then

IP(momimamamamsmemy) = (mymsmemomamymame) = (NgniNaNangNsneny)
where my = ng, ms = ny, My = Ny, My = n3.... We have IP™* =(3,0,2,4,6,1,7,5). So
IP_I (n0n1n2n3n4n5n6n7) = (n3n0n2n4n6n1n7n5) = (m0m1m2m3m4m5m6m7)
ii) © switches the first four bits for the last four bits.
O (momimomamymsmemz) = (Mmgmsmemmymymams)

Note ©2 is the trivial map, so @7 ! = 0.
iii) Let’s define IIr, where T is some map (not necessarily one-to-one) from 4 bit binary
numbers to 4 bit binary numbers.

(X, X') = (X + T(X'), X')

where X and X' are 4 bit binary numbers. Notice that IT% is the trivial map, because
applying it twice is adding T'(X') twice to X and mod 2 that’s adding 0000. Example: say
you have (10111101) and T is some function for which 7°(1101) = 1110. Now 1011 + 1110
= 0101 so then IT(10111101) = (01011101).

Decryption is by (IP7! o Ilp, 0 © o II1, o IP)~!. Now recall that (fog) ™t =g o f'.
So decryption is by TP~ oIy, 0 © o Ilg, o I P.

Keys

Now the maps T; are key-controlled so let’s discuss how to make the two subkeys. Let’s
say that the agreed upon 10 bit key is (rory...79) where r; € {0,1}. There are 2 known
permutations: P10 = (2,4,1,6,3,9,0,8,7,5) and P8 = (5,2,6,3,7,4,9,8) and a shifting sequence
(1,2).

First you apply P10 (which is only ever used once) to the key and get

(7“27“47“17“67“37“97“07“87“77“5) = (80818283848586878889)

Break this into two and shift each 5-tuple to the left 1 (since 1 is the first number in the
shift sequence). So

(8081828384) (8586878889)

15

gets shifted to
(51528384505657888985) = (tot1tatstatstetrtsty)
Now apply P8 to pick out 8 of the 10 bits (tstatetstrtstets). This is key 1.
Break the last 10 bit number into 2 pieces (fotitatsts)(tstetrtsty) and shift each left 2
(since 2 is the second number in the shift sequence).

(t2t3t4t0t1t7t8t9t5t6) = (UOU1U2U3U4U5U6U7U8U9)
Now apply P8 to pick out 8 of the 10 bits (ususugusurusugug). This is key 2.

The maps 717 and 15
We will begin with 77. Take a 4 bit number nynsngn; with n; € {0,1}. (I call them 4
through 7 because you apply 7; to bits 4 through 7 when doing Ilr,). Make a diagram

nz
ns

ng Nsg
Nng N7

Ng
Ty

add key 1 (because we are doing T7).

ny + ts
’I’L5+t7

n4+t2 7Z5+t6
neg +1ts nr+tiy

ng + 13
ng + 13

we will rename these 8 bits (recall they are all 0’s and 1’s)

Do3

D13

DPoo | Por Do2
Pio | P11 P12

There are two known S-boxes, S[0] and S[1], shown below. We have labelled the rows
and columns 0 to 3.

01 23 0123

0710 3 2 070123
113210 112013

5[0] = 210213 Sl = 213010
3 131 3 2 31210 3

and one known permutation P4=(1,3,2,0). Consider (pgopos) and (po1po2) as numbers be-
tween 0-3 (00=0, 01=1, 10=2, 11=3). In matrix S[0] look in row (pgopo3) and column (py1po2)
and find the entry, which is a number between 0-3. Write that number as a base 2 number
(q0q)-

Similarly in matrix S[1] look in row (pigpi13s) and column (p;1p12) and find the entry
between 0-3. Write it as a base 2 number (g2q3). Now concatenate them and you have
(0q1G293), a 4 bit binary number. Apply P4 to it and get (¢1¢3g2¢0). That’s it.

So Ti(ngnsneny) = (g1g3gaqo)- Recall that this is just part of doing IIy. So during
encryption, if after the initial permutation, the message is now (ngninsnsnsnsngny), then
[I7, will turn that into

(n0 + q1,n1 + g3, 2 + g2, M3 + o, N4, M5, M6, M7)
T, is identical except that you use key 2. The S[0], S[1] and P4 are the same. It may

seem odd to leave the last 4 bits alone, but © comes next and then Ilz,.

16

Review

\po D1 P2 P3 P4 D5 De p7‘

1
TP

d
pP1 DPs P2 p0| D3 D7 Pa DPs

! v |

® T (psprpape. key 1) |

\’ \
mo my ma M3 | P3 Pr P4 Pe
w ©
Ps D7 P4 Ds | Mo M1 ma M3
! L |

@ « Tr(momymaoms, key 2) |

\ \
Mg N1 Mo N3 | Mg Ty Ty M3
1
P
1

Chy CiL C2 C3 C4 Cy Cg Cy

The real DES
In real life the blocks of plaintext are 64 bits long and so there are 25 possible plaintext
blocks. The encryption is actually by

IP ' ol 000y, 000...00 01y o IP

The key is 56 bits long but comes with 8 parity-check bits. The subkeys have 48 bits. So
instead of P10 and P8 there is P56 and P48. There are 16 subkeys since there are 16 T;’s.
The shift sequence is actually (1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1). The initial permutation

17

IP is a permutation of the 64 bits. Now instead of 7} acting on (n4nsngny) it really acts on
(nss...nes). The diagrams that you put those in actually look like

Ng3 | M32 N33 N3zq4 M35 | N36
N3s | M3e MN37 N3z M39 | N4

Nsg | Meo MNe1 Me2 Te3 | T32

which has 8 rows and 6 columns (hence the 48 bit subkeys). Then there must be 8 S-boxes
S[0], ...,S[7] (since there are 8 rows in the diagram) each having 4 rows and 16 columns
(since (nesnsg) can represent 4 numbers and (nssnzsngzanss) can represent 16 numbers). In
the real DES, each row of an S-box contains each of the numbers 0 through 15 exactly once.
Also it has a P32 not a P4 (half the message length). © and IP are permutations and the
II7;’s are substitutions so DES is a product cipher.

Analysis of Baby DES The enemy intercepts a matched plaintext/ciphertext pair and
wants to solve for the key. Let’s say the plaintext is Py, ..., Pr, the ciphertext is Cy,...,Cy
and the key is Ky, ..., Kq. There are 8 equations of the form

fz'(PQ,...,P'T,K(),...Kg):OZ'

where f; is a polyonomial in 18 variables, with coefficients in F5 which can be expected to
have 217 terms on average. Once we fix the C; and P; we get 8 non-linear equations in the
10 unknowns K;. On average, the equations should have about 2° terms.

All of the permutations and additions are linear maps. The non-linearity comes from the
S-boxes. Let us consider how they operate. For clarity, let us rename (poo, Po1, Po2, Po3) =
(a,b,c,d) and (p1g, p11,P12,P13) = (w,x,y,2). Then the operation of the S-boxes can be
computed with the following equations

qo = abed + ab+ac+ b+ d

q1 = abed + abd +ab+ac+ad+a+c+1

¢ = wryz +wry +wyz twy+wz+yz+w+xr+z
s = W2+ WYz +wz +r2+yz+w-+y

where all additions are modulo 2. Alternating the linear maps with these non-linear maps
leads to very complicated polynomial expressions for the ciphertext bits.

In the real DES, a pair © o IT is called a round. After 5 rounds, every (partial) ciphertext
bit depends on every plaintext bit. Solving many non-linear equations in many unknowns
over F5 is a problem in NP.

More complicated ways of using DES

Many consider the key to be too short now. In 1997, a group of users on the Internet
tried all possible DES keys on a challenge PT/CT pair (from RSA). In 1997, one expects to
be able to exhaustively try different keys on a one million dollar machine until reaching the
right one in under two hours. It turns out that using DES twice, one after the other, with

18

two different keys is not much safer than single DES with 1 key. Nowadays many use triple
DES with 2 keys. Let E} denote encrypting with DES and key k. Let Dj denote decrypting
with DES and key k. Triple DES is CT = Exey1(Dxkey 2(Frey1(PT))).

There are four modes on a DES chip. The standard mode is the electronic code book
(ECB) mode. It is the most straightforward but has the disadvantage that for a given key,
two indentical plaintexts will correspond to identical ciphertexts.

| PT1 | | PT2 | | PT3 |
I I I
v v v
E_k E_k E_k
I I I
v v v
| CT1 | | CT2 | | CT3 |

The next mode is the cipherblock chaining (CBC) mode. IV denotes an initialization
vector. It is a random 64-bit string that the two users must agree upon ahead of time.

| PT1 | | PT2 | | PT3 |
I I I
------ Vv Vv v
| IV | -—> + | -————- > + | -——-- > +
—————— I I I I I
Vv I Vv I v
E_k | E_k | E_k
I I I I I
Vv I v I v
_______ | —————— | ———————
| CT1 |-—- | CT2 |-—- | CT3 |

The next mode is the cipher feedback (CFB) mode. IV again denotes a 64-bit initialization
vector that the two users must agree upon ahead of time.

19

I I
—————— | v
| IV |---> E_k ——-> + |-———> E_k ———> +
—————— I I I
v I v

_______ | ———————

| CT1 |-—--| | CT2 |

The last mode is the output feedback (OFB) mode. This is a modern stream cipher. You
XOR (sum mod 2) the PT bitstream with the keystream to get the CT bitstream. Below is
how you create the keystream. IV again denotes a 64-bit initialization vector that the two
users must agree upon ahead of time.

The keystream is | Z_1 | Z_2 | Z_3 |

Public Key Cryptography

In a secret key cryptosystem, if you know the enciphering transformation and the enci-
phering key you can find the deciphering transformation and key very quickly (polynomial
time). This is true with C' = aP + b(mod26), modern stream ciphers and DES.

Public key cryptography A cryptosystem where everyone knows the enciphering transfor-
mation and everyone's enciphering key but no known polynomial time algorithm will get
deciphering keys from those.

One way function f : X — Y. Given z € X, it is easy to compute f(z). Given y € Y it

is hard to find x such that f(zr) = y. So it is hard to compute f~', which might be the
deciphering transformation.

Trapdoor function A one way function where computing f~! is fast, when known.

Often, to store a password, there is a file with f(password) where f is a one-way function.

You log in, enter your password and the computer finds f(password) and compares with that
file.

RSA
Recall that if a = 1(mod¢(n)) and ged(m,n) =1 then m® = m(modn).

20

