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ABSTRACT 
Instruction combining is an optimization to replace a sequence of 
instructions with a more efficient instruction yielding the same 
result in a fewer machine cycles. When we use it for coalescing 
memory accesses, we can reduce the memory traffic by combining 
narrow memory references with contiguous addresses into a wider 
reference for taking advantage of a wide-bus architecture. 
Coalescing memory accesses can improve performance for two 
reasons: one by reducing the additional cycles required for moving 
data from caches to registers and the other by reducing the stall 
cycles caused by multiple outstanding memory access requests. 
Previous approaches for memory access coalescing focus only on 
array access instructions related to loop induction variables, and 
thus they miss many other opportunities. In this paper, we propose 
a new algorithm for instruction combining by applying global code 
motion to wider regions of the given program in search of more 
potential candidates. We implemented two optimizations for 
coalescing memory accesses, one combining two 32-bit integer 
loads and the other combining two single-precision floating-point 
loads, using our algorithm in the IBM Java™ JIT compiler for IA-
64, and evaluated them by measuring the SPECjvm98 benchmark 
suite. In our experiment, we can improve the maximum 
performance by 5.5% with little additional compilation time 
overhead. Moreover, when we replace every declaration of 
double for an instance variable with float, we can improve the 
performance by 7.3% for the MolDyn benchmark in the JavaGrande 
benchmark suite. Our approach can be applied to a variety of 
architectures and to programming languages besides Java. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers, 
optimization. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Instruction combining, memory access coalescing, 64-bit 
architectures, Java, JIT compilers, IA-64 

1. INTRODUCTION 
Instruction combining [28] is an optimization to replace a sequence 
of instructions with a more efficient instruction yielding the same 

result in a fewer machine cycles. Previous approaches for instruc-
tion combining can be classified into two families. 

The first family combines “two instructions that have a true de-
pendence” (we call them dependent instructions) [28, 29]. This 
family uses global code motion, but it cannot combine instructions 
along the conditionally executed path. 

The second family combines “multiple instructions that do not have 
a true dependence” (we call them independent instructions). This 
family includes memory access coalescing [6], which is an optimi-
zation to coalesce narrow memory references with contiguous 
addresses into a wider reference for taking advantage of a wide-bus 
architecture. 

Coalescing memory accesses can improve performance for two 
reasons: one by reducing the additional cycles required for moving 
data from caches to registers and the other by reducing the stall 
cycles caused by multiple outstanding memory access requests. 

In general, the latency of FP loads is longer than that of integer 
loads, and thus reducing FP loads is more effective. On the other 
hand, integer loads appear more frequently, and thus reducing 
integer loads is also effective. For example, on Itanium processor 
(IA-64) [17], FP loads always bypass the L1 cache and read from 
the L2 cache as shown in Figure 1 [18]. The latency of FP loads is 
9 cycles, while the latency of integer loads is 2 cycles. To take 
another example, on Pentium 4 and Xeon processors (IA-32), both 
integer and FP loads are able to read from the L1 cache. However, 
the latency of FP loads is 6 cycles (for Model 0, 1, 2) or 12 cycles 
(for Model 3), while the latency of integer loads is 2 cycles (for 
Model 0, 1, 2) or 4 cycles (for Model 3) [19]. 

Previous approaches for memory access coalescing focus only on 
array access instructions related to loop induction variables [1, 6, 
27, 31], and thus they miss many other opportunities. 

In this paper, we propose a new algorithm for combining multiple 
instructions by using global code motion to combine both depend-
ent instructions and independent ones along the conditionally 
executed path. We modify the Lazy Code Motion (LCM) algorithm 
[25] to attempt to combine those instructions that are located 
separately in a wider region to coalesce memory accesses. 
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Figure 1. Characteristics of the memory hierarchy of Itanium
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We implemented two optimizations, one combining two 32-bit 
integer loads and the other combining two single-precision floating-
point loads, using our algorithm in the IBM Java JIT compiler for 
IA-64, and evaluated them by measuring the SPECjvm98 bench-
mark suite. In our experiment, we can improve the maximum 
performance by 5.5% with little additional compilation time 
overhead. Moreover, when we replace every declaration of dou-
ble for an instance variable with float, we can improve the 
performance gain by 7.3% for the MolDyn benchmark in the 
JavaGrande benchmark suite. 

Although we implemented our algorithm on IA-64, we can also 
apply our algorithm to a variety of architectures. Table 1 shows 
various architectures and their instructions to which we can apply 
our instruction combining. For PowerPC [15], S/390 [16], and 
ARM [2], we can combine some load operations by using a load-
multiple instruction. For IA-32 architectures and IBM’s network 
processor PowerNP [14], we can combine some 8-bit or 16-bit load 
operations into a 32-bit load, because we can access a 32-bit 
register per 8-bit or 16-bit (we call it partial register read) on these 
architectures. For IA-64, PowerPC, and the TMS320C6000 [33], 
we can combine shift and mask operations by using special bit-wise 
instructions (e.g. extract or rlwinm). 

Table 1. Instruction candidates for our instruction combining 

General-Purpose Processors 

IA-64 
64-bit integer load, single- and double-
precision pair-load, bit-wise operation 
(extract) 

PowerPC Load-multiple, constant load, bit-wise 
operations (rlwinm, …) 

IA-32 MMX/SSE instructions, Partial register 
read (e.g. AL/AH), memory operand 

S/390 Load-multiple, constant load, memory 
operand 

Embedded Processors 
ARM Load-multiple 
PowerNP Partial register read, constant load 
Embedded PowerPC 
(405, 440) 

Load-multiple, constant load, bit-wise 
operations (rlwinm, …) 

TMS320C6000 Bit-wise operation (extract) 

The following sections describe our approach, experimental results, 
related work, and concluding remarks. 

2. OUR APPROACH 
It is intuitive to put dependent instructions together because of their 
data dependence. However, it is not obvious to put independent 
ones together because an instruction can be moved across other 
instructions that have no true dependence on that instruction. 
Figure 2 shows differences between our approach and the lazy code 
motion (LCM) algorithm [25]. Since the LCM algorithm does not 
consider the combinable region, it moves instructions independ-
ently as shown in Figure 2(a). In contrast, our approach moves the 
target instructions to the last point of the region where they are 
combinable and whose execution frequency is low, and then it 
combines them as shown in Figure 2(b). 

Figure 3 shows two examples to explain our optimizations. Previ-
ous algorithms [1, 6, 27, 31] cannot optimize either example. 
Figure 3(a) is an example in which two 32-bit integer loads are 
combined. For IA-64, we can transform two 32-bit integer loads 
and two sign-extensions into a combination of a 64-bit integer load 

and two “extract with sign-extension” instructions for each 32-bit 
value if their memory addresses are contiguous. As a result, we can 
get equal or better performance1 along the left-hand path of Figure 
3(a) than the previous algorithms. Since most of the programs 

                                                                 
1 The sign-extension instruction (sxt4) can be eliminated when we 

use the sign-extension elimination algorithm [21]. If both sign 
extensions can be eliminated, the performance of our approach 
will be equivalent to that of the previous approach. 

Ins2Ins1 Our algorithm moves two
instructions at the last point
of the region in which they
are combinable and whose
execution frequency is low.

movable
area

The earliest point we can move instruction Ins1 or Ins2
in the program when we attempt to move it backward

The original instruction position

combinable
region

low execution
frequency

region

The result of code movement

b) Our code motion algorithm

Ins2Ins1

movable
area

combinable
region

low execution
frequency

region

a) Original lazy code motion algorithm

Since this algorithm does
not consider the combinable
region, it moves instructions
independently.

Figure 2. Our approach for independent instructions 

EA = a + 12
f1 = ldfs(EA)

EA = a + 8
f2 = ldfs(EA)

Original code

EA = a + 8
f2, f1 = ldfps(EA)

Result of our algorithm

EA = a + 8
f2 = ldfs(EA)

ldfs: single-precision floating-point load instruction
ldfps: single-precision floating-point load pair instruction

EA = a + 8
T = ld8(EA)

t1 = extr(T, 32, 32)
t2 = extr(T, 0, 32)

EA = a + 12
t1 = ld4(EA)
t1 = sxt4(t1)

EA = a + 8
t2 = ld4(EA)
t2 = sxt4(t2)

Original code Result of our algorithm

EA = a + 8
t2 = ld4(EA)
t2 = sxt4(t2)

ld4: 32-bit integer load instruction
ld8: 64-bit integer load instruction
sxt4: 32-bit sign extension instruction
extr: extract with sign-extension instruction
            (extr(T, 32, 32) extracts upper 32 bits and then extends sign)

a) Combining two 32-bit integer loads

b) Combining two single-precision floating-point loads

 
Figure 3. Two examples of our optimization for IA-64 
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available today are designed for the 32-bit architectures, 32-bit data 
types are still used frequently. For example, Java specifies “int” as a 
32-bit data type [8]. Therefore, this optimization (Figure 3(a)) is 
quite effective for the 64-bit architectures. 

Figure 3(b) is an example where two single-precision floating-point 
loads can be combined. IA-64 has pair-load instructions, ldfps and 
ldfpd, for single- and double-precisions, respectively, with which 
we can combine two floating-point loads that read contiguous 
memory locations. Our algorithm can take advantage of these 
instructions to improve the performance along the left-hand path in 
Figure 3(b). We note here that the target registers of a pair-load 
instruction must specify one odd- and one even-numbered register 
[17], but this restriction can be handled nicely by using a new 
register allocation approach based on preference-directed graph 
coloring [24]. 

In addition, our approach can combine instructions along the 
conditionally executed path. Both examples in Figure 3 offer an 
opportunity to apply instruction combining along the left-hand path, 
but not along the right-hand path. By applying our modified version 
of the LCM technique [25], we can optimize multiple instructions 
that are combinable along the conditionally executed path. 

For either example in Figure 3, we need to take the memory 
alignment into account. After the optimization, the two contiguous 
memory locations need to be aligned at the 64-bit boundary, since 
they must be loaded as 64-bit data. 

For dynamic compilers, it is important to use a fast algorithm and 
its efficient implementation to significantly reduce the compilation 
time for time consuming optimizations such as dataflow analyses. 
In particular, on a 64-bit architecture such as IA-64, a bit-vector 
implementation as we took is an attractive choice because of its 
longer word. 

2.1 Our Algorithm 
In this section, we describe a framework for putting the target 
instructions as close together as possible. Figure 4 shows a flow 
diagram of the four steps of our core algorithm. We perform this 
algorithm on the intermediate language level. Note that our JIT 
compiler also performs traditional optimizations in other phases 
(such as copy propagation [28], dead store elimination [28], 
traditional PRE [25], null check optimization [20], scalar replace-
ment [20], and sign-extension elimination [21]), though we do not 
describe them in Figure 4. 

For Step 1, we compute the combinable instructions sets (we call 
them groups) in the input code. We pre-define combining patterns 
in the compiler. Inputs of a pattern are right-hand side expressions 
(RHSEs) of instructions. The output of a pattern is an instruction 

sequence in which the inputs are combined. We include only the 
cases in which combining inputs produces equal or better perform-
ance. The compilation for a method takes the following three steps: 

 (1) We collect candidates of the RHSEs of each combining pattern. 
For example, we collect all loads for the examples in Figure 3. 
If the RHSEs are identical, we treat them as the same candidate. 
For example, all "load[L1+8]" are treated as the same candidate 
regardless of content of L1. For each candidate, we also sum up 
the execution frequency of each position in the method. 

 (2) We sort candidates based on the total execution frequency 
computed by (1) and limit the number of candidates to reduce 
the compilation time. 

 (3) We compute the combinable instruction sets from the candi-
dates of (2). 

Next, we attach a group attribute, represented in bit-vector form, to 
each instruction. As we mentioned before, if the RHSEs are identi-
cal, we allocate the same bit for them. For example, suppose that 
there are five instructions in a given method, and the two instruc-
tions corresponding to bits 0 and 1 can be combined, and the two 
instructions corresponding to bits 2 and 4 can also be combined. 
The former two instructions share the same attribute of {11000}, 
while the latter two instructions share the same attribute of {00101}. 
The instruction corresponding to bit 3 cannot be combined with any 
instruction, so that instruction has the special empty attribute of 
{00000}. For now, let us assume the simplest case where one 
instruction is always included only within a single group. This 
assumption sufficient for the two examples in Figure 3, because 
they require that the two contiguous memory locations must be 
aligned at a 64-bit boundary (that is, each instruction is always 
included only within a single group). We will describe a solution in 
Section 2.1.1 when one instruction is included within multiple 
groups. 

For Step 2, we compute five sets for the input of dataflow analysis. 
Our code motion algorithm is based on the Lazy Code Motion 
(LCM) algorithm [25], which originally has three sets TRANSP, N-
COMP, and X-COMP as the inputs, and two sets N-INSERT and 
X-INSERT as the outputs. These five sets are defined as follows 
(N- and X- represent the entry and the exit, respectively): 

TRANSP(n): the set of instructions that are located in the given 
method and which can be moved through basic block n. 

N-COMP(n): the set of instructions that are located in basic block 
n and which can be moved to the entry point of the basic block. 

Compute combinable instruction sets(1)

Compute five sets for the input of dataflow analysis(2)

Solve dataflow equations using the sets computed by step (2)(3)

Transform instructions within each basic block(4)  
Figure 4. Flow diagram of our algorithm 

for (each n ∈  all basic blocks){ 
    N-COMPG(n) = N-COMP(n) 
    for (each e ∈  N-COMP(n)){ 
        g = group of e 
        N-COMPG(n) += all instructions within g 
    } 
    X-COMPG(n) = X-COMP(n) 
    for (each e ∈  X-COMP(n)){ 
        g = group of e 
        X-COMPG(n) += all instructions within g 
    } 
} 

Figure 5. Algorithm for computing N-COMPG and X-COMPG
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X-COMP(n): the set of instructions that are located in basic block 
n and which can be moved to the exit point of the basic block. 

N-INSERT(n): the set of instructions that will be inserted at the 
entry point of the basic block n. 

X-INSERT(n): the set of instructions that will be inserted at the 
exit point of the basic block n.  

In addition, our algorithm requires two new sets as additional 
inputs: N-COMPG and X-COMPG (G denotes group). We define 
these two sets as follows: 

N-COMPG (n): the set of instructions whose forward movements 
should be stopped at the entry point of n for instruction combin-
ing. 

X-COMPG (n): the set of instructions whose forward movements 
should be stopped at the exit point of n for instruction combining. 

We first compute the three sets: TRANSP, N-COMP, and X-COMP, 
and then compute the two new sets: N-COMPG and X-COMPG, 
using the algorithm of Figure 5. Note that we need to correctly find 
the barriers for moving a memory load to compute the TRANSP set. 
The barriers are the same as those of scalar replacement [7, 13, 22], 
which improves the accesses to non-local variables by replacing 
them with accesses to local variables.  

For Step 3, we solve the dataflow equations using the five sets 
computed in Step 2 in order to compute insertion points and 
redundant regions. The LCM algorithm consists of two parts. The 
first part is the Busy Code Motion (BCM) [25], which moves an 
instruction backward if its execution count is not increased. The 
second part is the lazy code motion, which moves an instruction 

forward in order to minimize the register pressure. Since we use the 
original BCM, the execution count of a moved instruction is the 
same as that of BCM. We modified the lazy code motion part 
(which moves instructions forward) to put the instructions in the 
same group as close together as possible, as shown in Figure 2(b). 
We call our approach Group-Sensitive Code Motion (GSCM). Our 
GSCM stops the forward motion of an instruction B at the point 
where it reaches one of the instructions in the group of B. By these 
modifications, we achieve the code motion as shown in Figure 2(b). 

Figure 6 shows the details of our GSCM algorithm. Bold text 
denotes our modifications and additions to the LCM algorithm. 
First, the BCM algorithm produces two sets as output: N-
EARLIEST and X-EARLIEST. They denote the earliest points to 
which an instruction can be moved backwards on the control flow 
graph. By modifying the steps (b) through (d) in Figure 6, the 
forward movement of an instruction B is stopped at the point where 
it reaches one of the instructions in the group of B. 

The LCM algorithm first eliminates redundancies in every basic 
block, and then it performs global code motion to eliminate redun-
dancies between basic blocks. In other words, it transforms the code 
in a program twice. As long as each instruction is independently 
optimized, this approach can be used. When some instructions are 
associated and optimized, it is efficient to transform code once in 
the last step. For that purpose, we modified Figure 6 Step (e) and 
added Step (f). The LCM algorithm computes two sets N-
INSERT(n) and X-INSERT(n), but we combine them into X-
INSERT(n) for local code transformation. Step (f) computes N-
AVAIL and X-AVAIL, which denote sets of those instructions in 
the X-INSERT set that are available at the entry point and the exit 
point of each basic block, respectively. 

(a) Execute the Busy Code Motion algorithm [25]. Inputs are TRANSP, N-COMP, and X-COMP. Outputs are N-EARLIEST and X-
EARLIEST. 

(b) Delayability Analysis: 

(n)COMP-N

(m)COMP-X

G

G

    DELAYED(n)-N)EARLIEST(n-X    DELAYED(n)-X

)DELAYED(m)-X(   )EARLIEST(n-N    DELAYED(n)-N
Pred(n)m

•+=

•+= ∏
∈  

(c) Computation of Latestness: 

)DELAYED(m)-N  (    DELAYED(n)-X    LATEST(n)-X

    DELAYED(n)-N    LATEST(n)-N

Succ(n)m
∑

∈
+•=

•=

(n)COMP-X

(n)COMP-N

G

G

 

(d) Isolation Analysis: 

∏
∈

•+=

+=

Succ(n)m
)ISOLATED(m-N        )EARLIEST(m-N      )ISOLATED(n-X

)ISOLATED(n-X    )EARLIEST(n-X    )ISOLATED(n-N

(m)COMP-N G  

(e) Insertion Point: 
TRANSP(n)))ISOLATED(n-XLATEST(n)-(X             ))ISOLATED(n-N    LATEST(n)-(N    INSERT(n)-X ••+•=  

(f) Availability Analysis: 

TRANSP(n))    (n)AVAIL-(N    INSERT(n)-  X  (n)AVAIL-X

(m)AVAIL-   X    AVAIL(n)-N
Pred(n)m

•+=

= ∏
∈  

Figure 6. Algorithm of our Group-Sensitive Code Motion 
(Bold text denotes our modifications and additions to the original LCM algorithm) 
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For Step 4, we transform the code for each basic block using X-
INSERT and N-AVAIL as computed in Step 3. Figure 7 shows the 
algorithm for transforming the code in basic block n. This algorithm 
is roughly divided into two parts. The first part scans each instruc-
tion in the block n in order to perform instruction combining in the 
block n using N-AVAIL(n). The second part inserts instructions for 
X-INSERT(n) into the block n. 

2.1.1 One Instruction is Included within Multiple 
Groups 
This section describes a solution when one instruction is included 
within multiple groups. Since the two examples in Figure 3 require 
that the two contiguous memory locations must be aligned at a 64-

bit boundary, each instruction is always included only within a 
single group. However, in general, it is more common that one 
instruction might be included within multiple groups. 

For example, we assume that GROUP1 (Ins0 and Ins1), GROUP2 
(Ins1 and Ins2), and GROUP3 (Ins2 and Ins3) can be combined in 
Figure 8. The easiest solution is to set up only one group for each 
instruction as shown in (a). In this example, we exclude GROUP2. 
Using this solution, Ins2 in BB5 is moved to BB1 through BB4. 
Then the instructions of BB4, both in GROUP1 and GROUP3, can 
be combined. However, this solution misses the opportunity for 
combining Ins1 and Ins2. In this example, we cannot combine them 
in BB3 and BB4. 

Therefore, we allow the same instruction to be included within 
multiple groups. In this case, each group contains a pair of combin-
able instructions. First, we sort the groups that include the same 
instruction, based on the effectiveness of combining for each group. 
We start combining based on that order. In Figure 8, we assume 
that the order of priority is GROUP2, GROUP1, and GROUP3. In 
this case, GROUP2 is transformed first. Next, for GROUP1, we 
attempt to combine Ins0 (which has not been transformed) with the 
combined result of GROUP2. If it cannot be combined, the original 
instruction is left alone. For GROUP3, we attempt to combine Ins3 
in the same way.  

Figure 9 shows an actual example corresponding to Figure 8. For a 
32-bit constant load on the PowerPC, we generally need two 
instructions to set the upper and the lower 16-bit values. However, 
we can save one instruction by using an arithmetic instruction. 

Figure 9(b) shows the results after transforming the instructions in 
BB4 in the order of GROUP2, GROUP1, and GROUP3. We first 
combine Ins1 and Ins2. Next, we transform Ins0 because we can 
compute the result of Ins0 by using the new Ins1. We can also 
transform Ins3 by using the new Ins2. If Ins0 or Ins3 cannot be 
combined, that instruction will be left as it is. 

/* Note: T[expr] has a temporary variable for the expr. */ 
 
inner = N-REACH(n); 
for (each I from the first to the last instruction in block n){ 
    R = right-hand expression of I; 
    inner = inner – all instructions by which 

movement is stopped by R; 
    if (R ∈  inner){ 
        if (there is an R before I in this block && the result of R 

does not change in the meantime) 
            Insert the code “T[R] = R” at the position; 
        replace R at I with the temporary variable T[R]; 
    } else { 
        g = group of R; 
        if (there is an instruction in g before I in this block && 

 R can be moved to that instruction){ 
            Insert “the code C in which the instructions in g 

 are combined” at the instruction; 
            inner += all instructions in g; 
            R is replaced with T[R]; 
        } 
    } 
    inner ∪ = R; 
    inner = inner – all instructions by which 

 movement is stopped by the destination variable of I; 
} 
 
// Insert instructions included in X-INSERT(n) 
ins = X-INSERT(n); 
for (each e ∈  ins){ 
    e_g = group of e ∩ X-INSERT(n); 
    if (instructions in e_g are combinable && 

 e_g – inner ≠ ∅ ){ 
        P = the end of block n; 
        if (there is an instruction in e_g in block n && 

 the instruction can be moved to P) 
            P = position of the instruction; 
        Insert “the code C in which the instructions in e_g 

 are combined” at P; 
        inner += all instructions in e_g; 
        ins = ins – all instructions in e_g; 
    } else if (e ∉  inner){ 
        Insert “T[e] = e” at the end of block n; 
    } else if (there is an instruction e in the block n that 

 can be moved to the end of block n) 
        Insert “T[e] = e” at the instruction e; 
} 

Figure 7. Code transformation algorithm in block n 

Ins2

Ins0 Ins1 Ins0
Ins1
Ins3

           Corresponding group
Ins0: {1100}               (GROUP1)
Ins1: {1100}, {0110}  (GROUP1,2)
Ins2: {0110}, {0011}  (GROUP2,3)
Ins3: {0011}               (GROUP3)

BB1 BB2 BB3 BB4

BB5

Ins0 and Ins1 are combinable (GROUP1)
Ins1 and Ins2 are combinable (GROUP2)
Ins2 and Ins3 are combinable (GROUP3)

(a) Set up only one group for one instruction
           Corresponding group
Ins0: {1100}          (GROUP1)
Ins1: {1100}          (GROUP1)
Ins2: {0011}          (GROUP3)
Ins3: {0011}          (GROUP3)

(b) Set up multiple groups for one instruction

 
Figure 8. Example in which some instructions are included in 

multiple groups 
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2.2 Two Examples from Figure 3 
In this section, we demonstrate how our algorithm transforms the 
two examples in Figure 3. Figure 10 shows the output instruction 
sequences for the examples of Figure 3 (a) and (b). We note here 
that we deliberately generate a redundant sign-extension (sxt4) in 
the instruction sequence in Figure 10(a). Since the previous extract 
instruction (extr) also performs a sign-extension, the sign-extension 
instruction (sxt4) is obviously redundant but necessary for effec-
tively optimizing the sign-extensions. We will explain this in more 
detail using Figure 12. 

Figure 11 shows the results after applying Steps 2 and 3 to Figure 
3(a). As regards Figure 3(b), if ld4 is read as ldfs, the same result 
can be obtained. From Step 2, the five sets, TRANSP, N-COMP, 
X-COMP, N-COMPG, and X-COMPG, will be obtained as shown 
in STEP2 of Figure 11. As the next step, by solving the dataflow 
equations as shown in Figure 6 with the five sets computed in Step 
2, two sets, X-INSERT and N-AVAIL, will be obtained as shown 
in STEP3 of Figure 11. When we perform the LCM algorithm, the 
result of X-INSERT and N-AVAIL will be “{00}” for every basic 
block. 

Figure 12(a) shows the transformation result immediately after 
applying Step 4 (that is, the output of our optimization) with the 
results (X-INSERT and N-AVAIL) computed by Step 3. In Step 4, 
the instruction sequence shown in Figure 10(a) is used. 

On PowerPC, to set a 32-bit constant value into a register requires two instructions.
We can add a register and signed 16-bit constant value using one instruction.

r2=0x0002A800

r0=0x0001C800 r1=0x00023800 r0=0x0001C800
r1=0x00023800
r3=0x00031800

BB1 BB2 BB3 BB4

BB5

Ins0: 0x0001C800
Ins1: 0x00023800
Ins2: 0x0002A800
Ins3: 0x00031800

a) Before optimization

r2=0x0002A800 r0=0x0001C800
r2=0x0002A800

r1=0x00023800
r2 = r1 + 0x7000

r1=0x00023800
r2 = r1 + 0x7000
r0 = r1 - 0x7000
r3 = r2 + 0x7000

BB1 BB2 BB3 BB4

BB5

b) After optimization

Ins0 and Ins1 are combinable (GROUP1)
Ins1 and Ins2 are combinable (GROUP2)
Ins2 and Ins3 are combinable (GROUP3)

Figure 9. Constant load optimization for PowerPC 

a) For Figure 3(a): 
Output instruction sequence in which two instruction se-
quences ld4(a+8) and ld4(a+12) are combined: { EA=a+8; 
T=ld8(EA); T1=extr(T, 32, 32); T1=sxt4(T1); T2=extr(T, 
0, 32); T2=sxt4(T2); } 

b) For Figure 3(b): 
Output instruction sequence in which two instruction se-
quences ldfs(a+8) and ldfs(a+12) are combined: { EA=a+8; 
T2,T1=ldfps(EA); } 

Figure 10. Step 1 for Figure 3(a) and (b) 

EA = a + 12
t1 = ld4(EA)
t1 = sxt4(t1)

EA = a + 8
t2 = ld4(EA)
t2 = sxt4(t2)

BB1 BB2

BB3

BB1:
N-COMP X-COMP

bit0: ld4(a + 8) corresponding group {11}
bit1: ld4(a + 12) corresponding group {11}

BB2:
BB3:

01
00
10

01
00
10

N-COMPG

11
00
11

X-COMPG

11
00
11

TRANSP

00
00
00

BB1:
N-REACH

BB2:
BB3:

00
00
10

X-INSERT

11
10
00

STEP2

STEP3

 
Figure 11. Applying Steps 2 and 3 to Figure 3(a) 

EA = a + 8
T = ld8(EA)

T1 = extr(T, 32, 32)
T1 = sxt4(T1)

t1 = T1
T2 = extr(T, 0, 32)

T2 = sxt4(T2)

EA = a + 8
t2 = T2

t2 = sxt4(t2)

EA = a + 8
T2 = ld4(EA)

BB1
BB2

BB3

a) Immediately after applying the Step 4

b) Applying copy propagation and dead store
    elimination to (a)

EA = a + 8
T = ld8(EA)

T1 = extr(T, 32, 32)
t1 = sxt4(T1)

T2 = extr(T, 0, 32)
T2 = sxt4(T2)

t2 = sxt4(T2)

EA = a + 8
T2 = ld4(EA)

BB1
BB2

BB3
 

Figure 12. Applying Step 4 to Figure 11 
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Next we apply both copy propagation and dead store elimination 
(Figure 12(b)). As we mentioned before, we deliberately generate a 
redundant sign-extension to effectively optimize sign-extensions. In 
this example, “sxt4(T2)” in BB3 becomes partially redundant 
because it appears in BB1. Thus, the original PRE technique can 
move it from BB3 to BB2. Finally, this example can be transformed 
to Figure 3(a) by performing several traditional optimizations, such 
as a sign-extension elimination [21], copy propagation, and dead 
store elimination. Regarding Figure 3(b), we can obtain the result of 
our approach in the same way as in (a) by using the code sequence 
in Figure 10(b). 

2.3 Other Optimizations Using Our Algorithm 
In the following section, we describe some optimizations that can 
be made by performing additional transactions with the algorithm 
described in Section 2.1. Section 2.3.1 describes instruction 
combining for dependent instructions. Section 2.3.2 describes a 
combination of loop transformations and instruction combining. 

2.3.1 Optimizing Dependent Instructions 
Although our approach is characterized by optimizing independent 
instructions, it is also possible to optimize two dependent instruc-
tions. Figure 13 shows an example on the PowerPC. By using an 
rlwinm instruction, we can eliminate one instruction along the 
left-hand path as shown in (b) as long as t1 is dead. 

Note that we need to consider the order of instructions if two 
dependent instructions are optimized. Here, we call “the instruction 
that must proceed” FIRST, and we call “the instruction that must 
follow” SECOND. In Figure 13, FIRST is “t1 = a >> 16” and 
SECOND is “t2 = t1 & 0xff”. In order to avoid a situation in which 
we apply an incorrect optimization in the reverse order (that is, 

SECOND comes before FIRST), we assume that there is a barrier 
for FIRST immediately before FIRST. 

2.3.2 Combination with Loop Transformations 
We can also optimize array accesses between loop iterations in 
combination with loop transformations. Davidson et al. [6] de-
scribed two loop transformations to that end. These transformations 
first perform loop versioning to create two versions of the loop 
using both alignment and alias checks as shown in Figure 14. Next, 
loop unrolling expands the loop body of the safe version. If we 
perform these two loop transformations, we can combine array 
accesses between loop iterations by applying the GSCM algorithm 
to the unrolled loop body. 

Applying both our approach and loop transformations together can 
generate even more highly optimized code than previous ap-

t1 = a >> 16

t2 = t1 & 0xff

a) Before optimization

t1 = a >> 16
t2 = rlwinm(a, 16, 24, 31)

b) After optimization

t2 = t1 & 0xff

If t1 is dead, it can be
eliminated

rlwinm: Rotate Left Word Immediate Then AND with Mask instruction
           (rlwinm(a, 16, 24, 31) rotates left 'a' 16 bits and then masks
            between the 24th and 31st bits)

a: 0t2:

0 31

Figure 13. Example where dependent instructions are 
optimized on PowerPC 

Alignment and
Alias check

Unrolled loop
body

Original loop
body

Original loop
body

Iterate
n mod unroll

Iterate
n / unroll

OKNG

Apply our
algorithm to this

loop body

 
Figure 14. Combination with loop transformations 

for (i = 0; i < n-1; i+=2) {
    T1,T2 = ldfps(a[i]);
    if (max < T1) max = T1;
    if (max < T2) max = T2;
}
if ((n & 1) == 1){
    T = a[n-1];
    if (max < T) max = T;
}

a) Original program
float a[ ];
for (i = 0; i < n; i++)
    if (max < a[i]) max = a[i];

b) After loop transformations
for (i = 0; i < n-1; i+=2) {
    if (max < a[i]) max = a[i];
    if (max < a[i+1]) max = a[i+1];
}
if ((n & 1) == 1){
    if (max < a[n-1]) max = a[n-1];
}

c) After our optimization

a[i]
a[i]

a[i+1]
a[i+1]

Memory loads in the loop body
a[i]

a[i]

a[i] (including a[i+1])

Our approach
simultaneously
performs both

scalar replacement
and instruction

combining

Figure 15. Combination of our approach and loop 
transformations 
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proaches [1, 6, 27, 31], which combine array accesses between loop 
iterations by unrolling loops, because of the code motion of our 
approach. Figure 15 shows an example. Previous approaches 
cannot combine the two memory loads, a[i] and a[i+1] in the loop 
body of Figure 15(b), because they do not exploit global code 
motion. In contrast, our approach can combine them as shown in 
Figure 15(c) by using the GSCM algorithm. Moreover, because our 
approach can simultaneously perform both scalar replacement and 
instruction combining in one phase, we can reduce four memory 
loads to one in the loop body in Figure 15(b). Since our approach 
globally optimizes the whole method, we can also reduce two 
memory loads to one after loop (a[n-1]) in the same phase. 

3. EXPERIMENTS 
We chose the SPECjvm98 benchmark suite [32] for evaluating our 
optimizations in the IBM Developers Kit for IA-64, Java Technol-
ogy Edition, Version 1.4. The basic GC algorithm is based on a 
mark and sweep algorithm [3]. We ran each benchmark program 
from the command line with the problem size of 100, and with the 
initial and maximum heap sizes of 96 MB. Each benchmark 
program was executed 10 times consecutively for each independent 
run. We implemented two optimizations in Figure 3 using the 
GSCM algorithm in the IBM Java JIT Compiler. As we explained 
in Section 2, previous algorithms [1, 6, 27, 31] cannot handle these 
optimizations. All of the experiments were conducted on an IBM 
IntelliStation Z Pro model 6894-12X (two Intel Itanium 800 MHz 
processors with 2 GB of RAM), running under Windows. 

3.1 Performance Improvement 
We measured the following two versions to evaluate our approach. 
Both versions performed two optimizations in Figure 3, but we 
have not implemented yet either combining for double-precision 
floating-point loads or other optimizations described in Section 2.3. 

•  Baseline: Perform instruction combining with the original LCM 
algorithm [25]. The other optimizations, including copy propaga-
tion [28], dead store elimination [28], traditional PRE [25], null 
check optimization [20], scalar replacement [22], and sign-
extension elimination [21], are enabled. 

•  Our approach: Perform instruction combining with our GSCM 
algorithm. The other optimizations described in the Baseline are 
enabled.  

Previous approaches [28, 29] for combining dependent instructions 
cannot optimize the examples given in Figure 3 since they are 
independent instructions. Without applying loop transformations, 
previous approaches [1, 6, 27, 31] for combining independent 
instructions are equivalent to our baseline, and thus it is fair to 
examine the performance improvement by our algorithm over the 
baseline. This is because the dynamic compiler has budget limita-
tions, particularly for compilation time and thus loop transforma-
tions such as loop unrolling are usually avoided to limit the code 
expansion. It is interesting to see how the performance will be 
improved by instruction combining when loop transformations such 
as loop unrolling are performed before combing, but that is beyond 
the scope of our paper. 

Figure 16 shows the performance improvement in the best time 
over the baseline for SPECjvm98. Because the SPECjvm98 metric 
is calculated from the best runs, we took the best time from repeti-
tive runs for the comparison. Thus, these results do not include 
compilation time. Our experimental results show that our algorithm 

improves the geometric mean (maximum) performance by 1.8% 
(5.5%) over the baseline. Our approach is particularly effective for 
compress, mpegaudio, and jack. We find that combining integer 
loads (Figure 3(a)) for instance variables is quite effective for 
compress and jack, and that combining floating-point loads (Figure 
3(b)) for array accesses whose indices are constant is similarly 
effective for mpegaudio. Therefore, our approach is effective even 
for those instructions that are not related to any loop induction 
variable. 

3.2 JIT Compilation Time 
This section describes how our approach affects the JIT compilation 
time. For Figure 17, we measured the breakdown of the JIT 
compilation time during 10 repetitive runs by using a trace tool on 
IA-64. In summary, our approach increased the total compilation 
time by 0.55% (0.72%) for the geometric mean (maximum), while 
achieving significant performance improvement as shown in Figure 
16. In addition, our approach caused little increase (0.47% to 
0.72%) of the compilation time regardless of the benchmark. 

3.3 Discussions 
There are three categories of memory loads we can potentially 
combine for IA-64. They are integer loads, single-precision float-
ing-point loads, and double-precision floating-point loads. For 
integer loads, the gain was 3.9% for compress and 2.0% for jack. 
For single-precision floating-point loads, the gain was 5.5% for 
mpegaudio. 

Higher bars are better
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Figure 16. Performance improvement in the best time for 

SPECjvm98 over the baseline 

Lower bars are better
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Figure 17. Compilation time increases for SPECjvm98 over the 

baseline 
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For double-precision floating-point loads, we can expect a larger 
gain since they are more often used than single-precision floating-
point loads, but we have not fully implemented combining them yet. 
In order to support this, we would need to modify the JVM. This is 
because any operand of a paired load instruction for double-
precision (the ldfpd instruction) on IA-64 must be aligned at a 128-
bit boundary, but the current JVM aligns objects at the 64-bit 
boundaries. In order to estimate the effectiveness of combining 
double-precision floating-point loads, we performed an experiment 
replacing every declaration for double of an instance variable 
with float in the MolDyn (Molecular Dynamics simulation) 
benchmark in the JavaGrande benchmark suite. The result was that 
our algorithm improved this benchmark by 7.3% over our baseline 
(using the LCM algorithm). 

Finally, for any of the three categories, we could further enhance 
performance with combining, if we additionally supported the loop 
transformations such as loop unrolling described in Section 2.3.2 in 
our JIT compiler. Once we fully support all the features mentioned 
above, we will be able to achieve greater performance improve-
ments with combining. 

4. RELATED WORK 
Previous approaches for instruction combining can be classified 
into two families. The first family combines dependent instructions 
[28, 29]. This family moves a single instruction backward to the 
location immediately after another instruction that has a true 
dependence on that instruction, and then it combines these two 
instructions. This relies on data dependence for moving an instruc-
tion, and thus it cannot combine independent instructions. It 
performs global code motion, but it cannot combine instructions 
along the conditionally executed path as in the example in Figure 
13. 

The second family combines independent instructions. This family 
combines array accesses between loop iterations by unrolling the 
loop [1, 6, 27, 31]. This combines the independent instructions for 
array accesses related to a loop induction variable, but it does not 
perform global code motion. Because this approach is limited to a 
loop whose body consists of a single basic block, it cannot optimize 
memory accesses included in a complex loop as in the example in 
Figure 15. 

In contrast, our approach combines both dependent instructions and 
independent instructions. It can also combine instructions along a 
conditionally executed path by using global code motion (as shown 
in Figure 3 and Figure 13). Moreover, it is not limited to memory 
accesses, but it can also be applied to other instructions. We already 
discussed some variations of our approach in Section 2.3. 

Recently, Nandivada et al. proposed an approach that reorders the 
variables in the spill area for maximizing a chance of combining 
consecutive spill codes into a load- or a store-multiple instruction 
after a register allocation. We can use a similar approach for further 
performance improvement. Let us note here about register con-
straints. Because load- and store-multiple instructions require 
specific numbered registers, their approach needs to generate 
register swapping code. In our optimization, a pair-load instruction 
also requires specific numbered (odd and even) registers as men-
tioned in Section 2. We solve this register constraint problem by 
using preference-directed graph coloring [24] after instruction 

combining is performed, and thereby we systematically reduce the 
need to generate the register swapping code. 

Strength reduction is similar to instruction combining, but it 
converts a rather expensive instruction, such as a multiplication or a 
division, into a less expensive one, such as an addition or a subtrac-
tion. There are some strength reduction algorithms using a partial 
redundancy elimination (PRE) technique [11, 23, 26]. Basically, 
they move a single instruction backward to the location immedi-
ately after another instruction that has a true dependence on that 
instruction in order to determine whether its complexity can be 
reduced. In other words, these approaches only optimize the 
dependent instructions but not independent ones. 

5. CONCLUSION 
In this paper, we propose a new algorithm for instruction combin-
ing by using global code motion in order to apply instruction 
combining in a wider region. Our group-sensitive code motion 
(GSCM) algorithm is based on the Lazy Code Motion (LCM) 
algorithm [25]. We modified it to search for more potential candi-
dates and to put the target instructions together for combining in a 
wider region. By using this code motion algorithm, we can optimize 
both dependent instructions and independent ones. When we use 
instruction combining to coalesce memory accesses, we can reduce 
the memory traffic by combining narrow memory references with 
contiguous addresses into a wider reference for taking advantage of 
a wide-bus architecture. We implemented two optimizations for 
coalescing memory access, one combining two 32-bit integer loads 
and the other combining two single-precision floating-point loads, 
using our algorithm in the IBM Java JIT compiler for IA-64, and 
evaluated these optimizations by measuring the SPECjvm98 
benchmark suite. In our experiment, we can improve the maximum 
performance by 5.5% with little additional compilation time 
overhead. Moreover, when we replace every declaration for dou-
ble of instance variables with float, we can improve the per-
formance gain by 7.3% for the MolDyn benchmark in the Java-
Grande benchmark suite. Our approach can be applied to a variety 
of architectures and to programming languages besides Java. 
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8. APPENDIX 

Although we took the best times in Figure 16 to conform to the 
SPECjvm98 metric, it is interesting to compare the overall times, 
which include the compilation times and GC times for 10 repetitive 
runs. Figure 18 shows the performance improvements for the 
overall times over the baseline. Results are slightly worse than in 
Figure 16 because of the additional compilation time overhead. 
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Figure 18. Performance improvement for the overall time for 

SPECjvm98 over the baseline 


