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Abstract
As multi-core processors become commonplace and cloud com-
puting is gaining acceptance, more applications are run in a shared
cache environment. Cache sharing depends on a concept called
footprint, which depends on all cache accesses not just cache
misses. Previous work has recognized the importance of footprint
but has not provided a method for accurate measurement, mainly
because the complete measurement requires counting data access
in all execution windows, which takes time quadratic in the length
of a trace.

The paper first presents an algorithm efficient enough for off-
line use to approximately measure the footprint with a guaranteed
precision. The cost of the analysis can be adjusted by changing the
precision. Then the paper presents a composable model. For a set of
programs, the model uses the all-window footprint of each program
to predict its cache interference with other programs without run-
ning these programs together. The paper evaluates the efficiency of
all-window profiling using the SPEC 2000 benchmarks and com-
pares the footprint interference model with a miss-rate based model
and with exhaustive testing.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]: Modeling techniques; D.2.8 [Metrics]: Performance mea-
sures

General Terms measurement, performance

Keywords data footprint, cache interference, reuse distance, com-
posable models

1. Introduction
A basic question in multi-core processor design is whether to use
partitioned or shared cache. Partitioned cache can be wasteful when
only one program is running. Shared cache is risky since programs
interfere with each other.

Current multi-core processors use a mix of private and shared
cache. Intel Nehalem has 256KB L2 cache per core and 4MB to
8MB L3 cache shared by all cores. IBM Power 7 has 8 cores,
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with 256KB L2 cache per core and 32MB L3 shared by all cores.
Cache sharing becomes a significant factor. The performance of a
program may change drastically depending on what other programs
are running.

Cache sharing models can be loosely divided into on-line and
off-line types. On-line models are used to minimize the interfer-
ence among programs that are currently being executed on a given
machine. Off-line models do not improve performance directly but
can be used to understand the causes of interference and to predict
its effect before running the programs (so they may be grouped to
reduce interference). An off-line model has three advantages over
on-line analysis:

• All data accesses, not just cache misses. To be efficient, on-line
models consider just cache misses in select execution periods.
Cache interference, as we will show, depends on more than just
cache misses. An off-line model can measure the effect of all
data accesses in an execution.
• “Clean-room” statistics. An off-line model measures the char-

acteristics of a single program unperturbed by other programs.
Such “clean-room” metrics avoids the chicken-egg problem
when programs are analyzed together: the interference depends
on the miss rate of co-running programs, but their miss rate in
turn depends on the interference.
• Composable models. The clean-room, off-line models of indi-

vidual programs can be composed to predict the interference
in any program group. There are 2P co-run combinations for P
programs. The composable model makes 2P predictions using
P clean-room single-program runs rather than 2P parallel runs.
This property helps in model validation—errors cannot as eas-
ily cancel each other (and be hidden) by accident when each
model is used in making 2P−1 predictions.

To accurately model cache sharing, we collect all-window
statistics. In an execution of n run-time instructions, the number of
different, non-empty windows is

(n
2
)

= n∗(n+1)
2 or O(n2). What’s

more, it takes O(n) to count all data access in a window. There
had been no prior solution that could measure such all-window
statistics for large-scale traces.

The first part of this work is an algorithmic advance that makes
all-window profiling possible. We use three techniques to reduce
the cost of all-window analysis. The first is to count by footprint
sizes rather than window sizes. The second is to use relative preci-
sion in footprint sizes. The third is to use trace compression. As a
result, the new algorithm can count a large number of windows in
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Figure 1. Example illustrations of cache sharing.

a single step. The asymptotic cost is reduced from O(n3) to signif-
icantly below O(n logn).

Based on all-window profiling, the second part of this work
gives a algorithm to compute the circular effect between cache
interference and program miss rate. We model the effect using an
recursive equation, solve it using an iterative algorithm, and prove
the convergence.

The third part of the work is an evaluation of all-window foot-
print in 14 SPEC2K benchmark programs, with traces as long as
100 billion data accesses. We show, for the first time as far as we
know, the footprint distribution in up to a sextillion (1021) windows.
We show the quantitative difference between footprint and miss
rate. In addition, we predict cache interference using the compos-
able model and compare footprint-based prediction with one based
on miss rate and one on exhaustive testing.

The rest of the paper is organized is as follows. Section 2
gives the background especially the asymmetrical effect of cache
sharing. Section 3 describes the new algorithm for measuring all-
window footprints. Section 4 develops the composable model of
cache sharing. Section 5 evaluates all-window profiling and the
composable model on SPEC 2K benchmarks. Section 6 discusses
possible uses of the new algorithm. Finally, the last two sections
discuss related work and summarize.

2. Background on Off-line Cache Models
Reuse windows and the locality model For each memory access,
the temporal locality is determined by its reuse window, which
includes all data access between this and the previous access to the
same datum. Specifically, whether the access is a cache (capacity)
miss depends on the reuse distance, the number of distinct data
elements accessed in the reuse window. The relation between reuse
distance and the miss rate has been well established [14, 19, 28].
The capacity miss rate can be defined by a probability function
involving the reuse distance and the cache size. Let the test program
be A.

P(capacity miss by A alone)
= P(A’s reuse distance ≥ cache size)

Footprint windows and the cache sharing model Off-line cache
sharing models were pioneered by Chandra et al. [8] and Suh et
al. [25] for a group of independent programs and extended for
multi-threaded code by Ding and Chilimbi [11], Schuff et al. [20],

and Jiang et al. [16] Let A,B be two programs share the same cache
but do not shared data, the effect of B on the locality of A is

P(capacity miss by A when co-running with B)
= P((A’s reuse distance + B’s footprint) ≥ cache size)

Given an execution window in a sequential trace, the footprint
is the number of distinct elements accessed in the window. The
example in Figure 1(a) illustrates the interaction between locality
and footprint. A reuse window in program A concurs with a time
window in program B. The reuse distance of A is lengthened by the
footprint of B’s window.

Footprint, locality, and the miss rate An implication of the cache
sharing model is that cache interference is asymmetric if local-
ity and footprint are different metrics of a program. A program
with large footprints and short reuse distances may disproportion-
ally slowdown other programs while experiencing little to no slow
down itself. This is confirmed in our experiments. In one program
pair, the first program shows near 85% slowdown while the other
program shows only 15% slowdown.

Locality is determined by data access in reuse windows. There
are up to n reuse windows in a trace of n data accesses. Footprint is
determined by data access in all windows. There are

(n
2
)

= n∗(n+1)
2

footprint windows. Therefore, measuring footprint is computation-
ally a much harder problem than measuring locality.

The conventional metric of cache performance is miss rate. The
miss rate is defined for all windows but it measures only the number
of misses not the total amount of data access. In particular, it does
not count if an accessed datum is already in cache. The error may
be large for shared cache, whose sizes are 4MB to 32MB in size on
today’s machines. In fact, neither reuse distance nor footprint can
be determined by counting cache misses alone. Furthermore, the
miss rate is machine dependent and needs to be measured for each
cache configuration.

Miss rate 6= cache interference Figure 1(b) shows three short
program access streams. Programs B1 and B2 have the same set
of reuse distances and hence the same capacity miss rate. However
when running with program A, B1 causes twice as many capacity
misses as B2. It shows that locality alone does not fully determine
cache interference. Reuse distances and cache misses are not suffi-
cient. We need to know data footprint.



In general when considering the interference by program B
on program A, it is necessary to know B’s footprint in windows
of all sizes since the size of A’s reuse windows can be arbitrary.
This requires all-window footprint analysis, which we show next.
A similar algorithm may be used to collect other types of all-
window statistics such as all-window miss rates or all-window
thread interleaving [10].

3. All-Window Footprint Analysis
Let n be the length of a trace and m the number of distinct data
in the trace. We consider so-called “on-line” profiling, which tra-
verses the trace element by element but does not store the traversed
trace. Instead it stores a record of the history. The naive algorithm
works as follows. At each element, it counts the footprint in all the
windows ending at the current element. There are O(n2) windows
in the trace. The naive algorithm counts each of them. The cost is
O(n2). This does not include the cost of measuring the footprint in
each window, which is up to n in size. In the rest of this section,
we describe four techniques to reduce this complexity. In the title,
we refer to each algorithm by the main idea and the asymptotic
complexity.

3.1 Footprint Counting: The NM Algorithm
Assume that the first i accesses of a trace refer to mi data. There
are i windows ending at the ith element and i footprints from these
windows. The i footprints have at most mi different sizes. The first
idea to reduce the cost is counting by mi footprint sizes rather than
by i windows. For each size, we count all footprints of this size
in a single step. The cost for counting all footprints is O(m) per
access instead of O(n). Instead of counting O(n2) windows one by
one as in the naive algorithm, the NM algorithm counts the O(n2)
windows in O(nm) steps.

In the example in Figure 2, consider the second access of b
(before “|”). It is the 6th access in the trace, so there are 6 windows
ending there. However, only 3 distinct elements are accessed, so
the 6 footprints must have one of the 3 sizes. Indeed, the footprint
size of the 6 windows is 1,2,3,3,3,3 respectively.

aabacb|acadaadeedab

Windows ending at the second b

b, cb, acb, bacb, abacb, aabacb

Figure 2. There are 3 different footprint sizes for the 6 windows
ending at the second b. The 6 footprints are counted in 3 steps by
the NM algorithm.

To count windows by footprint sizes, we represent a trace as
follows. At each point, we store the position of the last access of
each datum seen so far. Then, all windows between a consecutive
pair of last accesses have the same footprint and are counted in one
step. For example in Figure 2, there is no other last access before
access 4 (the last access of a), so the four windows, starting at 1
to 4 and ending at 6, have the same footprint and can be measured
in one step. A method based on last accesses has previously been
used by Bennett and Kruskal to measure reuse distance [2].

3.2 Relative Precision Footprint: The NlogM Algorithm
The use of large cache is affected mostly by large footprints. For a
large footprint, in most cases we care about only the first few digits

not the exact footprint. The second idea is to measure footprints
in approximate sizes, in particular, in a relative precision such as
99% or 99.9%. The number of different footprint sizes becomes
O(logm) instead of m.

To maintain a relative position, we store the last-access infor-
mation of a trace in a scale tree structure developed by Zhong et
al. [28] In a scale tree, each (constant-size) tree node represents a
window in the trace. The number of nodes depends on the required
precision. Asymptotically, a scale tree has O(logm) nodes [28]. If
we consider last accesses as markers in the trace, the precise NM
algorithm uses m markers, while the relative precision algorithm
uses O(logm) markers. Hence, the cost is reduced to NlogM. The
idea of the NlogM algorithm was first described in a 2-page poster
paper without a complete algorithm in PPOPP 2008 [10].

3.3 Trace Compression: The CKM Algorithm
The third idea is to analyze windows ending within a group of
elements in a cost similar to analyzing windows ending at a single
element. A user sets a threshold c. The trace is divided into a series
of k intervals called footprint intervals. Each interval has c distinct
elements (except for the last interval, which may have fewer than c
distinct elements). This is known as trace compression. It has been
used by Kaplan et al. to shorten a trace while still preserving the
miss rate behavior [17]. In footprint analysis, it allows us to traverse
the trace interval by interval rather than element by element. The
length of the trace is reduced from n to k. Next we describe the
concepts and the algorithm and show that this use of compression
does not lose precision in footprint analysis.

Definition The footprint interval. Given a start point x in a trace
and a constant c, the footprint interval is the largest time window
from x that contains accesses to exactly c distinct data elements.

Figure 3 (b) shows an example trace and its division into foot-
print intervals. The division is unique. It maximizes the length of
each interval in order to minimize the number intervals. We define
the length of an interval as the number of elements it has. In this
example, the length is 9 for the first interval I1 and 8 for the second
interval I2.

We denote the series of footprint intervals by Ii, data accesses
by π, the first access s and the number of footprint intervals K. The
trace partition is:

I(π,s,c) = ∪K
i=1Ii

where ∀i, Ii is a footprint interval of size c; and ∀i 6= j, Ii and I j do
not overlap.

Windows contained within a footprint interval have a footprint
size between 1 and c and can be easily measured. The more difficult
question is how to measure the footprint of a window that spans
more than one interval. To show the algorithm, we first introduce
some new terms. Assuming the current point is the start of the
current interval, we define

Definition NEXT-FIRST-ACCESSES, the first accesses to distinct
data after the current point.

Definition PREVIOUS-LAST-ACCESSES, the last accesses to dis-
tinct data before the current point.

Definition SUB-INTERVALS. The current interval is divided by the
next-first-accesses into sub-intervals.

Definition PAST-PARTITIONS. The trace before the current point
is divided by the previous-last-accesses into past partitions.

Figure 3 shows for the first element in the second interval, the 3
next-first-accesses, the 3 previous-last-accesses, the 3 sub-intervals,



and the 3 past partitions. A past partition may span multiple inter-
vals.
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Figure 3. Illustrations of the definitions used in the CKM algo-
rithm

To count distinct footprint sizes in all windows, it is sufficient to
count between sub-interval and past partition markers, as is stated
by the following theorem. Note that the footprint count for windows
spanning multiple intervals is precise regardless of the choice of c.

Theorem 3.1. All windows starting within the same past-partition
and ending within the same sub-interval have the same footprint.

Proof Suppose a time window starts from the past-partition p and
ends at the sub-interval s. Suppose the successive data accesses
within p are pa, pa−1, ..., p1 and the successive data accesses within
s are s1,s2, ...,sb. By definition, the previous-last-access in p is p1.
The next-first-access in s is s1. Let w∗ be the window from p1 to
s1. Let the footprint of w∗ be f p∗.

Fix the start position at p1 and consider the window w1 that
ends at s2. Since each sub-interval has only one next-first-access, s2
is not a first access and does not add to the footprint. The footprint
of w1 is f p∗. Similarly, we see that all windows starting at p1 and
ending at si, i = 2, ...,b have the footprint f p∗.

Now let’s fix the end position at s1 and consider the window w1
that starts at p2. Since each past-partition has only one previous-
last-access, p2 cannot be a previous-last-access and therefore does
not add to the size of the footprint. The footprint of w1 is f p∗.
Similarly, we see that all windows starting at pa, ..., p2, p1 and
ending at s1 have the footprint f p∗. Composing these two cases,
we have the stated conclusion.

By Theorem 3.1, the measurement of all-window footprints is
reduced to measuring the footprint in windows between every past
partition and every sub-interval. The number of past-partitions is
up to m. The number of sub-intervals is c. Therefore, the number
of distinct footprints for windows ending at each footprint interval
is at most cm. Since the number of the footprint intervals is k, the
time cost is then O(ckm), hence the CKM algorithm.

We define the compression factor as n
k , which is the length of

the trace over the number of intervals. The compression factor is
minimal when c = 1 and k = n and maximal when c = m and k = 1.
When c increases from 1 and m, the compression factor changes
monotonically, as shown by the following lemma.

Lemma 3.2. k is a non-increasing function of c.

Proof Suppose ei is the end position of footprint interval Ii, i =
1, ...,k. We will prove by induction on i that ei will never move
backward when c is increased to c∗.

In the base case, I1 starts at the beginning of the trace, and e1
moves only forward in time when c is increased. Therefore, the start
position of I2 does not move backwards.

Suppose start position of Ii, i≥ 2 does not move backwards, and
the next interval starting with the new start position and ending with
previous ei has a footprint of no more than c. As a result, the new
ei will only move forward in time when c is increased to c∗.

3.4 Putting It All Together: The CKlogM Algorithm
We combine the relative precision NlogM algorithm and the trace
compression CKM algorithm as follows. Instead of using previous-
last-accesses in the CKM algorithm, we use the the relative preci-
sion footprint sizes described in Section 3.2. The approximation
divides the past trace into O(logm) past partitions. The number of
next-first-accesses is still c, and the number of intervals is k. The
total cost becomes O(ck logm), hence the CKlogM algorithm.

3.5 Comparison with Previous Footprint Analysis
Direct counting Agarwal et al. counted the number of cold-start
misses for all windows starting from the beginning of a trace [1]. In
time-sharing systems, processes are switched at regular intervals.
The cached data of one process may be evicted by data brought
in by the next process. Thiebaut and Stone computed what is
essentially the single-window footprint by dividing a trace by the
fixed interval of CPU scheduling quantum and taking the average
amount of data access of each quantum [26]. It became the standard
model for studying multi-programmed systems in 1990s (e.g. [12]).
These methods are simple and effective as far as only a linear
number of windows are concerned.

If we fix the window size m, there are n− m windows of
this size. We call them sliding windows. A hardware counter can
quickly count consecutive, non-overlapping windows. There are n

m
(assuming m divides n) non-overlapping windows, which is a sub-
set of sliding windows. If we use the average of non-overlapping
windows to estimate the average of sliding windows, we have a
sampling rate 1

m . Sampling at this low rate (for large m) may be
accurate, but we cannot tell for sure unless we have all-window
results to compare with.

Iterative generation Two recent methods by Suh et al. [25] and
Chandra et al. [8] derived the footprint from an iterative relation
involving the miss rate. Consider a random window wt of size t
being played out on some cache of infinite size. As we increase
t, the footprint increases with every cache miss. Let E[wt ] be the
expected footprint of wt , and M(E[wt ]) be the probability of a
miss at the end of wt . For window size t + 1, the footprint either
increments by one or stays the same depending on whether t + 1
access is a cache miss, as shown by the following equation:



E[wt+1] = E[wt ](1−M(E[wt ])+(E[wt ]+1)M(E[wt ])

To be precise, the term M(E[wt ]) requires simulating sub-traces of
all size t windows, which is impractical. Suh et al. simplified the
relation into a differential equation and made the assumption of
linear window growth when window sizes were close [25]. Chan-
dra et al. computed the recursive relation bottom up [8]. Neither
method places a bound on how the estimate may deviate from the
actual footprint. In addition, their approach produces the average
footprint, not the distribution.

The distribution is important. Considering two sets of footprints,
A and B. One tenth of A has size 10N and the rest has size 0. All
of B has size N. A and B have the same average footprint N but
their different distribution can lead to very different types of cache
interference.

Sampling and statistical inference Beyls and D’Hollander used
hold-and-sample and reservior sampling to profile reuse time [5].
As part of a continuous program optimization framework, Cascaval
et al. sampled TLB misses to approximate reuse distance [6]. Re-
cently, Schuff et al. used sampling to measure reuse distance on
shared cache [20]. These methods are based on sampling.

Two techniques by Berg and Hagersten (known as StatCache) [3]
and by Shen et al. [22, 23] were used to infer cache miss rate from
the distribution of reuse times. Let each access represented by a
random variable Xi, which is assigned 1 if the access i is a miss
and 0 otherwise. Let accesses i, j be two consecutive accesses to
some data. The reuse time is j− i. Let P(k) be the probability that
a cache block is replaced after k misses. The following equation
holds

E[X j] = P(Xi+1 +Xi+2 + ...+X j−1)

With the goal of inferring number of cache misses in every interval,
the analysis problem is one of all-window statistics. However, there
can be O(n) variables in the equation. To produce an estimate, Berg
and Hagersten assumed constant miss rate over time and random
cache replacement [3]. Shen et al. assumed a Bernulli process and
LRU cache replacement [22, 23] (and later used a similar model to
analyze multi-threaded code [16]). While both methods are shown
to be accurate and effective for miss rate prediction, the accuracy
of the all-window statistics has not been verified. One can easily
construct two example executions that have arbitrarily different
footprints while showing the same reuse times. The two methods
do not guarantee a precision for the miss-rate estimate.

In a poster paper, Ding and Chilimbi described two solutions:
linear sampling and all-window measurement [10]. The sampling
rate of linear sampling is 1/n, where n is the length of the trace,
which can be too low to be statistically meaningful. The second
technique is equivalent to the NlogM algorithm in this paper, which
is too slow as we will show in Section 5.

4. Cache Interference Prediction and Ranking
Shared cache is a dynamic system. The interaction between active
programs is likely non-linear since the cause and effect form a loop.
The memory access of one program affects the performance of its
peers, whose effect “feed back” to itself. In this section we first
express this relation in an equation system and then present our
solution.

Let programs 1 and 2 of infinite length run on shared cache.
Let their speed be cpi1,cpi2 when running alone, as measured by
cycles per instruction. When they execute together, let the change
in their speeds be δ1,δ2. If we assume uniform speed change, an
original time window of size t in an individual execution will take

time tδ1 in program 1 and tδ2 in program 2. We call this effect
execution dilation and the term δi the dilation factor of program i.

If we know execution dilation, we can compute its effect on
cache sharing by matching for example each reuse window of size
t in program 1 with a footprint window of size t cpi1δ1

cpi2δ2
. From this

matching, we can compute the relative increase in the number of
capacity misses in shared cache.

x1 =
P
[
d1 + f2

(
t(d1)

cpi1δ1
cpi2δ2

)
≥C

]
P [d1 ≥C]

(1)

where d1 is a reuse distance of program 1, t(d1) is the size of
reuse window of d1 when program 1 is running alone, f2(x) is
the footprint of program 2 in a window of size x, and c is the size
of shared cache. The relative increase in shared-cache misses for
program 2 is similarly computed as x2.

To connect caching effect with execution time, we need a timing
model. An accurate model is highly unlikely to exist given the com-
plexity of modern computers. For example, the penalty of a cache
miss on an out-of-order issue processor depends on the parallelism
with surrounding instructions, the overlapping with other memory
accesses, and the choice of hardware or software prefetching. In-
stead of looking for an accurate model, we use a simple model that
can capture some first-order effect in the relation between cache
misses and execution time.

We use a linear model, T = T nn+T pmp +T sms, where T is the
execution time, n is the number of instructions, mp is the number
of private-cache misses, ms is the number of shared-cache misses,
and T n,T p,T s are the average cost of an instruction, a private-
cache miss, and a shared-cache miss. Of the 6 factors, n,mp,ms

are trace specific, and T n,T p,T s are machine specific. The values
of T n, T p, and T s are learned by linear regression given the linear
model and a set of measured execution times and predicted L1 and
L2 cache misses from SPEC2K benchmarks. The product of T nn
can be viewed as the execution time when all data access are cache
hits. The other two factors, T pmp,T sms, are the penalty from cache
misses. We make the simplifying assumption that all misses have
the same penalty. A similar assumption was used by Marin and
Mellor-Crummey [18].

The following equation combines the cache model and the time
model to produce the dilation factor for program i (i = 1,2)

T nni +T pmp
i +T sms

i xi

T nni +T pmp
i +T sms

i
= δi (2)

Substituting xi with its equation, we have two recursive equations
of two unknowns, δi. The formulation can be extended to p pro-
grams by changing the equation for xi to

xi =
P
[
di +Σ j 6=i f j

(
t(di)

cpiiδi
cpi jδ j

)
≥C

]
P [di ≥C]

(3)

and generating p equations with p unknowns.
We solve the recursive equations using an iterative method. We

first set δi to be 1, use the equations to compute the new value of
δ′i, and repeat until all δi stops changing (|δ′i−δi|< εδi).

To analyze the convergence property of the solution, consider
the 2-program run case. We symbolize xi in Equation 3 as a function
xi( δ1

δ2
). Substituting this function into Equation 2 for δ1,δ2 and

putting one over the other we have

T nn1+T pmp
1+T sms

1x1

(
δ1
δ2

)
T nn1+T pmp

1+T sms
1

T nn2+T pmp
2+T sms

2x2

(
δ1
δ2

)
T nn2+T pmp

2+T sms
2

=
δ1

δ2
(4)



If we represent the left-hand size as a function F , the equation
becomes F( δ1

δ2
) = δ1

δ2
. Following theorem ensures the convergence

of our iteration model.

Theorem 4.1. ∃δ1,δ2, such that δ1
δ2

= F( δ1
δ2

).

Proof Let r = δ1
δ2

. According to the definition of F , we have the
following 3 statements immediately.

• y = F(r) is non-decreasing. Notice, when r increases x1(r)
increases while x2(r) decreases.
• F(0+) = C1 > 0, where C1 is constant.
• F(inf) = C2 < inf, where C2 is constant.

Let r1 = max S1, where S1 = {r|∀s ≤ r,F(s) ≥ s}, r2 = min S2,
where S2 = {r|∀s < r,F(s) ≥ s,F(r) ≤ r}. Obviously r1 ≤ r2. we
claim r1 = r2.

Assume r1 6= r2 by contradiction. According to the definition of
r1, F(r1)≥ r1, which means F(r1) 6∈ S1. According to the definition
of r2, F(r1) ∈ S2, which means F(r1) ≥ r2. Because F(r2) ≤ r2,
we have F(r1) ≥ F(r2), which contradicts the assumption that
F(r) is non-decreasing. Since r1 = r2 by definition, we conclude
F(r1) = r1.

Interference is a complex relation. To run n programs on a
machine with p processors, there are

(n
p
)

choices of co-execution.
With the asymmetrical effect of cache sharing, every program in
every set may have a different interference. Our model, which
we call, PAW (Profiling of All-Window footprints) model or PAW
prediction, can be used to predict the interference and rank co-
run choices so that a user can choose program combinations that
have least interference. PAW statistics, locality and footprint, are
machine independent. To make prediction, PAW requires two items
of information from the target machine: the sequential running time
of each program and the size of the shared cache. The process does
not need any parallel testing.

5. Evaluation
5.1 Experimental Setup
We have tested 14 SPEC2K benchmarks, which include all pro-
grams that we could compile and run. Other programs have com-
pilation errors due to either our configuration setup or the bench-
mark code. Each of the successful tests is compiled using a mod-
ified GCC 4.1 compiler with “-O3” flag. The compiler is modi-
fied to instrument each memory access and generate the data ac-
cess trace when the program runs. The reuse distance analysis is
the relative-accuracy approximation algorithm [28]. The precision
is set to 90%. Since profiling is machine-dependent, we use a Linux
cluster for profiling different benchmarks in parallel to save time.
Each node has two 3.2GHz 64-bit Intel Xeon processors with 1MB
L2 cache each and 6GB physical memory total. We use a set of
newer machines for cache-interference tests. Each has a 2.0GHz
Intel Core Duo processor with two cores sharing 2MB L2 cache
and 2GB memory.

5.2 All-window Footprint
Figure 4 shows the full distribution of all-window footprint in 4 of
the 15 benchmarks. While every program has a different looking
footprint, we choose these 4 because they demonstrate the range of
variations. Each graph shows window size, measured in number of
data accesses with exponential scale, in the x-axis and footprint,
measured in bytes, in the y-axis. It’s worth to note, since our
measurements are based on 64-byte blocks the footprint sizes are
always multiples of 64. At each window size, each graph shows
five footprint numbers: the minimal size min, the maximal size max,

the median, and the two footprints whose size is higher than 90%
and 10% of footprints. We connect the points into a line, so each
distribution is drawn with five curves. In probability terms, a point
(x,y) on the n% curve indicates that a window of x data accesses
has n% chance to have a footprint smaller than y.

The footprint distribution shows highly summarized informa-
tion about program data usage. For example, every point < x,y >
in the min curve shows the minimal footprint in all windows of size
x is y. As a sanity check, a reader can verify that the minimal and
the maximal footprints are monotone functions of the window size.
The monotonicity should hold in theory but in an observation, it is
not guaranteed if we sample a set of windows rather than measure
all windows.

All-window footprint shows the characteristics of the working
sets in a program. Gzip has constant-size median working sets for
windows from 1 million to 256 million accesses, shown by Fig-
ure 4(a). In compression or decompression, the same data buffers
are repeatedly used for each chunk of the input or output file.
Constant-size working sets are a result of complete data reuse.
Bzip2 creates larger auxiliary data structures in order to improve
compression ratio over a larger scope. Its working sets increase in
size with the length of the execution window. The rate of increase,
however, gradually decreases, as shown by Figure 4(b).

Shown in Figure 4(c), Equake has the clear streaming access
pattern because its working set size increases linearly with the
execution window length. In fact, it shows the most rapid growth,
resulting in the largest footprint among all programs we have tested.
90% of footprints increase from 8KB to 8MB when window size
increases from 30K to 32M data accesses. Its footprint interferes
with many other programs when running in shared cache. Twolf in
Figure 4(d) shows the smallest variation in footprint size. 80% of
windows have nearly the same size footprint. These examples show
that applications have different characteristics in their footprint
distribution.

5.3 Comparison with Miss Count
It is interesting to consider the relation between the number of
misses in a window and the footprint of the window. On average,
the number of misses is the miss rate times the window size.
Therefore, the average miss count grows linearly. It is unbounded
if a program executes forever. The footprint is bounded by the size
of program data. The growth cannot be always linear.

This difference is shown in the example of Gzip result in Fig-
ure 5. The miss count should be in the unit of 64-byte blocks.
The figure shows it in bytes growing linearly from 2−9 byte to 226

(83MB or 1.3 million misses) for window sizes ranging from 1 ac-
cess to 18 billion. For the same window sizes, the footprint grows
from 64 bytes (1 block) to 83MB. This difference leads to differ-
ent predictions of cache interference. We compare the accuracy of
these predictions next.

5.4 Prediction of Program Interference
For interference we run our test set of 15 programs on a dual-core
machine mentioned earlier. There are

(15
2
)

= 105 ways of pairing
two of the 15 programs to share cache, 455 ways of choosing 3, and
1365 ways of choosing 4. We use all-window profiling on each of
15 programs in a sequential run and use the composable model to
rank cache interference of co-run choices. The ranking is based on
the predicted slowdown (the geometric mean in each group).

There are two questions about the prediction. The first is how
accurate the model is in predicting the cache interference. It can
be evaluated by measuring the change in the miss rate when pro-
grams are run together. The second is how useful the model is in
predicting the performance of shared cache. It can be evaluated by
measuring the change in the actual execution time. We show re-
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(a) Gzip has constant-size median working sets for windows from 1 million
to 256 million accesses.
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(b) Bzip2 has a larger working set than Gzip for windows larger than 256
thousand accesses.
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(c) Equake has a streaming access pattern. The footprint increases linearly
with the window size.
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(d) Twolf shows a narrow distribution —80% windows of the same length
have nearly the same footprint.

Figure 4. The distribution of all-window footprint shows the characteristics of the working set in 4 SPEC benchmarks.
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Figure 5. Comparison of linear miss count growth and non-linear
footprint growth in Gzip.

sults that answer the second question. To measure the interference,
we run a pair of programs long enough and take the average slow
down, following the method used in [27].

We evaluate the prediction by plotting an interference-ranking
graph. Figure 6(a) shows two sets of results. The first is the ac-
tual slowdown of the program pairs ordered by the footprint-based
prediction. The second is the slowdown when program pairs are or-
dered by results from all-pair testing. The second one is a monotone
curve, which is the ideal result for a prediction method. The data
points of the footprint-based prediction are connected into a line. It
is not monotone, but it is generally the case that program pairs with
a higher rank have a greater slowdown than program pairs with a
lower rank. The method ranks high interference pairs better than it
ranks low interference pairs. This can be attributed to the simple
execution-time model. When the cache effect becomes significant,
the footprint model shows its strength. In practical use, users are
more concerned with large degradations.

Figure 6(b) shows the effect of miss-rate based predictor in
comparison with the ideal result. The prediction is obtained by
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(a) Footprint-based interference ranking compared to exhaustive testing. The
y-axis shows the slowdown (quadratic mean) by the xth program pair.
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(b) Miss-rate based interference ranking compared to exhaustive testing. The
y-axis shows the slowdown (quadratic mean) by the xth pair.
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(c) Cumulative mean interference by 4 ranking methods. The y-axis shows the
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Figure 6. All-window footprint predicts the performance effect of
all-pair cache sharing better than the miss rate does.

using the miss count instead of the footprint. The miss count is
computed from the average miss rate, which is computed using the
reuse distance in the sequential run. Miss rate may significantly
underestimate the cache footprint. As an example, the pair, art and
twolf, has the second lowest total miss rate (miss per second) in
their sequential run, but when running together, art causes twolf
to run 91% slower while itself actually runs 6% faster (we do not
have an explanation for the speedup). Overall, the high-interference
pairs (on the right half of the graph) do not show a rising trend,
indicating the ranking fails to predict in co-run slowdown.

Figure 6(c) shows the cumulative mean slowdown of groups
1 to x at each point. The ideal result, based on the ranking from
exhaustive measurement, increases from 1% slowly until near the
end when it quickly rises to 17%. This is because most programs
do not interfere significantly but for the few that do, they interfere
badly. The mean slowdown for the first 85 pairs is less than 10%,
but the next 20 pairs raise the average of all 105 pairs to 17%.

Footprint-based ranking shows a similar result to the ideal rank-
ing. The cumulative mean slowdown is 6% and 3% respectively for
the prediction and the ideal for the first 25 pairs and 8% and 5% for
the first 50 pairs. The two curves move closer after the 62th pair.
The difference in their average slowdown is no more than 2%. If we
take the first 25 pairs, the cumulative slowdown in miss-rate based
ranking is 17%, which is near 3 times the 6% cumulative slowdown
by footprint. As a basis for comparison, Figure 6(c) also shows the
effect of random ranking, which does not consider the effect of
cache interference. Random ranking is obtained by ranking co-run
pairs according to the lexicographic order of their program names.

5.5 Efficiency
Measurement speed We have tested 26 reference inputs of the 14
benchmark programs that we could compile. For brevity, Table 1
shows results for one reference input (the first one in the test order)
of each benchmark. The programs are listed by the increasing order
of their SPEC benchmark number, from 164 for gzip to 300 for
twolf.

N M K N/K CKlogM
Refs/sec

prog. (109) (103) (106) (103) (106)
gzip 24 232 7.2 3.4 1.9
vpr 41 159 6.9 5.9 2.9
gcc 16 360 2.3 7.3 3.5
mesa 31 28 1.8 17.5 8.4
art 30 11 12 2.4 1.7
mcf 14 315 27 0.50 0.3
equake 108 167 7.6 14.2 6.5
crafty 41 7.5 25 1.7 1.3
ammp 4.7 51 2.6 1.8 1.1
parser 78 102 21 3.7 1.9
gap 68 787 3.6 19.0 7.3
vortex 31 196 3.0 10.4 4.9
bzip2 42 530 7.8 5.4 2.4
twolf 106 12 48 2.2 1.8
median 36 162 7.4 4.6 2.1
mean 45 211 12.5 6.8 3.3

Table 1. Measurement speed by CKlogM (C = 128) for the ref-
erence input of 14 SPEC2K benchmarks. The speed closely corre-
lates with the average interval length (N/K). The average speed is
3.3 million references per second.

The size of the execution is measured by the length of the
data access trace and the number of data cache lines the program



touched, shown in the second and third columns of the table. The
size of each data cache line is 64-byte. The number of intervals,
K, and the average length of each interval, N/K, are shown next.
Finally, the last column shows the measurement speed in the unit
of million references per second.

The length of the traces range from 4 billion to 108 billion, the
size of data ranges from 7 thousand to 787 thousand, the number of
intervals ranges from 1.8 million to 48 billion, the average interval
length ranges from 504 to 19 thousand, and the measurement speed
ranges from 264 thousand data accesses per second to 8.4 million
accesses per second. If we measure in terms of the number of
windows measured, the speed ranges from 1015 (a quadrillion)
windows per second to nearly 1018 (a quintillion) windows per
second.

The speed closely correlates with the average interval length.
The average length of k means that in a random time window, 128
distinct data elements are accessed by each k accesses. When the
length is 500, the measurement speed is less than 300 thousand
accesses per second. However, when the length is 19,000, the speed
becomes 7.3 million accesses per second. The average length is
determined by the length of the trace and the number of intervals.
Hence the cost of the algorithm is determined by the number of
intervals, K, more than any other factor.

Comparison between CKlogM and NlogM The NlogM algo-
rithm was the first to attempt complete all-window measure-
ment [10]. Here we compare NlogM with CKlogM for C = 128 and
C = 256. Table 2 shows the result of 12 SPEC2K benchmarks (that
the NlogM method could finish analyzing), including the length of
the trace, the size of data, the measurement time by NlogM, and the
speedup numbers by CKlogM for two Cs. We have to use test in-
puts because it takes too long for NlogM to measure larger inputs.
The measurement time ranges from 414 seconds for mcf to 4 hours
for parser by NlogM and from 3 and 2 seconds for twolf to 18 and
17 minutes for ammp by CKlogM when C = 128 and C = 256. The
largest reduction is a factor of 316 for twolf from 10 minutes to
2 seconds. The smallest reduction is a factor of 8 for mcf from 7
minutes to 53 seconds.

NlogM CKlogM CKlogM
time C=128 C=256

prog. N M [sec] time time
(speedup) (speedup)

gzip 804M 9K 12K 328(35) 246(47)
vpr 298M 5K 4K 84(49) 41(90)
gcc 255M 15K 4K 37(102) 19(198)
mesa 173M 25K 2.6K 10(259) 9(288)
art 1.0B 5K 12K 119(104) 108(114)
mcf 40M 5K 414 52(7.8) 41(10)
equake 342M 40K 5K 42(126) 33(161)
crafty 935M 8K 15K 739(20) 187(78)
ammp 818M 51K 13K 1129(12) 1036(13)
parser 929M 24K 14K 142(101) 98(147)
gap 277M 147K 5K 30(168) 20(252)
vortex 2087M 65K – 537(N/A) 283(N/A)
bzip2 3029M 60K – 660(N/A) 565(N/A)
twolf 76M 309 631 3(210) 2(316)
median 320M 12K 5178 47(101) 41(131)
mean 497M 28K 7343 201(100) 153(142)

Table 2. Time comparison for the test input of 14 SPEC 2K bench-
marks. On average (excluding Vortex and Bzip2 for which NlogM
does not finish), the measurement time is reduced from 2 hours per
program to 73 and 52 seconds when C = 128 and 256 respectively.

The average statistics is shown at the bottom of Table 2. On
average across 12 benchmarks, the length of the trace is half billion
memory accesses and the size of data is 28 thousand words. The
average measurement time of NlogM is two hours. The average
reduction by CKlogM is a factor of 100 to 73 seconds when C =
128 and a factor of 142 to 52 seconds when C = 256. In other
words, CKlogM reduces the average measurement time from two
hours to one minute.

5.6 Relation between c and Measurement Speedup
We define the speedup factor by N

CK . Intuitively, a larger c produces
a greater speedup. However, this is not true. We have measured
all power-of-two c values for all our tests and studied the relation
between c and the potential speedup. When the speedup numbers
for different c were drawn as a curve, we have observed variations
in terms of whether a curve has a single peak or whether the shape
changes when a program is run with different inputs. Figure 7 show
the speedup factor for 4 programs whose footprint we have shown
in Figure 4. The highest speedup is in tens of thousands for bzip2
and gzip, one hundred thousand for equake, and (too large to
shown in the figure) 1.6 million for twolf.
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Figure 7. N
CK gives the speedup factors for 4 SPEC CPU2000

benchmarks. The speedup factors for twolf are as high as 1.6
million but are not shown above 100K in order to make other
numbers easy to see.

6. Potential Uses of All-window Profiling
The new algorithm and the accurate modeling of cache sharing may
have a number of uses:

• footprint-based program optimization. Traditionally, the way to
improve memory performance is to improve program locality.
For shared cache, we may reduce the interference by reduc-
ing the size of program footprint even if the locality stays un-
changed. All-window footprint can aid footprint-oriented tech-
niques in two ways. The first is to identify “hot” spots in a pro-
gram and help program tuning. For example, a tool can identify
loops and functions in a program that have the largest footprint
or a footprint larger than 90% of the windows of the same size.
Second, all-window analysis can be used to fully evaluate the
effect of a footprint-oriented program transformation.
• sampling vs. all-window statistics. Statistics such as the miss

rate may differ depending on two factors, which windows are
chosen to measure the miss rate, and how large the windows



are. All-window analysis can be used to determine whether the
miss rate is uniform as a function of window sizes - whether the
miss rate in small windows is the same as the miss rate in large
windows. Similarly, it can determine whether the miss behavior
in a subset of windows is similar to the miss behavior in all
windows. In addition, On-line techniques may use the miss rate
to approximate the footprint. Accurate footprint results can be
used to calibrate approximation methods and determine their
effectiveness and limitations.
• cache vs. other resources. Cache sharing is only one factor in

performance. Others include the sharing of memory interface
and the CPU scheduler [30]. An accurate estimate of cache
interference can help us determine how important cache sharing
is when compared against other factors, and how useful and
portable a cache model may be in performance prediction.
• working set characterization. Working set is an important met-

ric in workload characterization. It helps to have the full distri-
bution of working-set size in all windows not just the average.
With the distribution, we can evaluate statistically how good the
average is as an estimate for an execution window.
• batch scheduling. The composable model may help ahead-of-

time co-run scheduling. If a workload has a fixed number of
program-input pairs, a batch scheduler can use the type of
ranking results shown in Section 5.4 to choose which sub-group
of tasks to start on the next available multi-core computer.

7. Related Work
We have discussed in Section 3.5 related work in footprint analy-
sis. Next we review related techniques in modeling shared cache
performance.

Cache sharing Chandra et al. modeled cache sharing between
independent applications and gave the framework that we use in
this paper [8]. Cache sharing in multi-threaded code is affected
by two additional factors: data sharing and thread interleaving.
The effect can be characterized by extending the concept of reuse
distance [20, 21] or inferred using a composable model [11, 16].
Previous methods did not measure footprint precisely and did not
model the circular interaction. The techniques in this paper measure
the all-window footprints with a guaranteed precision and use an
iterative algorithm to compute the circular interference among co-
run applications.

Zhang et al. used a conflict graph to show the asymmetrical
effect of cache sharing [27]. They did not explain the causes, which
we model as the combined effect of footprint and locality.

Program co-scheduling Many techniques have been developed
for selecting applications to run on shared cache. Snavely and
Tullsen devised a scheduler that generates and evaluates a set of
random schedules in the sampling phase and picks the best one for
the remaining execution [24]. Fedorova et al. suspended program
execution when needed to ensure a set of programs have equal share
of cache [13]. The technique is based on the assumption that if two
programs have the same frequency of cache misses, they have the
same amount of data in cache. The two techniques are dynamic
and do not need off-line profiling. However, on-line analysis may
not be accurate and cannot predict interference in other program
combinations.

Jiang et al. formulated the problem of optimal co-scheduling
and showed that although the problem is NP-hard, an approxima-
tion algorithm can yield a near-optimal solution [15]. As inputs,
their solution requires accurate prediction of co-run degradation.
They gave a prediction method based on statistical inference of ap-
plication footprint [16]. As discussed in Section 3.5, the result from

statistical inference does not have a precision guarantee. The all-
window analysis and the composable model can provide the needed
prediction, with an accuracy similar to exhaustive testing (as shown
in Section 5.4).

Zhuravlev et al. defined a metric called Pain to estimate the
performance degradation due to cache sharing [30]. The degree of
pain that application A suffers while it co-runs with B is affected
by A’s cache sensitivity, which is proportional to the expectation
of its reuse distance distribution, and B’s cache intensity, which
is measured by the number of last level cache accesses per million
instructions. The pain of A-B co-scheduling is estimated as the sum
of the pains of A and B. Pain is a composable model. It differs from
PAW in the notion of cache intensity. It is defined using a single
window size. In computing B’s interference of A, PAW considers all
window sizes in B since a reuse window in A may have an arbitrary
length.

Trace and static analysis Measuring footprint requires count-
ing distinct data elements. The problem has long been studied in
measuring various types of stack distances. A review of measure-
ment techniques for reuse distance (LRU stack distance) can be
found in [28]. Kaplan et al. studied the problem of optimal trace
compression–to generate the shortest possible trace that still pre-
serves same LRU behavior in large cache [17]. Our footprint mea-
surement is similar in that both methods use intervals as the ba-
sic unit in analysis. More recently, Zhou studied random cache re-
placement policy and gave a one-pass deterministic trace-analysis
algorithm to compute the average miss rate (instead of simulating
many times and taking the average) [29]. Reuse distance can be an-
alyzed statically for scientific code [4, 7] and recently MATLAB
code [9]. The static techniques also compute the footprint in loops
and functions. Unlike profiling whose results are usually input spe-
cific, static analysis can identify and model the effect of program
parameters. These techniques are concerned with only reuse win-
dows and cannot measure the footprint in all execution windows,
which is the problem we have solved in this paper.

8. Summary
We have presented the first accurate all-window footprint analysis.
The new algorithm uses footprint counting, relative precision ap-
proximation, and trace compression to reduce the asymptotic cost
to O(CKlogM). We have successfully measured all-window foot-
prints in the SPEC2K benchmark suite in its full-length executions.
It is the first time such complete measurement is made. The re-
sults show that applications differ in their footprints in terms of not
just the size but also the relation with time and the compactness of
the distribution. The previous fastest accurate method could only
measure these programs on their test input, for which the new al-
gorithm reduces the profiling time from 2 hours to 1 minute. The
all-window analysis measures a quadrillion to nearly a quintillion
footprints per second.

We have also presented an iterative algorithm to compute the
non-linear, asymmetrical effect of cache sharing and developed a
tool for ranking program co-run choices without parallel testing.
The ranking is close to that from exhaustive parallel testing, reduc-
ing performance slowdown by as much as a factor of 3 compared
to miss-rate based ranking.
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