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Abstract
This short paper outlines a theory for deriving the traditional

metrics of miss rate and reuse distance from a single mea-

sure called the footprint. It gives the correctness condition

and discusses the uses of the new theory in on-line locality

analysis and multicore cache management.

Categories and Subject Descriptors D.2.8 [Metrics]: Per-

formance measures

General Terms measurement, performance

Keywords data footprint, reuse distance, miss rate

1. Footprint as a Foundation
A footprint is the amount of data accessed in a time win-

dow. A performance tool often measures the footprint for an

execution window, i.e. taking a snapshot. A complete mea-

sure, however, has to consider all execution windows, which

is quadratic to the length of the execution. Only recently the

complete measurement has become computationally feasi-

ble. The fastest solution is a linear time algorithm that com-

putes the average footprint for all window lengths [3]. In this

section, we show that the average footprint fp is “higher or-

der” because it can be used to compute three other locality

metrics: the lifetime lf , miss rate mr and reuse distance rd.

The average footprint Let W be the set of
�n
2

�
windows of

a length-n trace. Each window w =< l, s > has a length l
and a footprint s. The footprint function fp(l) averages over

all windows of the same length l. There are n−l+1 footprint

windows of length l. The average is the total footprint in

these windows divided by n− l + 1.

For example, the trace “abbb” has 3 windows of length 2:

“ab”, “bb”, and “bb”. The size of the 3 footprints is 2, 1, and

1, so fp(2) = (2 + 1 + 1)/3 = 4/3.

Data lifetime in cache Let the cache size be c. Once a

program brings in a data block in cache, its lifetime measures
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how long before the program accesses c other data and evicts

this block. The expected lifetime is the average length of

time the program takes to fill up an empty cache.

We define the lifetime function lf(c) as the inverse

of the footprint function, shown below. The invariance

fp(lf(c)) = fp(fp
−1

(c)) = c symbolizes the conver-

sion that when the footprint is the cache size, the footprint

window is the lifetime.

lf(c) = fp
−1

(c)

The conversion is shown visually in Figure 1. From the

average footprint curve, we find cache size c on the y-axis

and draw a flat line to the right. At the point the line meets

the curve, the x-axis value is the lifetime lf(c).
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Figure 1: Finding data lifetime from data footprint

Miss rate It takes a program lf(c) time to access c distinct

data. It continues to access these data until the time lf(c+1),
when a new data block is accessed, triggering a capacity or

compulsory miss. The time interval, lf(c+1)− lf(c), is the

miss-free period when the program uses only in-cache data.

We use the interval as the average inter-miss gap im(c). The

miss rate, mr(c), is its reciprocal as shown below.

mr(c) =
1

im(c)
=

1
lf(c + 1)− lf(c)

Cache conflicts (due to limited associativity) can be esti-

mated based on reuse distance [1].



Reuse distance For each memory access, the reuse dis-

tance, or LRU stack distance, is the number of distinct data

used between this and the previous access to the same da-

tum. The distribution function rd(c) gives the fraction of

data accesses that have reuse distance c. The capacity miss

rate, mr(c) is the total fraction of reuse distances greater

than the cache size c. To compute rd(c), we have

rd(c) = mr(c)−mr(c + 1)

Correctness condition The derivations from footprint to

lifetime and from lifetime to miss rate are not always correct.

To understand correctness, consider the reuse distance and

the footprint both as window statistics. The reuse distance is

the footprint of its reuse window. A reuse window is special

in that it starts and finishes with an access to the same datum

with no intervening reuses. It is a subset of all windows

(n out of
n(n+1)

2 ). We define the average footprint over the

reuse windows as rfp(l), the same way we define fp(l) over

all windows. The correctness requires that the two functions

be equal [2].

Theorem 1 (Correctness). The footprint-based conversions

are accurate if the average footprint of all reuse windows

equals to the average footprint of all windows, for every

window length l.

Consider the trace “wxyzy” as an example. We show the

average all-window footprint fp and reuse-window footprint

rfp in one table. We inverse fp to get the lifetime and take

the gradient to predict the miss rate, shown in the other table.

l fp(l) rfp(l)
1 1 1

2 2 2

3
8
3 0

c mr(c) accu-

fp pred actual racy

1 100% 100% 100%

2 66% 80% 83%

The prediction is accurate for cache size c = 2 but not

c = 3, as stipulated by the correctness condition. As to real

applications, an empirical evaluation shows good accuracy

for the full suite of SPEC 2000 and 2006 benchmark pro-

grams [2].

2. A Higher Order Theory
In algebra, the term order refers to the degree of a polyno-

mial. Through differentiation, a higher order function can

derive a lower order function. If we use the concept liberally

on locality functions (over the discrete integer domain), we

see a higher order locality theory, as shown in Figure 2.

As functions, footprint, lifetime, miss rate and reuse dis-

tance are mutually derivable, through differentiation from

the footprint (as shown earlier) or in the reverse direction

through integration. The footprint can be analyzed through

sampling, e.g. by tracing a window of program execution pe-

riodically. By reducing the sampling frequency, the cost can

be arbitrarily reduced. In addition when multiple programs
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Figure 2: Locality metrics are mutually derivable.

run together, the total footprint is simply the sum of the in-

dividual footprints.

In comparison, the miss rate is not composable. We can-

not simply use the solo-run miss count as its miss count in a

parallel execution, especially considering that the miss count

changes depending on co-run peers. Neither is the reuse dis-

tance composable across multiple programs. According to

the new theory, however, we can compute the miss rate and

reuse distance from the footprint, and the footprint is not

only composable but also measurable in real time. There-

fore, the theory enables efficient and composable analysis of

these other metrics and may have uses in:

• On-line miss-rate curve analysis. For a set of running

programs, we can use on-line sampling to find out the

miss rate of would-be solo execution for all cache sizes.

• Cache conscious task regrouping. Through the above on-

line analysis, we can compose and compute the perfor-

mance of all co-run combinations and re-schedule pro-

grams to minimize their interference in shared cache [4].

• Optimal cache partitioning. We can solve the generalized

problem to determine what programs share what fraction

of cache. The current policies of all sharing and all parti-

tioned are just two extremes in a broad spectrum.
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