Step 5) Compute as, ag, a1g, ged(ag — as,n), store as, ayg, ete.

In the above example we succeed at the sixth step since ged(aiz — ag,n) = 23. If n =
pq and p < /n then the algorithm takes time O(,/p) (from a random walk through F,)
= O(¢/n) = €°(ilosn) Trivial division takes time O(y/n) = €9(z°6") and the number field
sieve takes time ¢O((ogn)'/*(loglogn)*/*)

We can use the same idea to solve the discrete log problem for elliptic curves over finite
fields. Let E : y*> = 2® + 17z + 1 over Fyp;. The point G = (0,1) generates E(F1p1). In
addition, 103G = 0 so the multiples of the points work mod 103. The point @ = (5,98) = nG
for some n; find n. Let z(point) denote the z-coordinate of a point, so z(Q) = 5.

Let’s take a random walk through E(Fip). Let vy = [0,0] and P, = (. The vector
v; = [a, b] means P; = a;Q) + b;G where a;,b; are defined mod 103.

If z(P;) <33 or P, =0 then Py = Q + P; and v;41 = v; + [1,0].
If 33 < 2(P;) < 68 then Py = 2P and v;41 = 2v;.
If 68 < z(P;) then Py = G+ P; and v;41 = v; + [0, 1].

When ng = Pj, quit. Then P2j = ang + szG = an + b]G = Pj. So (agj - aj)Q =

(bj — by;j)G and Q = (b; — by;)(az; — a;) 'G where (az; — a;) ! is reduced mod 103.

i P [ab]

0 [0, 0]
1 (5,98) [1,0]
2 (68,60) [2,0]
3 (63,29) [2,1]
4 (12,32) [4,2]
5 (8,89) [5,2]
6 (97,77) [6,2]
7 (62,77) [6,3]
8 (53,81) [12,6]
9 (97,77) [24,12]
10 (62,66) [24,13]
11 (53,81) [48,26]
12 (97,77) [96,52]

Note that P» = Ps so 6Q + 2G = 96Q + 52G. Thus —90Q = 50G and @ = (—90) 150G.
We have (—90) 150 = 91(mod103) so Q = 91G.

We could do this in F7 also, where p is prime. Let g generate F and say g € F,. Solve
g =q. Let po = 1. If p; < p/3 then piyy = piq, if p/3 < p; < 2p/3 then p;iy = pj, if
2p/3 < p; then piy1 = pig.

Cryptanalysis of DES

First we will come up with a slightly different Baby DES that will be more suitable
for demonstrating several cryptanalytic techniques. Last time we had 2 round Baby DES.
We started with an initial permutation IP and ended with permutation IP~!. Linear and
differential cryptanalysis are known and chosen plaintext attacks. In both cases, the enemy

93

knows some PT and matching CT. So the enemy knows IP(PT) and IP~*(CT). So IP and
IP~! don’t contribute to the challenge so we will leave them out.

3 round Baby DES has a ten bit key kokikokskikskek-ksky and three subkeys, keyl
= kok‘ek‘gk‘gk‘7k‘2k9k5, key2 = k7k2k5k4k‘gk‘1k‘gk‘0 and key3 = kgk1k0k6k8k3k5k7.

We will denote the PT by pop1p2p3papspspr, the CT by cycicacseacscger; and some interme-
diate bits by mgmymaems. The function f(-,keyi) is the same as the function Il7, described
in the earlier description of Baby DES.

DPo P1 P2 P3 | Ps D5 DPe D7

! l |
® < f(psprpaps, key 1) |
l l
My My Mg T3 ‘ Pa Ps Pe D7
b
P4 P5s Pe Pr | Mo My 2 M3
! l |
® < f(momymaomsg, key 2) ‘
1 l
Cq4 Cy Cg C7t | mgo ™My Ty TNy
b
mog my ms mg | ¢4 5 cg Cr
! ! |
@ + f(cqcscecr, key 3) |
l l
Cp €1 €y c3 | ¢4 c5 6 Cp

Linear cryptanalysis

Linear cryptanalysis is an idea of Matsui’s published in 1992. It is a known PT attack. Let
the PT block be pg...p, 1, the key be kg ...k, 1 and the corresponding CT be ¢y...c, 1.
Let’s say that the linear equation
Doy +Pag + -+ Doy FCp+... .+ +hy+...+k, =z (wherex =0o0r1,1<a,b<n,
1 < g < m), holds with probability p > 1/2 over all PT /key pairs. So z + p,, + ... + ¢g,
=ky, +...+k,, with p > 1/2. Then compute x + pa, + ...+ cs, over all intercepted PT/CT

o4

pairs. If it’s 0 most of the time, assume k,, +...+k,, = 0. If it’s 1 most of the time, assume
k. + ...+ k,, = 1. This gives a relation on the key bits. Try to get several relations.

Interestingly, if encryption were linear, these equations would all hold with probability
exactly 1/2, so linear cryptanalysis exploits the non-linearity of encryption.

Linear cryptanalysis of 3-round Baby DES

Let Sy and S; be the functions from four bits to two bits corresponding to the operations
of the S-boxes, S[0] and S[1]. Note that every + should be an &. After expanding and
adding the key we have

ZZ Z; ZZ Zj . Let S()(aoalaza?,) = b()bl, Sl (a4a5a6a7) = bzbg.
S() Sl
ap a; ag as b() bl a4 as Qg ar b2 b3
0 0 0 0|0 1 0 0 0 0] 0 1
0 0 0 1 |1 1 0 0 0 1|1 O
0 01 010 O 0 0 1 0] 0 1
0 01 1|1 O 0 01 1|0 O
0 1 0 0|1 1 0 1 0 0} 1 O
0 1 0 1 |0 1 0 1 0 1] 0 1
0 1 1 0 1 0 0 1 1 0 1 1
0 1 1 1 0 O 0 1 1 1 1 1
1 0 0 1 0 O 10 0 0] 1 1
1 0 0 0|1 1 1 0 0 1,1 0
1 0 1 0 1 O 1 0 1 00 O
1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 00 1 1 1 0 00 1
1 1 0 1 1 1 1 1 0 1 0 0
1 1 1 0 1 1 1 1.1 00 O
1 1 1 1 1 0 1 1 1 1 1 1

We are interested in sums of a;’s and b;’s where the outputs are mostly 0’s or mostly 1’s. So
for Sy, we compute the output of zgag + x1a1 + 202 + x303 + 4b9 + 2501 (2; € {0,1}) where
not all of zg, z1, 22,23 are 0 and x4, x5 are not both 0. In the table below are those sums of
a;’s and b;’s whose outputs of 0’s and 1’s are most unevenly distributed. The second column
gives the 16 outputs from the 16 lines in the above table.

as+b = 1111111101101101, =1, p=13/16, 1

ao+ai +as +as +bo+ by = 111111111010 1111, =1, p=14/16, 1I
as + az + by = 0011 1100 0000 0001, =0, p=11/16, III
ao + as +asz +bo = 00111100 11111110, =1, p=11/16, IV

Do the same thing for S;.

s+ ag + a7 +bs = 0100 0001 0000 0000, =0, p=14/16, V
as+ag+by = 011101111111 1101, =1, p=13/16, VI
ag + by + by = 010111110110 1011, =1, p=11/16, VII
as+ a5+ by = 01000100 0011 0001, =0, p=11/16, VIII

95

Also ag + a1 + ag + by = 0,13/16, but it’s the same as I+IL.
Recall 3-round Baby DES. Key: k0k1k2k3k4k5k6k7k8k9, keyl: k0k6]€8]€3]€7k’2k’9k5,
key3: kokikoksksksksk;. First round expansion:

b b b by by
output : bobibobs ' +po p1 P2 Pp3
mg M1 Mo M3

pr + ko
D5 + k7

ps+ ke ps+ ks
D6 + ko p7+ ko

pe + k3
Pa + ks

Last round expansion:

by by by b

k P4
G + Ko output : bybiboby S +mg my mg mg
G G C C3

cr + ko
C5+k’8

C4+]€1 C5+]{30
CG+I€3 C7+l{35

Relation I 'is as + b = 1,p = 13/16.

In the first round as + by = (p5 + ks) + (mo +po) = 1,p = 13/16.

In the last round as + bl = (C5 + k()) + (m() + C()) = 1,p = 13/16

Adding we get ps+ c5+ ks + ko +po+co = 0. What’s the probability of that equation holding
true? Either both of the above were 1: (13/16)2, or both were 0: (3/16)2. So the probability
is (13/16)% + (1 — 13/16)2 ~ .70.

ko+ks =po+co+ps+cs, px.70 from I

Relation II is ap + a; + as + as +bo +b1 = l,p = 14/16

First roundp7+k0+p4+k6+p5+k8+p6+k3+p3+m3+p0+m0= 1,])2 14/16

Last round C7+k9+64+k1+C5+k0+06+k6+03+m3+0()+m0 = l,p: 14/16
Addlng we get po+co+p3s+cs+pat+cat+ps+es+pst+cet+prtert+ki+ks+ks+ko=0
with probability (14/16)* + (1 — 14/16)% ~ .78

II: ky+ks+ks+kyg=po+co+p3s+cs+ps+cs+ps—+cs+ps+ce+pr+cr, px.78

From relation III : kg + ks + kg + ks = p3s +c3 +ps +c5 +pe + cg, p~ .D7
IV :ko+ks+ks+kyg=p3+c3+ps+cs+ps+ce+pr+cr, px.57
Viks+ko=pi+ci+ps+ca+ps+cs+pr+cr, px.78
VI:ky+ks+ks+ko=ps+cotps+ce+prter, p=.70
VII:ks+ky=pi+ci+pe+cat+prter, pm.57
VIIL : ko + ks 4+ kr+ ks =ps+co+ps+c5+ps+cg, p=.5T7

Say you have an unfair coin with probabilities .78 and .22. How many times must you
flip it before you decide which is the .78 side with 90% certainty? The answer is 5. If the
probabilities are instead .57 and .43, how many times must you flip for 90% certainty? 83.

So if your key has 10 bits, you could use enough matched PT/CT pairs to feel certain that
you got correct relations from I, II, V, VI. Then there would be 6 free variables, so you could
use brute force on the 2° possibilities. Or you could use a lot more matched PT/CT and feel
certain you got all eight relations. Then use brute force on the remaining 22 possibilities.

o6

Statistics determines everything. For a given key and 80 PT/CT pairs, the odds are about
.65 that you will get all eight relations right.

With more than three rounds, this linear cryptanalysis gets slightly more complicated,
though not much. You need about 2%7 known PT/CT pairs to solve for a DES key. This is
faster than brute force. If the PT’s are not random (like standard English) then you know
something about the p;’s and you can make a CT-only attack. You need more than 247,
however.

Differential cryptanalysis

This is an idea of Biham and Shamir. It can be used in an attempt to cryptanalyze
cryptosystems like DES, RC5, and FEAL. It is usually a chosen PT attack, so it is usually
unrealistic. You can use it if you have an enormous amount of known PT. With enough PT,
you'll find ones you would have chosen. As with linear cryptanalysis, you use many PT/CT
pairs to try to solve for the key.

Typically you choose two PTs that differ at specified bits and are the same at the rest and
look at the difference between the corresponding two CT’s and deduce information about
the key.

Here is how differential cryptanalysis could be used to cryptanalyze 3-round Baby DES.

The idea is the same for cryptanalyzing 3-round DES.
Let’s say a plaintext is PT=0001 0100 and the corresponding ciphertext is CT=0111 1111
and a second plaintext is PT*=0011 0100 and its corresponding ciphertext is CT*=0001
1100. Let PTR be the right half of PT, etc. Note PTR=PTR" but PTL # PTL". See the
figure on the following page.

CTL =0111 = Ly + f(Ry, key3) = Ry + f(Ry, key3)
= LO + f(R()a key 1) + f(RZa key3)
=PTL + f(PTR, key 1) + f(CTR, key3)
= 0001 + f(PTR, keyl) + f(1111, key3).

Similarly CTL* = 0001 = 0011 + f(PTR*, key1) + f(1100, key3).

So we have CTL + CTL* = 0111 + 0001 = 0110 but also CTL + CTL* = 0001 + 0011 +
f(1111, key3) + f(1100, key3). Note that since PTR = PTR", two of the terms dropped out.
So f(1111,key3) + f(1100,key3) = 0100.

In general f(CTR,key3) + f(CTR", key3) = PTL + PTL* + CTL 4+ CTL" and the right half
of that equation is known.

57

PTL | PTR

Ly | R

! ! |

P +— f(Ro,key 1) |

{ {
Ly & f(Ro, keyl) | Ry

D
RO | LO D f(R(), keyl)
Ly | Ry

! ! |

@ +— f(R1,key 2) |

{ {
L1 @ f(Ry, key2) | Ry

b
Ry | Ly & f(Ry,key2)
L, | Ry

1 4 |

D +— f(Rg, key 3) ‘

{ {
Ly & f(Ra, key3) | R

CTL | CTR

Aside 1 on f(CTR, key3) We have CTR= C4C5CgC7 and key3=k9k1k0k6k8k3k5k7. To do
the function f you first expand CTR and add the key and get

C7+k9 C4+k’1 C5+k0 Cﬁ+k6
cs+ks | cg+ ks cr+ ks | cg+ k.

The first row is the input to S-box Sy and the second row is the input to S;. Let’s denote
the output of Sy by ab and the output of S; by cd (each is a pair of bits, of course) Recall
P4(abcd)=(bdca). So f(CTR, key3) = bdca.

o8

Aside 2 on f(CTR, key3). P4~ (wzyz) = (2wyx). You can P4~! or XOR in either order.
So PA7Y(f(a) + f(B)) = PA™Y(f()) + P47 (f(B)) (where a and f3 are 4-bit strings).
From earlier we have 0100 = f(1111, key3) + f(1100, key3). Now P47'(0100) is 0001.
From Aside 2 we have
00 = 50(07640506 + kgklkok(;) + SQ(C;CZC;CE + k’gk’lk’ok’6)
and 01 = Sl (C5C6C7C4 + k8k3k5k7) + Sl (C;C;C;Ci + k‘gk‘gk5k7).
Let’s look at the first one. We have
00 = S()(llll +k‘9k‘1k‘0k‘6) +S()(0110+k9k1k()k6) so we want to find all four bit strings _——
with So(1111 + — — ——=) + Sp(0110+ — — ——) =00

can— o = g =
di— 1111¢ 01108
date cand cand Sy(a) So(B) So(a) P So(B)

x0000 1111 0110 10 10 00
0001 1110 0111 11 00 11
x0010 1101 0100 11 11 00
%0011 1100 0101 01 01 00
0100 1011 0010 01 00 01
x0101 1010 0011 10 10 00
0110 1001 0000 11 01 10
0111 1000 0001 00 11 11
1000 0111 1110 00 11 11
x1001 1110 1111 10 10 00
x1010 0101 1100 01 01 00
x1011 0100 1101 11 11 00
x1100 0011 1010 10 10 00
1101 0010 1011 00 01 01
1110 0001 1000 11 00 11
1111 0000 1001 01 11 10

We find kokikoks is in the set {0000, 0010,0011,0101,1001,1010,1011,1100}.

We can do the same kind of thing to find all kgksksk; with the property that S;(1111 +
kskskskr) + S1(1001 + kgkskskz) = 01. We can write a computer program to do this for us.
We find kgkskskr is in the set {1110, 1100, 1010, 1000,0110,0101,0100,0011,0010,0000}.

Now we use a second pair of PT’s with PTR= PTR" and their corresponding CT’s. The
new pair of pairs is PT=0001 0000, CT=0110 1111, PT*= 0011 0000, CT*=0100 0100. We
add the four right hand sides together and get 0000 = f(-) + f(-). Then we P4~! this and
get 0000 again. The first two 00 = Sp(-) + So(-) and the second two 00 = S1(-) + S1(-). We

have CTR=1111 and we extend that and get 1it. We also have CTR*=0100 and we extend

that and get %.
Thus we want to find kokikoks = — — —— such that Sp(1111, — — ——) + Sp(0010, — —
——) = 00 and k3k3k5k7 = — — —— such that 51(1111, - — ——) + 80(1000, - — ——) = 00.

We run this through a computer program and find that kgqkikoks is in {0110,1011} and
that kgksksk; is in {1010,1101,0000,0010,0100,0101,0011,0111}. But these 4-bit keybit

99

strings must be in the two large sets from the first two pairs of matched PT/CT. So they
must be in the intersections. Thus we see that kokikoks is in {1011} and kgkskskr is in
{1010, 0000, 0010, 0100,0101,0011}.

Now we can pick more pairs of matched plaintext and ciphertext where the right halves
of the two plaintexts are the same and narrow down the possibilities even more. We continue
until we find out what these keybits are. Eventually we discover that kgksksk; = 0010. So
we have kokikokskskskekrkskog = 1070711001. To determine the two unknown bits, we can
try all four possibilities and see, for example, which send PT=0001 0100 to CT=0111 1111.

With 3 rounds, the correct keybits appeared in every candidate set. With more rounds,
things don’t work out so nicely. You come up with sets of candidates which do not all
necessarily contain the correct keybits. You will, however, know the keybits will appear in
some given percentage of these candidate sets. The incorrect keystrings will appear far less
frequently so you need to search for the keystring appearing with that frequency. Then you
can use brute force to find the other bits.

Other attacks on DES

Recall that a block of plaintext has 64 bits. This could be 8 ASCII characters. There
are versions of ASCII where the 8th bit is a parity check. It’s determined by the first 7 bits.
This leads to a CT only attack. Given a block of CT, decrypt it with all 2% possible keys
to get tentative PT’s. Keep only the keys that give ASCII PT. Note that there are eight,
8-bit, substrings of a given PT. Check each to see if the parity bit is correct. On average, it
will only be correct 1/2% of the time. So you will be left with 25¢/2% = 28 candidate keys.

Do this again for the second CT. After that there will be 2%° candidate keys. With 7 or
8 different blocks of CT, you should get the key. Note this does not take much longer than
a brute force attack with known PT.

Meet in the middle attack for double DES

This is an idea of Diffie and Hellman. Let’s add some notation. Encryption in the usual
way with DES and a 56 bit key will be denoted CT = E,,(PT) and decryption by PT =
Dyey(CT). For double DES you have CT = Ejyey1(Egey2(PT)) and PT = Dyeyo(Diey1 (CT)).

For this attack you need 2 known PT/CT pairs, call them PT;/CT; and PT5/CTs.
Encrypt PT; with single DES with every key and store the outputs. Decrypt C'T} with single
DES with every key and store the outputs. Find key pairs keyy ;, keys; where Ej.,, .(PT1) =
Dhpey, ;(CTs). This gives you a collection of possible key pairs (keyy ;, keys ;). For each possible
key pair compute Ejey, ,(PT5) and Dy, ;(CT3). Those will probably only agree once, at the
correct pair, i.e. at key; ; = keyl and key, ; = key2.

This involves a lot of storage, but it shows that double DES is not much more secure than
single DES. For that reason, many use triple DES. You can use a meet in the middle attack
on triple DES to show that triple DES with 3 keys is not much better than triple DES with 2
keys and 2 keys are easier to agree on so people tend to do: CT = Ejey1 (Dyeya(Ereyn (PT))).

60

