
Programming Distributed Memory Sytems Using OpenMP ∗

Ayon Basumallik, Seung-Jai Min, Rudolf Eigenmann

Purdue University
School of Electrical and Computer Engineering

West Lafayette, IN 47907-1285 USA
{basumall,smin,eigenman}@purdue.edu

Abstract

OpenMP has emerged as an important model and lan-
guage extension for shared-memory parallel programming.
On shared-memory platforms, OpenMP offers an intuitive,
incremental approach to parallel programming. In this pa-
per, we present techniques that extend the ease of shared-
memory parallel programming in OpenMP to distributed-
memory platforms as well.

First, we describe a combined compile-time/runtime sys-
tem that uses an underlying Software Distributed Shared
Memory System and exploits repetitive data access behav-
ior in both regular and irregular program sections. We
present a compiler algorithm to detect such repetitive data
references and an API to an underlying software distributed
shared memory system to orchestrate the learning and pro-
active reuse of communication patterns.

Second, we introduce a direct translation of standard
OpenMP into MPI message-passing programs for execution
on distributed memory systems. We present key concepts
and describe techniques to analyze and efficiently handle
both regular and irregular accesses to shared data. Finally,
we evaluate the performance achieved by our approaches
on representative OpenMP applications.

1 Introduction

OpenMP [24] has established itself as an important
method and language extension for programming shared-
memory parallel computers. On these platforms, OpenMP

∗This work was supported, in part, by the National Science Foundation
under Grants No. 9974976-EIA, 0103582-EIA, and 0429535-CCF. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

1-4244-0910-1/07/$20.00c©2007 IEEE.

offers an easier programming model than the currently
widely-used message passing paradigm. While OpenMP
has clear advantages on shared-memory platforms, mes-
sage passing is today still the most widely-used program-
ming paradigm for distributed-memory computers, such as
clusters and highly-parallel systems. In this paper, we in-
vestigate the suitability of OpenMP for distributed systems.
There are two approaches to achieve this goal, one is to
use a Software Distributed Shared Memory (DSM) system,
which provides a shared address space abstraction on top of
a distributed-memory architecture and the other is to auto-
matically translatestandardOpenMP programs directly to
Message-Passing programs.

Software DSM Systems have been shown to perform
well on a limited class of applications [9] [19]. Software
DSMs typically adapt a page-based coherence mechanism
that intercepts accesses to remote data, at runtime, and re-
quests the data from its current owner. This mechanism in-
curs runtime overhead, which can be large in applications
that communicate frequently with small amounts of data. In
most cases, the overheads are larger than in the correspond-
ing, hand-tuned MPI program versions, although it has been
shown that the oppositecanbe the case in irregular appli-
cations, where hand tuning is difficult [19] [29]. The over-
head incurred by Software DSM systems appears primarily
as memory access latency. To reduce this memory access
latency in Software DSM, we describe acombinedcompile-
time/runtime approach. This approach is motivated by the
fact that scientific applications contain program sections
that exhibit repetitive data access patterns. We present a
compiler algorithm to detect such patterns and an API to an
underlying software DSM system to orchestrate the learn-
ing and pro-active reuse of communication patterns. We
evaluate the combined compile-time/runtime system on a
selection of OpenMP applications, exhibiting both regular
and irregular data reference patterns, resulting in average
performance improvement of 28.1% on 8 processors.

Second, we explain our compiler techniques for the

translation of OpenMP programs directly to Messgae Pass-
ing programs (in MPI). To achieve good performance, our
translation scheme includes efficient management of shared
data as well as advanced handling of irregular accesses. In
our scheme, shared data is allocated on all nodes. However,
there are no shadow copies or management structures, as
needed for software DSMs. Furthermore we envision that
for future work, arrays with fully regular accesses will be
distributed between nodes by the compiler. Therefore, we
refer to our scheme as partial-replication. We have studieda
number of OpenMP programs and identified baseline tech-
niques for such a translation as well as optimizations that
can improve performance significantly. We present com-
piler techniques for translating OpenMP programs to MPI
under thepartial replicationmodel and describe a runtime
inspection-based scheme for translating irregular OpenMP
applications.

The remainder of this paper is organized as follows.
Section 2 presents the combined compile-time/runtime sys-
tem to enhance the performance of OpenMP applications
deployed on distributed-memory systems using Software
DSM. Section 3 describes the automatic translation of
OpenMP programs to MPI programs. Section 4 compares
our approaches with related work. Section 5 concludes the
paper.

2 Optimizing OpenMP Programs on Soft-
ware Distributed Shared Memory System

We describe acombinedcompile-time/runtime approach
to latency reduction in OpenMP applications, deployed on
Software DSM systems. In previous work [21], we have
presented basic compiler techniques for deploying OpenMP
applications on Software DSM systems. Here, we present
additional optimizations, based on the detection of repeti-
tive access patterns for shared data. Both the compiler and
the runtime system share the task of data reference analy-
sis. The compiler identifies which shared memory accesses
will exhibit repetitive access patterns and when. The run-
time system captures information, such as the address and
the destination of remote memory accesses and optimizes
their communication.

2.1 Compiler Analysis of Repetitive Data
References

Data references must meet two criteria to be classified
as repetitive accesses in a given loopL. (1) The reference
must be made in a basic block that executes repeatedly in
a sequence of iterations ofL and (2) the involved variable
must either be scalar or an array whose subscript expres-
sions aresequence invariantin L. To check the first crite-
rion, the algorithm determines thepath conditions[11] for

the basic block and tests for loop invariance inL of these
conditions. The gist of checking the second condition is
in testing sequence invariance of all array subscripts. Se-
quence invariance of an expression means that the expres-
sion assumes the same sequence of values in each iteration
of L. (Invariance is a simple case of sequence invariance
– the sequence consists of one value.) The output of the
compiler algorithm is the set of shared variables that incur
repetitive data references across the iterations ofL. The de-
tailed algorithm description and examples are illustratedin
our previous work [22].

2.2 Compiler/Runtime System Interface

The compiler instruments the code to communicate its
findings to the runtime system. It does this through
an API containing two functions, which tell the runtime
system when/where to learn communication patterns and
when/where to repeat them, respectively. The overall model
of program execution is important at this point. We assume
that the program contains an outer, serial loop (e.g., a time-
stepping loop), within which there are a sequence of parallel
loops, each terminated by a barrier synchronization. This
execution model is consistent with that of many OpenMP
programs. We refer to this outer loop as the target loop.
The compiler identifies the target loop as the outer-most
loop containing parallel sections and a non-emptyRepVar,
the set of shared variables with repetitive reference patterns,
described in Section 2.1. Next, it partitions the target loop
body intointervals– program sections delimited by barrier
synchronizations. The API includes the following func-
tions, which the compiler inserts at the beginning of each
interval.

– GetCommSched(CommSched-id, StaticVarList)

– RunCommSched(CommSched-id)

There are two input parameters –CommSched-idis the
communication schedule identifier;StaticVarListis the list
of shared variables with repetitive reference patterns, which
will benefit from pro-active data movement at the beginning
of the interval. Our compiler generatesStaticVarListby in-
tersecting the set of shared variables accessed within the
interval andRepVar. Depending on the value of the index
variable of the target loop, either one of these API func-
tions is executed in each iteration. When GetCommSched
is invoked, the runtime system learns the communication
pattern of the variables listed inStaticVarListand creates a
communication schedule, which is the set of data (pages in
case of page-based Software DSM) that experienced remote
memory access misses. On a call to RunCommSched,
the runtime system finds the communication schedule using
CommSched-idand pro-actively moves the data according
to that schedule.

2

2.3 The Runtime System

We have modified the TreadMarks [2] version 1.0.3.3 to
support the pro-active data movement with message aggre-
gation. The augmented runtime system captures the com-
munication pattern and creates the communication schedule
during the interval whereGet CommSchedis called. On a
call toRunCommSched, the augmented runtime system ap-
plies the communication schedule by pro-actively moving
data. When there are multiple messages to the same proces-
sor, those messages are aggregated into a single message to
reduce the number of messages communicated. Also, the
shared data that are pro-actively moved will not incur re-
mote memory misses during the execution, which results in
the reduction of DSM coherence overheads.

2.4 Performance Evaluation

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Baseline Compile/Run-Time Opt

wupwise swim applu SpMul CG

Figure 1. Speedup for TreadMarks and the
Combined Compile-time/Run-time System

We evaluated the combined compile-time/runtime sys-
tem on a selection of SPEC OMP and NAS OpenMP bench-
marks, exhibiting both regular and irregular communica-
tion patterns. Our commodity cluster consists of Pentium-
II/Linux nodes, connected via standard 100Mbps Ethernet
networks. We used five Fortran programs: WUPWISE,
SWIM, and APPLU from the SPEC OMP benchmarks
and CG from the NAS OpenMP benchmarks and SpMul.

Among these programs, WUPWISE, SWIM, and APPLU
are regular applications and CG and SpMul are mixed reg-
ular/irregular applications.

Our PCOMP compiler [23] translates the OpenMP ap-
plications into TreadMarks programs. After this trans-
formation, we performed repetitive data reference analy-
sis according to the proposed compiler algorithm and in-
strumented the programs with the described API functions
for pro-active data movement. Overall, our applications
show regular communication patterns in most of their exe-
cution, even in irregular program sections. For example, CG
and SpMul have indirect array accesses. In both applica-
tions, the indirection arrays are defined outside each target
loops and the compiler analysis is able to determine that the
involved array accesses exhibit static communication pat-
terns. Owing to the precise compiler analysis, we can selec-
tively apply pro-active data movement to only shared vari-
ables that show regular communication patterns. Figure 1
presents the performance of the baseline TreadMarks and
that of the proposed compile-time/runtimes system com-
pared to the sequential execution times. Programs are exe-
cuted on 1, 2, 4, and 8 processors. On 8 processors, the pro-
posed technique achieves 28.1% performance improvement
over the baseline TreadMarks system. The performance en-
hancement mainly comes from the reduction of the number
of messages and the reduction of the page fault overhead.
Our compiler analysis makes it possible to obtain these re-
ductions by applying pro-active data movement to the right
data at the right time.

3 Translation of OpenMP to MPI

In the previous section, we discussed a combined
compile-time/run-time optimization scheme for OpenMP
applications deployed through Software DSM systems.
However, Software DSM systems suffer from some in-
herent performance limitations. A comparative study of
Message-Passing(using PVM [26]) and TreadMarks appli-
cations [20] concluded that message-passing applications
have two basic advantages over Software DSM applica-
tions. The first advantage is that message-passing appli-
cations can piggyback synchronization with sends and re-
ceives of data whereas Software DSMs incur separate over-
heads for synchronization and data transfer. The second
advantage is that message-passing applications implicitly
perform aggregation for transferring data while Software
DSMs are limited by the granularity at which they maintain
coherence for shared data(for example, page-based software
DSMs perform shared data transfers on a per page basis).
Techniques using prefetch [27] and compiler-assisted anal-
ysis of future accesses for aggregation [10] have been pro-
posed to mitigate these performance limitations.

In order to avoid the performance limitations imposed

3

by a Software DSM system, we explore the possibility of
translating OpenMP applications directly to message pass-
ing applications that use MPI. Essentially, an SDSM layer
performs two functions:

• It traps accesses to remote data.

• It provides a mechanism for intercommunicating data
between nodes on demand.

For the first function, we now use a combination of
compile-time analysis and runtime methods to resolve re-
mote accesses. For the second function, we use MPI li-
braries to communicate data. The direct use of message
passing provides the compiler greater control of when and
how processes intercommunicate their data and thus makes
it easier to optimize this communication as well as to imple-
ment aggregation and prefetching. Additionally, robust and
optimized MPI libraries are available for almost all types of
distributed-memory platforms.

To achieve good performance, our translation scheme in-
cludes efficient management of shared data as well as ad-
vanced handling of irregular accesses. In this section, we
present a brief overview of the baseline compile-time trans-
lation scheme for translating OpenMP applications to MPI
and then we present a runtime inspection-based scheme for
translating OpenMP applications that have irregular data ac-
cesses.

3.1 Baseline OpenMP to MPI Translation
Scheme

The objective of the baseline translation scheme is to
perform a source-to-source translation of a shared-memory
OpenMP program to an MPI program. This is accomplished
by two categories of transformations – (1) transformations
that interpret the OpenMP directives and (2) transforma-
tions that identify and satisfy producer-consumer relation-
ships for shared data.

OpenMP directives fall into three categories -
(1) directives that specify work-sharing (omp parallel for,
omp parallel sections) - the compiler interprets these to par-
tition work between processes,
(2) directives that specify data properties (omp shared, omp
private etc.) - these are used for constructing the set of
sharedvariables in the program. By default, data is shared
as per the OpenMP standard.
(3) synchronization directives (omp barrier, omp critical,
omp flushetc.) - the compiler incorporates these into the
control flow graph.

The target execution model for our translation scheme is
SPMD [7] with the following characteristics:

• All participating processes redundantly execute serial
regions and parallel regions demarcated byomp master

andomp singledirectives. Iterations of OpenMP par-
allel for loops are statically partitioned between pro-
cesses usingblock-scheduling.

• Shared data, is allocated on all processes. There is no
concept of anowner for any shared data item. There
are only producers and consumers of shared data.

• At the end of parallel constructs, each participating
process communicates the shared data it has produced
that other processesmayuse in the future.

An exception to redundant execution of the serial regions
is file I/O. Reading from files is redundantly done by all
processes (we assume a file-system visible to all processes).
Writing to file is done by only one process (the process with
the smallest MPI rank).

After interpreting the OpenMP directives, the compiler
needs to inserts MPI calls to communicate shared data
from producers topotential future consumers. To resolve
producer-consumer relationships, the compiler has to per-
form precise array-dataflow analysis. Several schemes such
as Linearized Memory Access Descriptors [25] and Regular
Section Descriptors [6] have been proposed to characterize
array accesses. Our compiler constructs bounded regular
section descriptors [12] to characterize accesses to shared
arrays.

The compiler constructs a control flow graph (with each
vertex corresponding to a program statement) and records
array access summaries with Regular Section Descriptors
(RSDs) by annotating the vertices of the control flow graph.
The compiler then uses this annotated control flow graph to
create aproducer-consumer flow graphwhich is used to re-
solve producer-consumer relationships for shared data. This
graph is created by modifying the annotated control-flow
graph to conform to the relaxed memory consistency model
of OpenMP. OpenMP specifies implicit and explicit mem-
ory synchronization points.

The compiler now uses this producer-consumer flow
graph to compute message sets for communicating shared
data from producers to potential consumers. In previous
work [3], we have discussed the algorithm for computing
these message sets. The computed message sets are com-
municated using non-blockingsend/receiveand blocking
wait calls.

For affine accesses, the compiler can create precise reg-
ular section descriptors and thus generate precise message
sets for communicating data between producers and con-
sumers. However, in cases where array accesses are not
regular, the compiler cannot perform the shared array ac-
cess analysis precisely at compile-time. We now present
run-time mechanisms for translating applications with such
irregular accesses.

4

L1 : #pragma omp parallel for
for(i=0;i<N;i++)
p[i] = x[i] + alpha*r[i] ;

L2 : #pragma omp parallel for
for(j=0;j<N;j++) {
w[j] = 0 ;
for(k=rowstr[j];k<rowstr[j+1];k++)

S2: w[j] = w[j] + a[k]*p[col[k]] ;
}

Figure 2. Sparse Matrix-Vector Multiplication
Kernel

3.2 Translation of Irregular OpenMP Ap-
plications to MPI

Irregular applications pose a challenge, because the com-
piler cannot accurately analyze the accesses at compile
time. Instead, it must conservatively over-estimate data con-
sumption. Consider the following code.

L1 : #pragma omp parallel for
for(i=0;i<10;i++)
A[i] = ...

L2 : #pragma omp parallel for
for(j=0;j<20;j++)
B[j] = A[C[j]] + ...

Considering parallel execution on 2 processes (num-
bered 0 and 1), the compiler summarizes the writes in
Loop L1 using an RSD of the form< p, write, A, 1, 5 ∗
p, 5 ∗ p + 5 >. For L2, the compilers produces the
two RSDs< p, write, B, 1, 10 ∗ p, 10 ∗ p + 5 > and
< p, read, A, 1, undefined, undefined >. In L2, array
A is accessed using the indirection array C and thus, the
accesses to A cannot be resolved at compile time. In such
cases, our existing compiler [3] attempts to deduce certain
characteristics (e.g., monotonicity) for the indirectionarray
A. This information serves to obtain bounds on the region
of array A accessed by each process. If no such property
can be deduced, our translation scheme will determine that
at the end of loop L1, process 0 must send elements A[0]
through A[4] to process 1 and process 1 must send ele-
ments A[5] through A[9] to process 0, which may result
in excess communication. To precisely resolve such irreg-
ular accesses, our system makes use of runtime inspection.
A key insight is that runtime inspection not only resolves
producer consumer relationships precisely for irregular ac-
cesses, it also maps accesses to loop iteration. Therefore,to
amortize the cost of runtime inspection, we can use this in-
formation to reorder iterations for parallel loops to overlap
computation and communication.

L1 : #pragma omp parallel for
for(i=0;i<N;i++)

p[i] = x[i] + alpha*r[i] ;

L2-1 : #pragma omp parallel for
for(j=0;j<N;j++) {
w[j] = 0 ;

}

L2-2: #pragma omp parallel for
for(j=0;j<N;j++) {
for(k=rowstr[j];k<rowstr[j+1];k++)

S2: w[j] = w[j] + a[k]*p[col[k]] ;
}

Figure 3. Sparse Matrix-Vector Multiplication
Kernel with Loop Distribution of loop L2

L3: for(i=0;i<num_iter;i++)
w[T[i].j] = w[T[i].j] +

a[T[i].k]*p[T[i].col] ;

Figure 4. Restructuring of Sparse Matrix-
Vector Multiplication Loop

Previous work on inspectors in the context of languages
such as HPF and Titanium [8, 1, 14] have suggested reorder-
ing loop iterations to differentiate local and non-local ac-
cesses. Consider a common sparse matrix-vector product
shown in Figure 2, taken from the NAS Conjugate Gradient
benchmark. The irregular access here occurs in statement
S2 inside the nested loop L2. Each outer j iteration in loop
L2 now contains multiple irregular accesses to the vectorp,
which is produced blockwise in loop L1. Therefore, simply
reordering the outer j iterations may not suffice to partition
accesses into accesses of local and remote data.

To expose the maximum available opportunity for
computation-communication overlap, the loop L2 in Fig-
ure 2 is restructured to the form shown in Figure 3. Loop
L2 is distributed into the loop L2-1 and the perfectly nested
loop L2-2. On each process, at run-time, inspection is done
for statement S2 and in every executioni of statement S2,
the loop indicesj andk as well as the corresponding value
of col[k] are recorded in an inspection structureT . T here
can be considered a mapping functionT : [j, k, col[k]] →
[i]. This mapping can then be used to transform loop L2-2
in Figure 3 to loop L3 in Figure 4. Iterations of loop L3 can
now be re-ordered to achieve maximum overlap of compu-
tation and communication in our sparse matrix-vector mul-
tiplication example.

In previous work [4], we have presented the algorithms

5

0

5

10

15

20

25

S
p

ee
d

u
p

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

 CG EP FT LU IS ART EQUAKE

Scalability on IBM SP2

Translated OpenMP Hand-coded MPI

Figure 5. Scalability comparison on the IBM SP2 nodes. The input data set used is CLASS B for all
the NAS benchmarks and train for the SPECOMPM2001 benchmarks.

to affect these runtime inspection and loop restructuring
transformations.

3.3 Performance Evaluation

To evaluate the performance of our translation scheme,
we have applied the OpenMP translation steps discussed in
this section to seven representative OpenMP applications
- five from the NAS Parallel Benchmarks and two SPEC
OMPM2001 applications (EQUAKE and ART). Our hard-
ware platform is a set of sixteen IBM SP2 WinterHawk-II
nodes connected by a high-performance switch. We expect
the scaling behavior of the benchmarks on these systems to
be representative of a wide class of high-performance com-
puting platforms. In Figure 5, we compare the scaling be-
havior of the benchmarks translated to MPI from OpenMP
with the scaling behavior of their hand-translated MPI
counterparts (for NAS benchmarks, the hand-translated ver-
sions are the official MPI versions of these benchmarks. For
EQUAKE and ART, we have created the reference MPI ve-
rions ourselves with reasonable programming effort). On
average, we observed that the translated OpenMP versions
have performance to within 15% of their hand translated
MPI counterparts. Additionally, the NAS benchmark CG
and the SPEC OMPM2001 benchmark EQUAKE contain
irregular array accesses in their most time consuming parts.
We applied the transformations discussed in Section 3.2 to
these applications. The performance of the resulting trans-
lation is shown in Figures 6 and 7. We found that with these

transformations, the translated OpenMP versions achieved
speedups to within 9% of the hand-translated MPI versions.

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(i

n
 s

ec
o

n
d

s)

NPB-2.3-MPI Baseline Translation
Inspector without Reordering Inspector with Iteration Reordering

Figure 6. Performance of CG.

4 Related Work

Researchers have proposed numerous optimization tech-
niques to reduce remote memory access latency on Soft-
ware DSM. Many of these optimization techniques aim to
perform pro-active data movement by analyzing data access
patterns either at compile-time or at runtime. In compile-
time methods, a compiler performs reference analysis on
source programs and generates information in the form of

6

0

200

400

600

800

1000

1200

1 2 4 8 16

Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Hand-Coded MPI Baseline (No Inspection)
Inspection (No Reordering) Inspection and Reordering

Figure 7. Performance of Equake.

directives or prefetch instructions that invoke pro-active
data movement at runtime [9]. The challenges for compile-
time data reference analysis are the lack of runtime infor-
mation (such as the program input data) or complex ac-
cess patterns (such as non-affine expressions). By contrast,
runtime-only methods predict remote memory accesses to
prefetch data [5] based on recent memory access behavior.
These methods learn communication pattern inall program
sections and thus incur overheads even in those sections that
a compiler could recognize as not being beneficial. The idea
of combined compile-time/runtime solutions has been ex-
pressed by others [28, 16, 15]; however, our paper [22] is
the first to present a compiler algorithm and a corresponding
application program interface (API), allowing the compiler
and runtime system to work in concert.

An important contribution towards a simpler program-
ming model for distributed-memory machines was the de-
velopment of High Performance Fortran (HPF) [13, 17].
There are important differences between our OpenMP-to-
MPI translation approach and that taken by HPF. Even
though, like OpenMP, HPF provided directives to specify
parallel loops, HPF’s focus was on the use of the data dis-
tribution directives. Data and computation partitioning was
derived from these directives. Most often, data had a single
owner and computation was performed on the owning node
(a.k.a owner-computes rule). Input operands to the compu-
tations were received via messages from their owners. This
execution scheme could also add significant overhead to se-
rial sections, as these needed be executed on multiple nodes
owning parts of the data. Handling irregular data was dif-
ficult and usually employed runtime schemes [8]. In con-
trast to HPF implementations, our execution model starts
from the available parallelism specified through OpenMP
directives. Partial replication allows serial regions to be ex-
ecuted intact and input operands of parallel computations
are locally available. Communication happens primarily at
the end of parallel loops, facilitated by collective commu-

nication. Partial replication also obviates the need for data
partitioning techniques [18], even though data distribution
information is not provided by the user.

5 Conclusions

In this paper, we have discussed two approaches aimed
at making OpenMP shared-memory programming available
for distributed-memory systems as well. First, we examined
a combined compile-time/runtime approach for accelerat-
ing the execution of applications with repetitive communi-
cation patterns deployed through Software DSM. Our com-
piler algorithm is essential to accurately and selectivelyap-
ply pro-active data movement to remote memory accesses
showing static communication patterns. We evaluated the
proposed compile-time/runtime system using OpenMP ap-
plications, consisting of both regular and irregular applica-
tions. We achieved performance improvements as signifi-
cant as 44% and on average 28.1% on 8 processors.

Second, we examined techniques for translating standard
OpenMP shared-memory programs directly to a Message
Passing form. We discussed the basic OpenMP to MPI
translation scheme and the translation of irregular OpenMP
applications into MPI codes. We found that the translated
OpenMP versions have the performance to within 15% of
their hand-translated MPI counterparts.

Our measurements show that the presented techniques,
a combined compile-time/runtime technique on Software
DSM and direct translation of OpenMP to MPI, signifi-
cantly improve the performance of OpenMP on distributed
memory systems. This fact, combined with the greater ease
of programming that OpenMP is generally attributed with,
indicates a promising new path toward higher programming
productivity on distributed-memory platforms.

References

[1] T. S. Abdelrahman and G. Liu. Overlap of computa-
tion and communication on shared-memory networks-of-
workstations.Cluster computing, pages 35–45, 2001.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. Treadmarks: Shared
Memory Computing on Networks of Workstations.IEEE
Computer, 29(2):18–28, 1996.

[3] A. Basumallik and R. Eigenmann. Towards automatic trans-
lation of openmp to mpi. InICS ’05: Proceedings of the
19th annual International Conference on Supercomputing,
pages 189–198, Cambridge, Massachusetts, USA, 2005.
ACM Press.

[4] A. Basumallik and R. Eigenmann. Optimizing Irregular
Shared-memory Applications for Distributed-memory Sys-
tems. InPPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 119–128, New York, NY, USA, 2006.
ACM Press.

7

[5] R. Bianchini, R. Pinto, and C. L. Amorim. Data prefetching
for software dsms. Inthe 12th international conference on
Supercomputing, pages 385–392, 1998.

[6] D. Callahan and K. Kennedy. Analysis of interprocedural
side effects in a parallel programming environment.J. Par-
allel Distrib. Comput., 5(5):517–550, 1988.

[7] F. Darema, D. A. George, V. A. Norton, and G. F. Pfis-
ter. A single-program-multiple-data computational model
for epex/fortran.Parallel Computing, 7(1):11–24, 1988.

[8] R. Das, M. Uysal, J. Saltz, and Y.-S. S. Hwang. Communi-
cation optimizations for irregular scientific computations on
distributed memory architectures.Journal of Parallel and
Distributed Computing, 22(3):462–478, 1994.

[9] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An in-
tegrated compile-time/run-time software distributed shared
memory system. InProceedings of the seventh international
conference on Architectural support for programming lan-
guages and operating systems, pages 186–197, 1996.

[10] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An in-
tegrated compile-time/run-time software distributed shared
memory system. InProc. of the 7th Symp. on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOSVII), pages 186–197, 1996.

[11] T. Fahringer and B. Scholz. Symbolic evaluation for paral-
lelizing compilers. InInternational Conference on Super-
computing, pages 261–268, 1997.

[12] P. Havlak and K. Kennedy. An implementation of inter-
procedural bounded regular section analysis.IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):350–360,
1991.

[13] High Performance Fortran Forum. High Performance For-
tran language specification, version 1.0. Technical Report
CRPC-TR92225, Houston, Tex., 1993.

[14] P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit,
G. Pike, and K. Yelick. Titanium language reference man-
ual. Technical report, Berkeley, CA, USA, 2001.

[15] P. Keleher. Update protocols and iterative scientific appli-
cations. InProc. of the first Merged Symp. IPPS/SPDP
(IPDPS’98), 1998.

[16] P. Keleher and C.-W. Tseng. Enhancing software DSMs for
compiler-parallelized applications. InProc. of the 11th Int’l
Parallel Processing Symp. (IPPS’97), 1997.

[17] C. Koelbel, D. Loveman, R. Schreiber, G. S. Jr., and
M. Zosel. The High Performance Fortran Handbook. MIT
Press, 1994.

[18] U. Kremer. Automatic data layout for distributed memory
machines. Technical Report TR96-261, 14, 1996.

[19] H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Compiler and software distributed shared
memory support for irregular applications. InProc. of the
Sixth ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPOPP’97), pages 48–56, 1997.

[20] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel.
Quantifying the performance differences between PVM and
TreadMarks. Journal of Parallel and Distributed Comput-
ing, 43(2):65–78, 1997.

[21] S.-J. Min, A. Basumallik, and R. Eigenmann. Optimizing
OpenMP programs on Software Distributed Shared Memory
Systems. International Journal of Parallel Programming,
31(3):225–249, June 2003.

[22] S.-J. Min and R. Eigenmann. Combined compile-time and
runtime-driven, pro-active data movement in software dsm
systems. InLCR ’04: Proceedings of the 7th workshop on
Workshop on languages, compilers, and run-time support
for scalable systems, pages 1–6, New York, NY, USA, 2004.
ACM Press.

[23] S. J. Min, S. W. Kim, M. Voss, S. I. Lee, and R. Eigenmann.
Portable compilers for openmp. InInternational Workshop
on OpenMP Applications and Tools (WOMPAT’01), pages
11–19, July 2001.

[24] OpenMP Forum. Openmp: A proposed industry standard
api for shared memory programming. Technical report, Oct.
1997.

[25] Y. Paek, J. Hoeflinger, and D. Padua. Efficient and precise
array access analysis.ACM Trans. Program. Lang. Syst.,
24(1):65–109, 2002.

[26] V. S. Sunderam. PVM: a framework for parallel dis-
tributed computing.Concurrency, Practice and Experience,
2(4):315–340, 1990.

[27] A. K. W. L. Todd C.Mowry, Charles Q. C. Chan. Compar-
ative evaluation of latency tolerance techniques for software
distributed shared memory. InProceedings of the Fourth In-
ternational Symposium on High-Performance Computer Ar-
chitecture (HPCA’98), Feb. 1998.

[28] G. Viswanathan and J. R. Larus. Compiler-directed shared-
memory communication for iterative parallel applications.
In Supercomputing, Nov. 1996.

[29] J. Zhu, J. Hoeflinger, and D. Padua. A synthesis of memory
mechanisms for distributed architectures. InProceedings of
the 15th international conference on Supercomputing, pages
13–22. ACM Press, 2001.

8

